
Available online www.jsaer.com 
 

Journal of Scientific and Engineering Research 

131 

 

Journal of Scientific and Engineering Research, 2020, 7(3):131-149 

 

    

 
Research Article 

ISSN: 2394-2630 

CODEN(USA): JSERBR  

    

 

Extended Charge and Indication of a Scale of the Supersymmetry 
 

Khavtgai Namsrai 

 

Institute of Physics and Technology, Mongolian Academy of Sciences, Enkhtaivan avenue 54B, Bayanzurkh 

district, Ulaanbaatar 13330, Mongolia 

Abstract We propose simple model of a rigid string charge and its electromagnetic interaction. 

 

Keywords Rigid string charge, nonlocal quantum electrodynamics, propagator for a rigid string 

1. Introduction 

The study of nonlocal (or extended) and supersymmetric theories of quantized fields aimed to construct unified 

theory of elementary particles interactions including gravitation plays a vital role in the contemporary physics. 

Among them the string theory is physicist’s dream to construct the unified theory of every thing (see for 

example, Green, Schwarz and Witten, 1987; Polchinski, 1998; Weinberg, 2000; Efimov, 1977 and Namsrai, 

1986 and references therein).  

However, in spite of enormous successes and developments of these theories until now there absent clear 

working models allowing us to predict a range of energetic interval or scale at which experimental prediction 

and observation of physical processes and consequences arisen from these theories will be expected.  

In this paper, we would like to consider a simple model of a rigid string-stick charge configuration. As shown in 

Figure 1 three charges iq  with different signs are located on it. Here sum of these charges gives desired charge 

value of a particle under consideration.  

 eqi

i

=  (1) 

Notice that it is quite possible to consider fractional charge configuration as composed particle consisting of 

three fractional charges like quarks. However, for now it is not important for our calculation purpose. 

 
Figure 1: One dimensional extended charge configuration consisting of three charges with different signs (two 

plus charges and one minus charge and vice versa) 
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 Let eqq == 23  and eq =1  and l  is a half size of the stick. Then a potential of this configuration takes the 

form  
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 Here we have assumed that OMr =  is much larger than l  (r>>l) and that an orientation of the stick in space 

is not important and therefore one can always choose its position along the radius vector of observation. We see 

that the text book formula (2) is the sum of potentials of a point-like charge and a dipole, as it should be.  

 Our main goal is to construct electromagnetic interaction of this charge configuration and to obtain restriction 

on a size l  of the stick.  

2. The corresponding principle in the static limit 

 It is well known that in the static limit there exists relationship between the potentials of charges and the form 

of the propagators of force carrying particles or messengers. For example, for the Coulomb and Yukawa 

potential cases it takes the form in the static limit;  
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Here, the inverse Fourier transforms are also valid. Thus, according to the rule (3) from the potential (2) one 

gets  
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Relativistic extension of this formula in p -space acquires the form  
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In this article, we have used Weinberg’s text book metric form 
22

0

2 == ppppgp 
. Thus, the 

propagator of the force carrying particle, corresponding to the potential of the rigid string in x -space is  
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Mathematical nature of the last term in (6) and (7) is very interesting if we write it in the Dirac form  
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where we have used the well-known relation 
22 )ˆ(= pip  , ppgp  




 00==ˆ , 

  is the Dirac 

 -matrices.  

It is obviously that expression (8) is exactly equal to the propagator of a massless spinor, which we call 

supersymmetric partner of photon or photino. In the language of the radiation theory i.e., in terms of the 

quantum field theory it means that the rigid string charge configuration is radiated or absorbed photons and 

photinos simultanuously but a portion of photinos in this mixed or supersymmetric states (fields) is determined 

by a size of the extended charge i.e. the parameter l .  
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3. Possible form of a superfield corresponding to the rigid string charge and its radiation mixture 

3.1. Vector like superfield 

Owing to the sum of propagators (6)–(8) one can propose that extended composed charges are radiated or 

absorbed vector like superfield )(xA  consisting of photons and photinos. There are many equivalent forms of 

represention of a superfield. For example, in the language of the supersymmetry, photon and photino fields can 

be formally present in the superfield form  

 ),(=,= ~~ 



 







lAl

A


















 (9) 

where A  and  ~  are the photon and the massless spinor fields,   and   are Grassman variables. By means 

of these fields Green function (6) with using (8) in x -space can be written in the form  

  

 0|)}()({|0=)( 22 yxTddyxD   

 )()(=
~

yxlDyxDgg f

ph  


 (10) 

Symbols ~  and f
~

 in expressions (9) and (10) are applied to quantities belonging to supersymmetric partners 

of photons. Here we have used the definitions  

 
  2= g  

 0= 
 (11) 

 1== 2222  dd   

It is natural that the Fourier components of )(xDph  and )(
~

xlD f  are given by the first and second terms in 

(6), respectively.  

An another form of representation of vector like superfield )(xA  is also valid:  

 )()()(=)( ~ xlxAx 
 A  

 ))(()(= ~  


 xlxA A  

or in a short notation:  
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By definition  
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Here it is assumed that pairing between fields )(xA
 and )(~ x  is identically zero and as a result we obtain 

the propagator of the composed or nonlocal photon  
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due to the equalities (11). Notice that pairing between local fields )(xA
 and )(yA

 gives the local 

propagator of photons, and pairing between spinor fields )(~ x  and )(~ x  yields the propagator of the 

massless spinor field. 

 

3.2. Spinor like superfield 

We assume that an extended rigid string-stick is also itself behaviour as spinor like superfield consisting of 

spinor and its supersymmetric partner-slepton (selectron and smuon etc.). Notice that the supersymmetric 

partners of the leptons are spin-zero bosons: charged sleptons. In general speaking for a given fermion f , there 

are two supersymmetric partners, Lf
~

 and Rf
~

, which are scalar partners of the corresponding left- and right- 

handed fermion. Let us consider simplest spinor superfield consisting of spinor and its supersymmetric partner-

boson with mass m :  

 )()(=)( xlmxx s   

 )()(=)( 2 xlmyy s   (14) 

Here, the lower case s belongs to the supersymmetric partners of the leptons, i.e. to the spin-zero bosons. Thus, 

the propagator of this superfield is  
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Parameter lm2
 in the second term in (15) is arisen from the dimensional argument and the assumption that in 

the limit 0l  contribution due to supersymmetric scalar part of the theory goes to zero, i.e. it corresponds to 

the almost local theory of QED, in the approximation )( 22lmO .  

Thus, electromagnetic interaction between two superfield (12) and (14) leads to:   

    1.  The usual local QED of leptons;  

    2.  Interaction between leptons and photinos at the order of )( mlO ;  

    3.  Interaction between supersymmetric partners of leptons, i.e. charged spin-zero bosons and photons at the 

order of )( mlO ;  

    4.  Pure supersymmetric interaction between photinos and charged spin-zero bosons at the order of )(mlO .  

 From the point of view of direct experimental predicting study of the supersymmetric theory it is natural to 

consider first two cases together. Now we turn to this problem. 

 

4. Nonlocal QED 

4.1. The interaction Lagrangian 

 Let us consider interaction between leptons and nonlocal photon like superfield )(xA  (12) the propagator of 

which is given by the formula (7) or (13). Such model we call the nonlocal QED (NQED). Since, here a spinor 

field of leptons does not charge and only mixed photon like fields )(xA  (12) instead of the local photon field 

)(xA  are entered into the scheme of the construction for the interacting theory. This scheme allows us to 
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construct nonlocal interaction of these fields by using usual procedure for studying the local QED. Thus, the 

Lagrangian density of these interacting fields )(x  and )(xA  is taken the form;  

 )()])(()[(
4

1
=)( xmxiexFFxL BBBBBBBl  


   A  (16) 

 where  

 )(=  AAAAAA  BBBB ieF  

 and 


BA  and B  are the bare (unrenormalized) field of the nonlocal photon and electron (or muon), and Be  

and Bm  are the bare charge and mass of the electron (or muon). As in the local field theory, we introduce 

renormalized field, charge and mass  
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 with the constants 2Z , 3Z  and m .  

 As usually, the Lagrangian may then be written in terms of remormalized quantities  

 210= LLLL   (19) 

 where  
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 and 2L  is determined by as a sum of "counterterms"  
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Notice that all of the terms in 2L  are of second order and higher order in e , and that these terms ensure to 

cancel the ultraviolet divergences that arise from loop graphs in the nonlocal QED.  

It is well known that the Lagrangian density (16) is invariant under the gauge transformations:  
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We now would like to calculate Feynman diagrams in the nonlocal electrodynamics defined by the Lagrangians 

(20), (21) and (22).  
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4.2. Vacuum polarization 

Since, in this concrete scheme the propagator )( yxS   of the charged lepton spinor does not changed and 

therefore the diagrams of the vacuum polarization i.e. closed spinor propagators of leptons in the nonlocal QED 

are investigated by the same way as in the local theory. For completeness we calculate it in 
2e -order in detail.  

In the coordinate space, the matrix element of the S -matrix, corresponding to the diagram in Figure 2 has the 

form  

   :)()()(::=)()()()(: 2 yyxxiyxySyxSiexi 
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In the momentum p -space the vacuum polarization (25) takes the form  
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Next we would like to act as follows from the standard local theory.   

    1.  Take the Feynman parameterization  
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   2.  Carry out shift of the variable of integration in momentum space qxpp  .  

   3.  Calculate the trace as  
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Our next step is called a Wick rotation 
40 ipp  , 
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products are evaluated using the Euclidean norm 
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It turns out that the integral of the type  
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is badly divergent, which is calculated by using the dimensional regularization technique introduced in ’t Hooft 

and Veltman, 1972, based a continuation from four ( 4=d ) to an arbitrary number d  of spacetime 

dimensions.  

For calculation purpose, we take account following formulas in d -spacetime:   

    1.  All variables and trace are taken in d -dimensional spacetime with  

   g2=},{  

 dg =  

 )(=)( dNITr  
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  gdNTr )(=  (28) 

where N  is a regular function of d  only and 4=(4)N . We have also  
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We use also the well-known formulas;  

    7.  dkkpd d

dE

d 1 , where 
2pk   and d  is the area of a unit sphere in d -dimensions  

 /2)(2= /2 dd

d    (35) 

 

 

    8.  There is an infinity in the one-loop contribution to the the vacuum polarization in the nonlocal QED, 

arising from the limiting behavior of the Gamma functions  
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where   is the Euler number (constant), 0.5772157= .  

    9.  Make use of the limiting behavior:  
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where as usually we choose /22= d , for 4d .  

    10.  To evaluate the resulting integral like  
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mk )( 22   coming from the combined propagator denominators in Feynman diagrams, and 
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coming from the propagator numerators and vertex momentum factors, we use the standard formula  
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where mdl 2=  . In this work, we used this formula in special cases 0=n , 2=n , 4=n  and 2=m , 

3/2=m , 3=m , 5/2=m .  

    11.  Finally, we are needed in some properties of the Gamma functions  
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Above listed formulas are very useful to construct gauge invariant and finite nonlocal QED in any order in l , 

where l  is the half size of the rigid string - stick. Here we are restricted in its first order in l . After such general 

mathematical preparation, we go to study expression (27) for the vacuum polarization diagram  

 
Figure  2: The one-loop diagram for the vacuum polarization in the nonlocal quantum electrodynamics arisen 

from the superfield concept 

To carry out angular averages in (27) we drop all terms that are odd in p , and replace the terms that have even 

numbers of p -factors with using (33) and (34). Also, after writing the integrand in this way as a function only 

of 
2p , the volume element Epd 4

 is to be replaced in accordance with (35). Thus, expression )/4,( qp  
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Then, expression (27) takes the standard-gauge invariant form in d -dimensions:  
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We note the very remarkable result that this contribution satisfies relation  

 0=)(qq 
  (42) 

that is the basis of the conservation and neutrality of the electric current in NQED in which dimensional 

regularization gives also this result of the conservation of current that does not depend on the dimensionality of 

spacetime.  

Owing to (36) the Gamma function /2)(2 d  in (41) has singularity at the limit 4d . Moreover, as 

shown in Subsection 4.1., there is another term that must be added to )(q , arising from the term 
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3  in the interaction Lagrangian. This term has a structure like (41)  
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As in the local QED, the definition of the renormalized electromagnetic superfield requires that 0=(0)l . 

Therefore, to order 
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Now we can remove the regularization allowing d  to approach its physical value 4=d . There is an infinity in 

the one-loop contribution, arising from the limiting behavior of the Gamma function (36). According to the local 

QED a finite part of )( 2ql  is extracted from the mathematical prescription  
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A direct calculation gives   
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The poles at 4=d  obviously cancel in )( 2ql  because for 4=d  both 
2/222 ))(1(  dxxqm  and 

2/22 )( dm  have the same limit, unity (see formula (37)). For the same reason, the term   in /2)(2 d  

cancels in the total )( 2qf

l , though   it does make a finite contribution to 13 Z . There are other finite 

contribution to 13 Z , that arise from the product of the pole in /2)(2 d  with the linear terms in the 

expression of /2)(dd  around 4=d , but there also cancel in the total )( 2qf

l .  

The only terms that do contribute to )( 2ql  in the limit 4d  are those arising from the product of the pole 

in /2)(2 d  with the linear terms in the expression of 
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 due to the formula (37) and are also those arising from the product 2)/2/2)((2  dd  in (47).  

Finally, all these simpler calculations read  
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The physical importance of the vacuum polarization in NQED can be explored by considering its effect on the 

scattering of two charged particles of spin 1/2  (see, Weinberg,1995, for detail).  

 

4.3. Electron self-energy in the nonlocal quantum electrodynamics 

The complete electron propagator in NQED is given by the sum  
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The sum is trivial, and gives  
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In lowest order there is a one-loop contribution to l  given in Figure 3:  
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Figure  3: The one loop diagram for the electron self-energy function in NQED 

  Similar to the vacuum polarization, the electron self-energy function has the from  
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 here and below we have used notation emm = .  

 Making use of the general Feynman parametric formula  
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and the shift qxpp  , and the formula (29), one gets  
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Going to the Wick rotation and using the d -dimensional procedure as before, we obtain  
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The interaction (22) also contributes a renormalization counter term mZmqiZ 22 )ˆ1)((   in )(ql , 

with 2Z  and m  determined by the condition that the complete propagator )( pSl
  regarded as a function of 

qi ˆ  should have a pole at mqi =ˆ  with residue unity. 
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In order to remove the regularization, allowing d  to go to its limit 4d , we act as follows. We calculate the 

quantity )(ql  and its derivatives qilocal
ˆ/  at the point mqi =ˆ , and use the Taylor series:  
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We notice that at the limit 4d  the second part )(ql  in (53) arisen from the supersymmetric contribution 

to order l  is finite.  

We know that a renormalization counterterm in )(ql  has the general form  
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where we have used the short notation  
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Making use of equalities (55)–(57) it is easy to show that the poles at 4=d  cancel in expression (54) and 

therefore the local part of (53) has the standard form  
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While, as mension above the second part )(ql  in (53) due to supersymmetric extension of the theory is finite 

at the limit 4=d . That is  
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04

22
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1
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where we have used the equality 2=1/2)(  . By using the formula  
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one can express last expression (59) by means of the hypergeometric function  
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 where  
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Finally, notice that the self-energy of the lepton in the NQED  

 )()(=)( qqq llocall   

is still a divergence from the behavior of the first term in (58) as 0x , which can be traced to the singular 

behavior of the integral over the photon momentum p  in (50) at 0=2p , when we take 
2q  at the point 

22 = mq  , where we evaluated 12 Z . Such infrared divergences have common root as in the local QED.  

 

4.4. Anomalous magnetic moments of the leptons 

Let us consider contributions due to a size of the extended charges or supersymmetric extension of the theory to 

the magnetic moment of the leptons.  

 

Figure  4: One-loop diagram for the (nonlocal) photon-lepton vertex function 
  in NQED. 

Here we need to calculate the matrix element corresponding to the one-loop graph in Figure 4. In NQED, one-

loop graph (Figure 4) gives the matrix element  
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where p  and p  are the final and initial lepton four-momenta, respectively. This integral has ultraviolet 

divergence, here we do use the dimensional regularization procedure. To combine denominators, we use the 

Feynman parameterization prescriptions:  
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Here ppq =  is the momentum transferred to the (nonlocal) photon, which is mixed the usual photon and 

its supersymmetric partner-photino field with a portion of l .  

Shifting the variable of the integration  
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the integral (61) becomes  
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 ])ˆˆ)(1'ˆ([ mypkyxpi   (63) 

Next step is a Wick rotation, replace the volume element dkkkd d

dE

14 =   and use the formulas (28)–(34) 

and (35). Putting this all together, Eq.(63) now reads  
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where we have used short notation:  
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As in the case of the local theory, we are interested here only in the matrix element )(),()( pupppu l
 

 of 

the vertex function between Dirac spinors that satisfy the relations  

 0=)()ˆ(0=)'ˆ)(( pumpimpipu   

We able therefore to simplify this expression by using the anticommutation relations of the Dirac matrices to 

move all factors 'p̂  to the left and all factors p̂  to the right, replacing them when they arrive on the left or right 

with im. We take into account the following standard relations between two Dirac spinors )( pu   and )( pu :  
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We would like to sum up these expressions and obtain  
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This is the result of the local theory.  

Thus, in the nonlocal QED, the vertex function corresponding to the diagram shown in Figure 4 takes the form 

by means of short notation:  
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 (67) 

Here, L , A , B , C  and D  are given by expressions (65). According to the above calculations:  
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We know that integration of terms C  and D  with odd k -variables goes to zero. Notice that in Eqs.(68) and 

(69) we have exploited the symmetry of the vertex function (or the diagram) under the reflection pp   (or 

yxy  ), that gives the factor 
 pp   exactly.  

We next use the integral formula (38), the Gamma-matrix function algebra (28)–(34) and the limiting procedure 

like (36) and (35) for removal of the d -dimensional regularization as before. According to the local theory 

there are other diagrams that need to be taken into account. There is the zeroth-order term 
  in 


l . The term 

proportional to 12 Z  in the counterterms (22) gives contribution in 


l :  
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Also, the effect of insertions of corrections to the external (mixed) photon propagator is a term:  
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The form of each of these terms (67), (70) and (71) is in agreement with the general rule:  
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To order 
2e , the form factors are  
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where )( 2ql  is the vacuum polarization function (48),  
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and  
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We see that Eqs.(77) and (78) are finite. It makes to calculate the anomalous magnetic moment of the leptons, 

which is expressed as  

 (0)](0)[1
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= 1llocall GG
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  (79) 

where  
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4
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The contribution (80) is the famous /2  correction first obtained by Schwinger (1948). While expression 

(81) is arisen from the supersymmetric extention of the theory within the extended charge configuration. It 

seems that the present experimental values of the anomalous magnetic moment of the electron and muon (Carey 

et.al., 1999, Particle Data Group,2002; Barger et.al.,2005; Yao, 2006):  
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are reliably confirmed by local quantum electrodynamics (see, for example, Heine-meyer et.al.,2004). It is 

natural to suppose that the absolute value of the contributions calculated here should be of an order or not 

greater than the experimental errors. This makes it possible to establish the following restriction on a scale of the 

supersymmetry or size of the rigid string stick:  
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Finally, notice that formulas (7), (8) and (13) allow us to suppose that the rigid string-stick charges are radiated 

or absorbed complicated (super-) fields consisting of photons and its supersymmetric partners-photinos-massless 

spinor fields. We are called these fields super fields. However, as seen above in this mixed (or super) fields, 

radio photinonnnn /=/= ~   of numbers of photons and massless spinors generated by the charge of the stick 
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simultaneously is of order 
9101/ :: l . It means that among billion photons a few photinos may be appeared 

if the supersymmetry exists in nature.  

 

4.5. The gauge invariance of the theory and Ward-Takahashi identity 

Electromagnetic interaction of charged leptons with the nonlocal photons, propagator of which is determined by 

the formula (7) is gauge invariant. In the language of the perturbation theory that is exposed in previous 

sections, the gauge invariance of NQED means that every matrix elements of the S -matrix defining the 

concrete electromagnetic processes have a definite structure and algebraical relations exist between them. For 

example, in the momentum representation for the so-called vacuum polarization diagram in the second order of 

the perturbation theory the following form (see Section 4.2) exists:  

 )()(=)( 222 qqqgqq ll  
 (83) 

Such form of the vacuum polarization satisfies the relation (42) that is the basis of the gauge invariance of the 

theory. Moreover, the following relation between the vertex function ),(
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qp  and the self-energy of the 

electron )(
~

p  is also valid:  
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 (84) 

This relation is called the Ward-Takahashi identity. The explicit forms of these functions are (see, Sections 4.3 

and 4.4 and also Bogolubov and Shirkov, 1980):  
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and the identity (84) proved where in the momentum space 
1)ˆ(=)ˆ(  pmpS , and  
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are local spinor and nonlocal photon propagators written in Bogolubov and Shirkov’s text book form. For the 

proof of relation (84) consider the identity  
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where the vertex   is given by  
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Further, differentiating )(
~

p  over p  and making use of the identity (87), we have  
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Choosing other momentum variables in (86) and assuming 0=q , pqpp ==  , we get  
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Comparing this expression with (89) we obtain the Ward-Takahashi identity (84). The relation of the type (see, 

Section 4.4):  

 0=),( 2=2=2 mpp
qpq




  

follows from the identity  

   )ˆ()ˆ(=)ˆ()ˆ( 2121 pSpSpSpSq 
   

if 21= ppq  . 

It is important to notice that in the nonlocal QED the vertex 
  in any Feynman diagrams is connected with the 

propagator )ˆ( pS  of the charged particle by the relation (88).  
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