Irregular Total Labelling of Möbius Ladder $\boldsymbol{M}_{\boldsymbol{n}}$

Kh Md Mominul Haque ${ }^{1}$, UmmeNasreen Khanam ${ }^{2}$
${ }^{1}$ Department of Computer Science and Engineering, Shahjalal University of Science and Technology Sylhet-3114, Bangladesh
e-mail: momin66@gmail.com
${ }^{2}$ Department of Computer Science, JayntapurTayob Ali Technical College, Jayntapur, Sylhet, Bangladesh e-mail: ummenasreen@gmail.com

Abstract

The total edge irregularity strength $\operatorname{tes}(G)$ and total vertex irregularity strength $\operatorname{tvs}(G)$ are invariants analogous to irregular strength $s(G)$ of a graph G for total labellings. Concerning of these parameters, Bača et al [Discrete Mathematics, 307:1378-1388, (2007)] determined the bounds and precise values for some families of graphs. In this paper, we show the exact values of the total edge irregularity strength is tes $\left(M_{n}\right)=n+1$ and total vertex irregularity strength is $\operatorname{tvs}\left(M_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1$ for the Möbius Ladder $\left(M_{n}\right)$.

Keywords Irregular total labelling; Möbius Ladder; Total labelling; Irregularity Strength
Mathematics Subject Classification: 05C50, 05C78

1.Introduction

We consider only finite undirected graphs without loops or multiple edges. Let $G=(V, E)$ be a graph with vertex set V and edge set E.
An edge irregular total k-labelling of a graph G is a labelling of the vertices and edges with labels $1, \ldots, k$ that for every two different edges their weights are distinct where the weight of an edge is the sum of its label and the labels of its two endvertices. A vertex irregular total k-labelling of a graph G is a labelling of the vertices and edges with labels $1, \ldots, k$ that for every two different vertices their weights are distinct where the weight of a vertex is the sum of its label and the labels of its incident edges. The minimum k for which the graph G has an edge irregular total k-labelling is called the total edge irregularity strength of the graph $G, \operatorname{tes}(G)$. Analogously, the minimum k for which there exists a vertex irregular total k-labelling is called the total vertex irregularity strength of $G, \operatorname{tvs}(G)$.
The notions of the total edge irregularity strength and total vertex irregularity strength were first introduced by Bača et al. [1]. They may be taken as an extension of the irregularity strength of a graph [3, 2, 5, 7, 8, 10, 11]. In [1], the authors put forward the lower bounds of $\operatorname{tes}(G)$ and $\operatorname{tvs}(G)$ in terms of the maximum degree Δ, minimum degree $\delta,|E(G)|$ and $|V(G)|$, which may be stated as the Theorem 1.1 and 1.2:
Theorem 1.1.tes $(G) \geq \max \left\{\left\lceil\frac{\Delta+1}{2}\right\rceil,\left\lceil\frac{|E(G)|+2}{3}\right\rceil\right\}$.
Theorem 1.2.tvs $(G) \geq\left\lceil\frac{|V(G)|+\delta}{\Delta+1}\right\rceil$.
Bača et al. [1] then determined the exact values of the total edge irregularity strength for Path P_{n}, Cycle C_{n}, Star S_{n}, Wheel W_{n} and friendship graph F_{n}, and obtained the exact values of the total vertex irregularity strength for Tree T with n pendant vertices and no vertex of degree 2 , Star S_{n}, complete graphs K_{n}, cycle C_{n} and prism D_{n}. The author proved that irregular total labellings of Generalized Petersen graphs $P(n, k)$ in [9]. We refer the readers for some recent result [3, 5, 8].

In this paper, we deal with the Möbius Ladder M_{n}.
The Möbius ladder M_{n} is defined to be a graph on $2 n(n \geq 3)$ vertices with $V\left(M_{n}\right)=\left\{v_{i}, u_{i}: 0 \leq i \leq n-1\right\}$ and $E\left(M_{n}\right)=\left\{v_{i} u_{i}: 0 \leq i \leq n-1\right\} \cup\left\{v_{i} v_{i+1}, u_{i} u_{i+1}: 0 \leq i \leq n-2\right\} \cup\left\{u_{n-1} v_{0}, v_{n-1} u_{0}\right\}$.
In Figure 1.1, we show the Möbius Ladder M_{5}.

Figure 1.1: Möbius Ladder M_{5}

2.Irregular total labelling of $\boldsymbol{M}_{\boldsymbol{n}}$

Theorem 2.1.tes $\left(M_{n}\right)=n+1$.
Proof.
We construct the function f as follows:

$$
\begin{array}{lll}
f\left(u_{i}\right) & =1, & 0 \leq i \leq n-1, \\
f\left(v_{i}\right) & = \begin{cases}n, & i=0, \\
n+1, & 1 \leq i \leq n-1,\end{cases} \\
f\left(u_{i} u_{i+1}\right) & =i+1, & 0 \leq i \leq n-2, \\
f\left(u_{n-1} v_{0}\right) & =1, \\
f\left(v_{n-1} u_{0}\right) & =1, \\
f\left(u_{i} v_{i}\right) & = \begin{cases}i+3, & i=0, \\
i+2, & 1 \leq i \leq n-1,\end{cases} \\
f\left(v_{i} v_{i+1}\right) & = \begin{cases}i+3, & i=0, \\
i+2, & 1 \leq i \leq n-2 .\end{cases}
\end{array}
$$

Observe that

$$
\begin{aligned}
& w t\left(u_{i} u_{i+1}\right)=1+(i+1)+1 \\
& =\{3,4, \ldots, n+1\}, \\
& w t\left(u_{n-1} v_{0}\right)=1+1+n=n+2, \\
& w t\left(v_{n-1} u_{0}\right)=(n+1)+1+1=n+3, \\
& w t\left(u_{i} v_{i}\right)=\left\{\begin{array}{l}
1+(i+3)+n=n+4, \quad i=0 \\
1+(i+2)+(n+1) \\
=\{n+5, n+6, \ldots, 2 n+3\},
\end{array} \quad 1 \leq i \leq n-1,\right. \\
& w t\left(v_{i} v_{i+1}\right)= \begin{cases}n+(i+3)+(n+1)=2 n+4, & i=0, \\
n+1)+(i+2)+(n+1) \\
=\{2 n+5,2 n+6, \ldots, 3 n+2\}, & 1 \leq i \leq n-2\end{cases}
\end{aligned}
$$

So the weights of edges of M_{n} under the labelling f constitute the set $\{3,4, \ldots, 3 \mathrm{n}+2\}$ and the function f is a map from $M_{n} \cup E\left(M_{n}\right)$ into $\{1,2, \ldots, n+1\}$.
It is clearly that the total labellings f have the required properties of an edge irregular total labelling. Hence $\operatorname{tes}\left(M_{n}\right) \leq n+1$. By Theorem 1.1, tes $\left(M_{n}\right) \geq\left\lceil\frac{|E(G)|+2}{3}\right\rceil=\left\lceil\frac{3 n+2}{3}\right\rceil=n+1$. This concludes the proof.
In Figure 2.1, we show the edge irregular total labellings for M_{10}.

Figure 2.1: Edge irregular total labellings for M_{10}
Theorem 2.2. $\operatorname{tvs}\left(M_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1$.
Proof.
We construct the function f as follows:
Case 1. $n \bmod 2=0$.

$$
\begin{aligned}
& f\left(u_{i} u_{i+1}\right)= \begin{cases}\frac{i}{2}+1, & 0 \leq i \leq n-2 \operatorname{andimod} 2=0, \\
1, & 1 \leq i \leq n-3 \text { andimod } 2=1,\end{cases} \\
& f\left(u_{n-1} v_{0}\right)=1 \text {, } \\
& f\left(v_{i} v_{i+1}\right)= \begin{cases}\frac{i}{2}+2, & 0 \leq i \leq n-2 \text { andimod } 2=0, \\
\frac{n}{2}+1, & 1 \leq i \leq n-3 \text { andimod } 2=1,\end{cases} \\
& f\left(v_{n-1} u_{0}\right)=\frac{n}{2}+1 \text {, } \\
& f\left(u_{i} v_{i}\right)= \begin{cases}\frac{n}{2}, & i=0 \\
\frac{i}{2}, & 2 \leq i \leq n-2 \text { andimod } 2=0, \\
\frac{i+1}{2}, & 1 \leq i \leq n-1 \text { andimod } 2=1,\end{cases} \\
& f\left(u_{i}\right)=1 \text {, } \\
& 0 \leq i \leq n-1 \text {, } \\
& f\left(v_{i}\right)=\frac{n}{2}+1, \\
& 0 \leq i \leq n-1 \text {. }
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& w t\left(u_{i}\right)= \begin{cases}\left(\frac{n}{2}+1\right)+\frac{n}{2}+\left(\frac{i}{2}+1\right)+1=n+3, & i=0, \\
1+\frac{i}{2}+\left(\frac{i}{2}+1\right)+1 & \\
=\{5,7, \ldots, n+1\}, & 2 \leq i \leq n-2 \text { andimod } 2=0, \\
\left(\frac{i-1}{2}+1\right)+\frac{i+1}{2}+1+1 & 1 \leq i \leq n-1 \text { andimod } 2=1, \\
=\{4,6, \ldots, n+2\}, & \end{cases} \\
& w t\left(v_{i}\right)= \begin{cases}1+\frac{n}{2}+\left(\frac{i}{2}+2\right)+\left(\frac{n}{2}+1\right) & i=0, \\
=n+4, & 2 \leq i \leq n-2 \text { andimod } 2=0, \\
\left(\frac{n}{2}+1\right)+\frac{i}{2}+\left(\frac{i}{2}+2\right)+\left(\frac{n}{2}+1\right) & \\
=\{n+6, n+8, \ldots, 2 n+2\}, & n \leq i \leq n-1 \text { andimod } 2=1 . \\
\left(\frac{i-1}{2}+2\right)+\frac{i+1}{2}+\left(\frac{n}{2}+1\right)+\left(\frac{n}{2}+1\right) \\
=\{n+5, n+6, \ldots, 2 n+3\}, & \end{cases}
\end{aligned}
$$

So the weights of vertices of M_{n} under the labeling f constitute the set $\{4,5, \ldots, 2 \mathrm{n}+3\}$ and the function f is a map from $V\left(M_{n}\right) \cup E\left(M_{n}\right)$ into $\left\{1,2, \ldots, \frac{n}{2}+1\right\}$ for even n.

Case 2. $n \bmod 2=1$.

$$
\begin{aligned}
& f\left(u_{i} u_{i+1}\right)= \begin{cases}\frac{i}{2}+1, & 0 \leq i \leq n-3 \text { andimod } 2=0, \\
1, & 1 \leq i \leq n-2 \text { andimod } 2=1,\end{cases} \\
& f\left(u_{n-1} v_{0}\right)=\frac{n-1}{2}+1=\left\lceil\frac{n}{2}\right\rceil \text {, } \\
& f\left(v_{i} v_{i+1}\right)= \begin{cases}\frac{i}{2}+1, & 0 \leq i \leq n-3 \text { andimod } 2=0, \\
\left\lceil\frac{n}{2}\right\rceil+1, & 1 \leq i \leq n-2 \text { andimod } 2=1,\end{cases} \\
& f\left(v_{n-1} u_{0}\right)=\frac{n-1}{2}+1=\left\lceil\frac{n}{2}\right\rceil \text {, } \\
& f\left(u_{i} v_{i}\right) \quad= \begin{cases}1, & i=0 \\
\frac{i}{2}, & 2 \leq i \leq n-1 \text { andimod } 2=0, \\
\frac{i+1}{2}, & 1 \leq i \leq n-1 \text { andimod } 2=1,\end{cases} \\
& f\left(u_{i}\right)= \begin{cases}{\left[\frac{n}{2}\right\urcorner,} & i=0, \\
1, & 1 \leq i \leq n-1,\end{cases} \\
& f\left(v_{i}\right) \quad=\quad\left\lceil\frac{n}{2}\right\rceil+1, \quad 0 \leq i \leq n-1 .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& w t\left(u_{i}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil+1+\left(\frac{i}{2}+1\right)+\left\lceil\frac{n}{2}\right\rceil=n+3, & i=0, \\
1+\frac{i}{2}+\left(\frac{i}{2}+1\right)+1 \\
=\{5,7, \ldots, n+2\}, & 2 \leq i \leq n-1 \text { andimod } 2=0, \\
\left(\frac{i-1}{2}+1\right)+\frac{i+1}{2}+1+1 \\
=\{4,6, \ldots, n+1\}, & 1 \leq i \leq n-2 \text { andimod } 2=1,\end{cases} \\
& w t\left(v_{i}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil+1+\left(\frac{i}{2}+1\right)+\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \\
=n+4, & 2 \leq i \leq n-1 \text { andimod } 2=0, \\
\left(\frac{n}{2}+1\right)+\frac{i}{2}+\left(\frac{i}{2}+2\right)+\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \\
=\{n+6, n+8, \ldots, 2 n+3\}, & 1 \leq i \leq n-2 \text { andimod } 2=1 . \\
\left(\frac{i-1}{2}+1\right)+\frac{i+1}{2}+\left(\left\lceil\frac{n}{2}\right\rceil+1\right)+\left(\left\lceil\frac{n}{2}\right\rceil+1\right) \\
=\{n+5, n+7, \ldots, 2 n+2\},\end{cases}
\end{aligned}
$$

So the weights of vertices of M_{n} under the labelling f constitute the set $\{4,5, \ldots, 2 \mathrm{n}+3\}$ and the function f is a map from $V\left(M_{n}\right) \cup E\left(M_{n}\right)$ into $\left\{1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil+1\right\}$ for odd n.

M_{9}

M_{10}

Figure 2.2: Vertex irregular total labellings for M_{9} and M_{10}
In Figure 2.2., we show the vertex irregular total labeling for M_{9} and M_{10}.

References

[1]. M. Bac̆a, S. Jendrol, M. Miller, J. Ryan, On irregular total labellings, Discrete Mathematics, 307(2007), 1378-1388.
[2]. J. L. Baril, H. Kheddouci and O. Togni, The irregularity strength of circulant graphs, Discrete Mathematics, 304(2005), 1-10.
[3]. T. Bohman and D. Kravitz, On the irregularity strength of trees,Journal of Graph Theory, 45(4)(2004), 241-254.
[4]. J. Ivanc̆o and S. Jendrol, The total edge irregularity strength of trees,Discussiones Mathematicae. Graph Theory, to appear.
[5]. S. Jendrol, M. Tkác̆, The irregularity strength of tKp,Discrete Mathematics, 145(1995), 301-305.
[6]. S. Jendrol, J. Mis̆kuf and R. Soták Total edge irregularity strength of complete graphs and complete bipartite graphs,Electronic Notes in Discrete Mathematics, 28(2007), 281-285.
[7]. S. Jendrol and V. Z̆oldák,The irregularity strength of generalized Petersen graphs, Mathematica Slovaca, 45(2)(1995), 107-113.
[8]. A. Meissner, M. A. Niwińska and K. T. Zwierzy;änski, Computing an irregularity strength of selected graphs,Electronic Notes in Discrete Mathematics, 24(2006), 137-144.
[9]. Khandoker Mohammed Mominul Haque, Irregular Total Labellings of Generalized Petersen graphs, Theory of Computing Systems, 50(2012), 537-544.
[10]. O. Togni, Irregularity strength of the toroidal grid,Graphs and combinatorics, 165/166(1997), 609620.
[11]. O. Togni, Irregularity strength and compound graphs,Discrete Mathematics,218(2000), 235-243.

