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Abstract Construction is a complex process which is associated with lots of changes. This results in issuing 

change orders. Change orders have a significant negative impact on time, cost and quality of construction 

projects. Labor productivity is regarded as one of the main performance metrics to judge the efficiency of the 

construction process. The implications of change orders on labor productivity are difficult to evaluate. 

Moreover, traditional-based models often fail to deal with such kind of input-output relationships. As such, the 

present study introduces a set of machine learning-based models to evaluate the implication of change order on 

labor productivity. This includes multiple linear regression, hybrid particle swarm optimization-liner regression, 

back-propagation artificial neural network, Elman neural network, radial basis neural network, generalized 

regression neural network and Cascade forward neural network. The comparisons were conducted as per mean 

absolute percentage error (MAPE), mean absolute error (MAE) and root-mean squared error (RMSE). Results 

demonstrate that the radial basis function network outperformed the afore-mentioned machine learning models 

such that it achieved MAPE , MAE  and RMSE  of 2.447%, 0.0141 and 0.0279, respectively. Finally, the 

significances of the capacities of the machine learning models are evaluated using two-tailed student’s t-tests. 

 

Keywords Change orders; labor productivity; machine learning; radial basis function network; student’s t-test 

1. Introduction 

Variations are very common in construction industry, which elevates it as one of the complex processes to 

simulate.  Construction industry is one of the influential contributors of the gross domestic product (GDP) of 

countries, whereas it represents 7-10% of the GDP in the developed countries and 3-6% in the developing 

countries. A variation in construction projects is any deviation from the agreed well-defined scope and/or 

schedule of work which results in a change order. Change order is the platform that represents the formal 

representation of the modified contract agreement between the contractor and owner and becomes part of the 

project's documents. These deviations involve adding to or reducing the scope of project work or correcting or 

modifying an original design [1]. They exist based on the fact that construction schedules are always being 

compressed, and with fast-track construction, building is beginning before the final design is complete. This can 

lead to incomplete or inaccurate designs. Accordingly, Change orders have become an everyday occurrence in 

construction, and they are widely accepted by both owners and contractors that change orders have negative 

effects on aspects such as cost, quality, time, and organization.  

The owner usually realizes that change orders affect the specific task, but usually does not understand the ripple 

effects on the whole project. The increased costs of change orders to contractors can be attributed to items such 
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as material procurement, scheduling conflicts, rework, the breaking of project momentum, increased overhead, 

increased equipment costs, and decreased labor efficiency. Most of the items, that are materials, overhead, and 

equipment, can be relatively easy to quantify. However, quantifying the impact of change orders on labor 

productivity remains to be a challenging task, despite the reported findings of many studies and documented 

cases [2]. The implications of the change orders on construction projects and their effective management need to 

be evaluated and modeled such that these changes vary with respect to the location to the project, type of the 

project and type of the work.  In view of the above, the present study utilizes a set of machine learning models 

to evaluate the implications of change orders on labor productivity.   

 

Literature Review  

Several studies were conducted to evaluate the labor and equipment productivities in construction projects. 

Muqeem et al. [3] developed a back-propagation artificial neural network model to forecast the labor production 

rates in construction industry. They investigated a set of factors namely; weather, availability of material and 

equipment, location of the project, site conditions and number of workers. The developed model achieved mean-

squared error of 7.76% and 12.29% for training and testing, respectively. Moreover, they highlighted that 

availability of material and equipment are the most influential factors which affect labor productivity. AL-

Zwainy et al. [4] presented an artificial neural network-based model to predict the labor productivity of marble 

finishing works for floors. The model was based on a set of factors which were: age, experience, number of 

labor, height of floor, size of marble tiles, weather conditions, availability of materials, etc. The developed 

model yielded mean absolute percentage error, average accuracy percentage and correlation coefficient of 9.1%, 

90.9% and 89.55%, respectively. In addition to that, they highlighted that age, experience and number of labor 

contribute significantly to the labor productivity of marble finishing works for floors.       

Warsito et al. [5] designed an artificial neural network-based model to simulate the productivity of hydraulic 

static pile driver in silt soil. They utilized 252 observations from four actual projects and simulation models to 

build the model. They highlighted that the developed model was capable of achieving an average validity 

percentage and standard deviation of 98.13% and 1.67%, respectively. Joshi and Shrestha [6] presented an 

artificial neural network model to predict the labor productivity during the concreting stage in building 

construction. They investigated some attributes such as floor height, number of labor during construction, 

temperature, equipment efficiency, etc. The proposed model provided mean-squared error of 0.17. Furthermore, 

they pointed out that the haulage of material within construction site, and equipment efficiency are the two most 

significant factors which influences the labor productivity.  

Gerek et al. [7] utilized feedforward neural network and radial basis neural network to model the productivity of 

masonry crews based on 147 observations. They highlighted that the number of laborers, total experience of 

crew, over time are among the factors which affected the crew productivity. They stated that the radial basis 

neural network provided a better approach in modeling the crew productivity based on the mean absolute 

percentage error. Heravi and Eslamdoost [8] utilized multilayer feedforward neural networks to model the 

relationship between the labor productivity in construction projects and a set of influencing factors. They stated 

that Bayesian regularization provided better performance than stopping criteria especially in the case of small 

dataset. Moreover, they pointed out that site layout, labor competence and proper planning were the most 

influential factors in modeling the labor productivity.  

Ok and Sinha [9] applied regression analysis and artificial neural network to estimate the daily productivity of 

earthmoving equipment. They utilized a set of attributes to build the model which were hauling distance, earth 

condition, weather conditions, site management efficiency, etc. They stated that the neural network model 

provided a better productivity estimation model than the multiple regression analysis model. Ibbs [10] studied 

the different types of construction change orders and their effect on labor productivity. Data from 162 

construction projects were statistically analyzed and a series of three curves are presented in this paper, 

representing the impact that change has on the labor productivity for early, normal, and late timing situations. It 

was found that the specific type of change was to a certain extent not as important as the mere presence of 

change and the timing of that change.  
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Dimken and Sonmez [11] utilized artificial neural network model to estimate the required man-hours of 

formwork activity of reinforced concrete frame buildings based on 613 data points. The input variables were 

total slab area, total length of beams, total length of columns, etc. They pointed out the developed model 

provided a versatile and efficient approach to estimate the formwork total labor man-hours in reinforced 

concrete framed building projects. Panas et al. [12] developed multi-layer feed forward artificial neural network 

model to forecast the concrete pavement construction productivity. The working length and working width were 

the two input variables required to predict the productivity of concrete pavement operation. They studied 

different types of scaling functions. Moreover, they highlighted that the developed model outperformed the 

multiple regression analysis model. Thus, based on the previous conducted studies, most of them focused on 

modeling labor and equipment productivities in construction projects. However, there is lack of investigation of 

the implication of change order on labor productivity. Moreover, most of the previous studies utilized feed 

forward back propagation neural network to predict the future performance, which often suffers from local 

minima entrapment and premature convergence especially in the case of large and exhaustive search space 

problems. 

 
Figure 1: Framework of the proposed model 

 

Proposed Method  

The main objective of the present study is to develop an artificial neural network-based model to forecast the 

labor productivity loss caused by change orders. The framework of the proposed model is described in Figure 1. 

It is composed of four modules. The dataset used in the present study are 135 observations adopted from Assem 

[13]. The input variables used to build the prediction model are: work type, type of impact, number of change 

orders, frequency of change orders, average size of change orders, change order hours, ratio of change order 

hours to the planned hours and ration of change order hours to the actual hours. Work type can be architectural, 

civil, electrical or mechanical. The type of impact can be 1, 2 or 3 such that type of impact is equal to 1 when 

one cause of productivity loss takes place. Type of impact can be 2 or 3 when one or two additional major 

causes of change orders take place. Frequency of change orders is equal to the ratio of change orders number to 

the actual hours. Average size of change orders equals to the ratio of change order hours to the number of 
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change orders. The output of the model is the productivity loss which is expressed in the form of percentage 

such that it is equal to the ratio of non-productive hours to the actual direct hours worked. 

Seven machine learning models are constructed and evaluated to forecast the loss of productivity. These models 

are: multiple linear regression, hybrid particle swarm optimization-liner regression, back-propagation artificial 

neural network, Elman neural network, radial basis neural network, generalized regression neural network and 

Cascade forward neural network. The neural network-based models are composed of eight input neurons for the 

previously-mentioned input variables and one output neuron for the loss of productivity. The performances of 

these models are assessed using split validation based on mean absolute error percentage error, mean absolute 

error and root-mean squared error. Eventually, two-tailed Student’s t-tests were performed to evaluate the 

significance level of the outcome of the machine learning models [14].   

 

Model Development  

This section describes some of the models and algorithms presented in the “Proposed Method” section.   

 

Hybrid particle swarm optimization-regression model (PSO-MR) 

Regression analysis is a method adopted to establish a functional and mathematical relationship between a set of 

independent variables and dependent variables. The independent variable is sometimes called “response” while 

the dependent variable is sometimes called “predictor” [15]. 

y = β0 + β1x1 + β2x2 + β3x3 … . . βnxn  (1) 

Where; 

y denotes the dependent variable. x1 , x2, x3, … . . xn stand for the independent variables. β0  is a constant. 

β1 , β2, β3 , … . . βn  are the coefficients, which are computed using the least square method. In this model, particle 

swarm optimization algorithm is utilized to optimize the coefficients of the multiple regression analysis model 

by minimizing the mean absolute percentage error.  

Meta-heuristics are bio-inspired optimization algorithms that are usually applied to solve complex and large 

exhaustive search space problems. They are characterized by their capabilities to overcome the shortcomings of 

inferior accuracy, local minima and premature convergence of hill-climbing derivative-based algorithms [16]. 

Particle swarm optimization (PSO) algorithm is a population-based meta-heuristic algorithm which simulates 

the social behavior of flocking birds. It was introduced by Eberhart and Kennedy in 1995. In it, particles modify 

their position based on its own best flying experience and the experiences of its companions [14, 17].  

Each particle in the swarm is defined by its velocity and position. Over the course of optimization process, the 

velocity and position of the particle are updated iteratively. The velocity and the position of the particles are 

updated using the following Equations.  

vi t + 1 = w × vi t + c1 × r1 × (pbesti(t) − xi(t)) + c2 × r2 × (gbesti(t) − xi(t)) (2) 

xi t + 1 = xi t + vi t + 1  (3) 

Where; 

xi t + 1  denotes the updated position vector of the particle I in the swarm. xi t  stands for the current position 

vector of the particle i. vi t + 1  denotes the updated velocity of the particle i. vi t  represents the current 

velocity of the particle i. r1 , and r2  denote two uniformly distributed random numbers in the interval [0, 1] 

whereas they amplify the capability of searching for better solutions along the direction which is guided towards 

the global best, and the personal best. c1, and c2represent two constants and they refer to the cognitive learning, 

and social parameters and they control the effect of personal and global guides. Normally, c1 , and c2  are 

assumed 2. w refers to the inertia weight which is utilized to manage the balance between the global and the 

local experience. A typical range of the inertia weight is between 0.3, and 0.7. It is recommended to start the 

search process with a large inertia weight at the beginning, and it decreases over the course of iterations using a 

damping factor to enhance the global exploration of the search space. 
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Feed forward neural network (FFNN) 

A neural network is defined as a parallel distributing paradigm between input layer, output layer, and one or 

more hidden layer that are connected by neurons. Each neuron in the input layer receives one or more inputs and 

generates an output using a transfer activation function. Each neuron in the hidden layer receives output from all 

the input layers which equals to the weighted sum of all neurons entering the neuron. There is a weight assigned 

for each connection between neurons. The most common transfer or activation function is sigmoid function and 

it can be mathematically expressed using Equation (4) [18-19]. 

hj = F xj =
1

1 + e−xj
 (4) 

Where; 

xj  represents the weighted sum of all neurons entering the hidden neuron.  

The input into the output layer should be also transformed using the sigmoid activation function. The error 

function at the output neuron between the actual and predicted values should be minimized and it can be 

calculated using Equation (5). 

E W =
1

2
  dk−Ok  2

k=1

 (5) 

Where; 

E W  represents the error function. dk  and Ok  represents the actual and predicted values, respectively.  

Based on the gradient descent algorithm, the weights are adjusted during each training epoch (k) based on 

Equation (6), whereas the error partial derivative is computed during each training epoch. In this context, the 

weights are updated according to the error partial derivative and the learning rate [20].  

Wij k + 1 = Wij k + ∆Wij ( k  =  Wij k − η ×
∂E(k)

∂Wij

 (6) 

Where; 

∆ Wij ( k  refers to the adjustment or increment in the weights (weight updates). Wij k + 1  and Wij k denote 

the new (updated) and current (old) weights, respectively. Η denotes the learning rate. 
∂E(k)

∂W ij
 stands for the error 

partial derivative with respect to the weights. 

 

Elman neural network (ENN) 

Elman neural network is one of the recurrent neural networks that was introduced by Elman in 1990. The 

topology of the Elman neural network is depicted in Figure 2. It is composed of four layers which are: input 

layer, hidden layer, contest layer and output layer. Elman neural network is characterized by the additional 

context layer which is the feedback coming from the hidden layer, and it is used as an input to the input layer in 

the next iteration. The feedback loop allows the Elman neural network to learn and recognize the temporal 

patterns and spatial patterns. Each neuron in the hidden layer is connected to each neuron in the context layer 

through a constant weight value. As such, the number of neurons in the context layer is equal to the number of 

hidden neurons. Elman neural network is trained using the gradient descent algorithm, which is a back 

propagation supervised algorithm that computes the parameters of the network by minimizing the global error 

function [21-22].   

 

Radial basis neural network (RBNN) 

Radial basis neural network is a kind of feed forward neural network which adopts supervised learning for the 

purpose of simulating input-output relationship. It is characterized by its high prediction performance, more 

complex nature, and faster convergence with reference to multi-layer perceptron. Its topology consists of input 

layer, hidden layer with non-linear activation function and output layer. In this context, the input layer receives 

its input meanwhile the hidden layer carries out the non-linear transformation. Gaussian function is the transfer 
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activation function. In it, the width and center significantly affect its performance. The weights of the radial 

basis neural network are obtained stepping on gradient descent algorithm through minimizing the mean-squared 

error between the actual and simulated values [23-24]. 

 
Figure 2: Architecture of Elman neural network  

  

Generalized regression neural network (GRNN) 

Generalized regression neural network is a kind of feed forward neural network that capitalizes on both 

normalized basis function and kernel regression. It utilizes probability functions for the sake of modeling the 

dependent variables. Generalized regression neural network does not get trapped in local minima resulting from 

its probabilistic nature. It comprises input layer, summation layer and output layer. The number of input neurons 

corresponds to the number of input variables. Gaussian function is the most commonly adopted activation 

function. There are two categories of summation layer namely, single division unit and summation unit. The 

spread parameter plays a fundamental role in the recognition capacity of generalized neural network. In this 

context, a smaller spread may undermine the learning capacity of the neural network while a larger one may 

smooth the function approximation [25-26].   
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Cascade forward neural network (CFNN) 

The architecture of the cascade forward neural network is similar to the architecture of the feed forward neural 

network and updating the weights. However, each layer except the first layer has connecting weights coming 

from both the input layer and previous layers in the case of cascade forward neural network. As a result of 

presence of such kind of relationships between the layers, cascade neural network is capable of efficient linear 

and non-linear modeling in the input-output dataset [27-28].  

 

Performance Indicators  

The present study utilizes three performance indicators to compare between the four deterioration models. The 

three performance indicators are: root-mean square error (RMSE), mean absolute error ( MAE) and mean 

absolute percentage error (MAPE). RMSE, MAE, and MAPE can be calculated using Equations (7), (8) and (9), 

respectively [29-30]. 

RMSE =  
1

K
  Oi − Pi 

2

K

i=1

 (7) 

MAE =
1

K
 | Oi − Pi | 

K

i=1

 (8) 

MAPE =
100

k
×  

|Pi − Oi|

Oi

K

i=1

 (9) 

Where; 

Oi  and Pi  stand for the observed and predicted loss of productivity, respectively. K  indicates number of 

observations.  

 

Model Implementation  

The dataset is comprised of 135 observations, whereas 114 data points are utilized for training while the 

remaining 21 data points are used for testing purposes. A sample of the data set required to build the loss of 

productivity prediction model is shown in Table 1. “Type_1” and “Type_2” represent type of work and type of 

impact, respectively. The terms “M”, “E”, “A” and “C” refer to the mechanical works, electrical works, 

architectural works and civil works. “No.” and “Freq.” stand for the number of change orders and frequency of 

change orders, respectively. “Av.size” stands for the average size of change orders. “Hours” stands for change 

order hours while “Loss of prod.” refers to loss of productivity occurred as a result of change orders.  

Table 1: Sample of the loss of productivity data set [13] 

Type_1 Type_2 No. Freq. Av.size Hours Hours/ 

planned 

hours 

Hours/ 

Actual hours 

Loss of 

prod. 

M 1 24 0.94 97.13 2331 0.043 0.0405 0.086 

M 1 5 0.19 738.2 3691 0.0683 0.0653 0.099 

M 1 5 0.19 738.2 3691 0.0719 0.0653 0.1 

E 1 39 9.58 25.36 989 0.0798 0.0712 0.11 

M 1 98 3.71 90.1 8830 0.1285 0.1157 0.114 

E 2 80 1.83 71.16 5692.5 0.1195 0.0973 0.19 

E 2 59 2.45 219.27 12937.02 0.0959 0.0778 0.202 

A 2 17 1.56 33.41 568 0.0841 0.0649 0.237 

E 2 40 2.67 38.95 1558 0.2042 0.1657 0.239 

A 2 34 1.37 165.03 5611 0.1116 0.0849 0.245 

C 1 150 16.67 55.33 8300 0.1774 0.1562 0.1402 

C 1 253 12.05 129.64 32800 0.4136 0.3374 0.1842 

C 1 190 21.11 113.16 21500 0.4886 0.3772 0.2281 

C 2 11 0.73 272.73 3000 0.0577 0.0475 0.1873 
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For the multiple linear regression analysis model, the developed mathematical function to forecast the loss of 

productivity is depicted in Equation (10).  

y = −7.23 × 10−2 + 8.29 × 10−3X1 + 1.07 × 10−1X2 + 1.16 × 10−4X3 − 1.24

× 10−3X4 − 1.15 × 10−5X5 + 3.01 × 10−7X6 + 3.01 × 10−1X7

− 4.51 × 10−2X8  

(10) 

Where; 

X1 , X2 , X3  and X4  refer to type of work, type of impact number of change orders and frequency of change 

orders, respectively. X5 , X6 , X7  and X8  stand for average size of change orders, change order hours, ratio of 

change orders hours to planned hours and ratio of change order hours to actual hours, respectively.    

The second model is the hybrid particle swarm optimization-regression model, whereas particle swarm 

optimization algorithm is applied to optimize the coefficients of the multiple linear regression analysis model. 

The number of iterations is assumed 600, and the population size is assumed 300. The cognitive learning and 

social parameters are assumed two. The inertia weight is assumed 0.5. The convergence of the particle swarm 

optimization algorithm is shown in Figure 3. The minimum mean absolute percentage error achieved by the 

particle swarm optimization algorithm is 8.378%, which demonstrates its superior search capacity in exploring 

the parameter search space. A sample of the predicted values using the hybrid particle swarm optimization-

regression model is shown in Figure 4. As shown in Figure 4, this model was capable of simulating the loss of 

productivity efficiently.  

 
Figure 3: Convergence of the particle swarm optimization algorithm 
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Figure 4: Actual and predicted values using the hybrid particle swarm optimization-regression model 

For the feed forward neural network, the number of hidden layers, number of hidden neurons and momentum 

coefficient are assumed 5, 3 and 0.001, respectively. In the Elman neural network model, the number of hidden 

layers, number of context layers, number of hidden neurons and number of context neurons are assumed 4, 4, 3 

and 3, respectively. For the radial basis neural network, the maximum number of neurons in the hidden layer is 

assumed 10 while the spread of the Gaussian activation function is assumed 1. In the generalized regression 

neural network, the spread of the Gaussian activation function is assumed 1. In the cascade forward neural 

network, the number of neurons in the hidden layer is assumed 10. A sample of 20 observations for the actual 

and predicted values using Elman neural network and cascade forward neural network model are presented in 

Figures 5 and 6, respectively. As shown in Figures 5 and 6, the Elman neural network model and cascade 

forward neural network can serve as efficient platforms to predict the loss of productivity. The predicted values 

of the testing dataset using the seven machine learning are shown in Table 2.   

 
Figure 5: Actual and predicted values using Elman neural network model 
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Figure 6: Actual and predicted values using Cascade forward neural network model 

Table 2: Predicted values for the testing dataset using the seven machine learning models 

ID Actual value MR PSO-MR FFNN ENN RBNN GRNN CFNN 

1 0.3344 0.372 0.436 0.4058 0.3884 0.408 0.14 0.3811 

2 0.318 0.2948 0.3338 0.3351 0.3300 0.3180 0.318 0.3191 

3 0.2171 0.2109 0.2462 0.2422 0.2426 0.386 0.23 0.2456 

4 0.2353 0.2393 0.2824 0.2875 0.2747 0.387 0.3085 0.2549 

5 0.2978 0.2588 0.3078 0.3275 0.3076 0.398 0.2589 0.2849 

6 0.3515 0.3117 0.3650 0.3864 0.3676 0.4132 0.3017 0.2797 

7 0.32 0.2788 0.3154 0.3154 0.3174 0.321 0.32 0.3209 

8 0.3351 0.3251 0.3642 0.3670 0.3524 0.4452 0.2946 0.3552 

9 0.3693 0.3457 0.3849 0.3900 0.3608 0.4315 0.3396 0.3660 

10 0.3697 0.3431 0.3783 0.3795 0.3628 0.4215 0.2958 0.3729 

11 0.4049 0.3739 0.4148 0.3995 0.3847 0.413 0.2946 0.3987 

12 0.4059 0.3832 0.4235 0.4049 0.3720 0.4234 0.168 0.4102 

13 0.3509 0.3175 0.3556 0.3588 0.3518 0.4822 0.1101 0.3444 

14 0.36 0.3023 0.3378 0.3416 0.3422 0.3621 0.36 0.3354 

15 0.3631 0.3170 0.3703 0.4079 0.4422 0.408 0.3871 0.2400 

16 0.384 0.2951 0.3402 0.3596 0.3702 0.3842 0.384 0.3604 

17 0.393 0.3680 0.4048 0.3965 0.3913 0.3932 0.393 0.3937 

18 0.408 0.3458 0.3926 0.3848 0.3826 0.4131 0.408 0.3762 

19 0.4534 0.3694 0.4068 0.3970 0.3872 0.4163 0.2105 0.4039 

20 0.4603 0.3644 0.4054 0.4397 0.4665 0.428 0.3017 0.0155 

21 0.494 0.488 0.5291 0.4346 0.4555 0.4940 0.494 0.4962 

A comparative analysis between the different machine learning models is described in Table 3. As shown in 

Table 3, MR model provided the least prediction performance. Moreover, PSO-MR outperformed the MR 

model, which evinces that coupling particle swarm optimization algorithm with multiple regression analysis 

model can enhance the prediction capacity of the multiple regression analysis model. For the artificial neural 

network models, Elman neural network achieved the best performance based on RMSE while cascade forward 

neural network achieved the least performance. Based on MAE, radial basis neural network yielded the highest 

prediction accuracy. On the other hand, cascade forward neural network provided the least prediction 

performance. Based on MAPE, radial basis neural network provided the least MAPE while feed forward neural 
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network achieved the highest MAPE. In view of the above, multiple regression analysis model had the least 

prediction performance, whereas it achieved RMSE , MAE  and MAPE  of 0.0441, 0.0753 and 15.697%, 

respectively. Radial basis neural network provided the highest performance, whereas it attained RMSE, MAE 

and MAPE of 0.0279, 0.0141 and 2.447%, respectively. 

Table 3: Comparative analysis of the machine learning models 

Model 𝐑𝐌𝐒𝐄 𝐌𝐀𝐄 𝐌𝐀𝐏𝐄 

Multiple regression analysis model 0.0441 0.0753 15.697% 

Hybrid particle swarm optimization-regression model 0.0299 0.0407 8.234% 

Feed forward neural network 0.0248 0.0386 8.476% 

Elman neural network 0.0232 0.0359 7.626% 

Radial basis neural network 0.0279 0.0141 2.447% 

Generalized regression neural network 0.0446 0.0238 3.682% 

Cascade forward neural network 0.0475 0.0414 8.081% 

Two-tailed Student’s t-tests were performed to evaluate the significance level of the machine learning models’ 

outcome, whereas the significance level (α) is set to be 0.05. The paired Two-tailed Student’s t-tests for the 

machine learning models are depicted in Table 4. The performed student’s t-tests examine the null hypothesis 

(H0), which is that there is no significant difference between the capacities of the machine learning models. On 

the other hand, the alternative hypothesis (H1 ) assumes that there is a significant difference between the 

capacities of the machine learning models. If the P − value is less than the significance level, then the null 

hypothesis is rejected in favor of the alternative hypothesis. Nevertheless, if the P − value is more than the 

significance level, thus the null hypothesis is accepted. As presented in Table 4, the pairs (MR, PSO-MR), (MR, 

FFNN), (MR, ENN), (MR, EBNN), (MR, GNN) and (MR, CFNN) are less than 0.05, which means that the null 

hypothesis (H0) is false. Thus, there is a statistically significant difference between the pairs of the machine 

learning models. The P − value of the pair (FFNN, GRNN) is more than 0.05, which highlights that there is no 

statistically significant difference between the machine learning models. Also, the radial basis neural network 

significantly outperformed all other machine learning models except the generalized regression neural network 

and cascade forward neural network. This proves its superior capability in serving as an efficient paradigm for 

modeling the loss of productivity caused by change orders.  

Table 4: Statistical comparison between the machine learning models based on two-tailed Student’s t-test 

Pair of 

models 

MR PSO-MR FFNN ENN RBNN GNN CFNN 

MR H0 

(P − value 

=1) 

H1 

(P − value 

=4.71×10
-2

) 

H1 

(P − value 

=4.61×10
-2

) 

H1 

(P − value 

=4.58×10
-2

) 

H1 

(P − value 

=4.55×10
-2

) 

H1 

(P − value 

=4.7×10
-2

) 

H1 

(P − value 

=4.93×10
-2

) 

PSO-MR H1 

(P − value 

=4.71×10
-2

) 

H0 

(P − value 

=1) 

H0 

(P − value 

=3.21×10
-1

) 

H0 

(P − value 

=1.01×10
-1

) 

H1 

(P − value 

=4.89×10
-2

) 

H0 

(P − value 

=6.69×10
-2

) 

H0 

(P − value 

=8.5×10
-1

) 

FFNN H1 

(P − value 

=4.61×10
-2

) 

H0 

(P − value 

=3.21×10
-
 

H0 

(P − value 

=1) 

H0 

(P − value 

=8.63×10
-2

) 

H1 

(P − value 

=4.28×10
-2

) 

H0 

(P − value 

=7.21×10
-1

) 

H0 

(P − value 

=4.73×10
-1

) 

ENN H1 

(P − value 

=4.58×10
-2

) 

H0 

(P − value 

=1.01×10
- 

H0 

(P − value 

=8.63×10
-2

) 

H0 

(P − value 

=1) 

H1 

(P − value 

=4.97×10
-2

) 

H0 

(P − value 

=8.44×10
-2

) 

H0 

(P − value 

=2.26×10
-1

) 

RBNN H1 

(P − value 

=4.55×10
-2

) 

H1 

(P − value 

=4.89×10
-2

) 

H1 

(P − value 

=4.28×10
-2

) 

H1 

(P − value 

=4.97×10
-2

) 

H0 

(P − value 

=1) 

H0 

(P − value 

=1×10
-1

) 

H0 

(P − value 

=5.32×10
-2

) 

GRNN H1 

(P − value 

=4.7×10
-2

) 

H0 

(P − value 

=6.69×10
-2

) 

H0 

(P − value 

=7.21×10
-1

) 

H0 

(P − value 

=8.44×10
-2

) 

H0 

(P − value 

=1×10
-1

) 

H0 

(P − value 

=1) 

H0 

(P − value 

=7.08×10
-2

) 

CFNN H1 

(P − value 

=4.93×10
-2

) 

H0 

(P − value 

=8.5×10
-1

) 

H0 

(P − value 

=4.73×10
-1

) 

H0 

(P − value 

=2.26×10
-1

) 

H0 

(P − value 

=5.32×10
-2

) 

H0 

(P − value 

=7.08×10
-2

) 

H0 

(P − value 

=1) 
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Conclusion  

An intensive study was conducted to study the impact of change orders on construction productivity which is 

one of the major strategic components in determining the success or failure of a construction project and has a 

relationship with different factors. This study is based on a comprehensive literature review, and a comparative 

analysis among the different machine learning models to predict the implication of loss of productivity caused 

by change order. The investigated machine learning models are: multiple regression analysis, hybrid particle 

swarm optimization-regression, feed forward neural network, Elman neural network, radial basis neural 

network, and generalized regression neural network. Multiple regression analysis model provided the least 

prediction performance, whereas it achieved RMSE , MAE  and MAPE  of 0.0441, 0.0753 and 15.697%, 

respectively. On the contrary radial basis neural network attained the highest performance, whereas it attained 

RMSE, MAE and MAPE of 0.0279, 0.0141 and 2.447%, respectively. Eventually, the two-tailed Student’s t-tests 

were performed to explore the statistical significance of the output provided by the different machine learning 

models. Accordingly, it is expected that the radial basis neural network can provide a solid paradigm for 

modeling the loss of productivity caused by change orders. 
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