
Available online www.jsaer.com

Journal of Scientific and Engineering Research

250

Journal of Scientific and Engineering Research, 2020, 7(12):250-257

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Lightning Web Components: A Modern Programming Model for

the Lightning Platform

Raja Patnaik

Email: raja.patnaik@gmail.com

Abstract This paper explores the adoption and evolution of Lightning Web Components (LWC), introduced by

Salesforce in 2018, to leverage modern web standards and JavaScript for building efficient applications on the

Lightning Platform. The paper discusses LWC's technical architecture, integrating MVC principles and Shadow

DOM for enhanced UI separation, style encapsulation, and component modularity. It details the development

lifecycle of LWCs, including debugging and testing frameworks that ensure component robustness and

performance. Additionally, real-world application cases demonstrate LWC's significant impact on streamlining

development processes, enhancing application scalability, and improving maintainability. The paper underscores

the transformative role of LWC in advancing web development within Salesforce's ecosystem.[5]

Keywords LWC, Salesforce, low-code tool, programming tool

1. Introduction

Salesforce introduced a standard-based Javascript model in the Lightning Web Component, enabling millions of

developers to build apps on the Lightning Platform using familiar tools on December 13, 2018 [2]. LWC is

standard-based, high-performing, and user-friendly, leveraging modern JavaScript features like ES6+, allowing

faster performance and better end-user experiences. The interoperability and the flexibility of easy integration

with other tools enhance the developer service and drive innovation. The core benefits of LWC are as follows

[1]:

• Standardized for Enhanced Productivity: Developers can use Javascript features like classes,

modules, and imports while developing in LWC, which uses the modern web language with support for

ES6+.

• Faster Performance: Most of the LWC components are run by the browser locally, resulting in faster

execution.

• Compatible with other LWC Components: LWC is compatible with Lightning Components like

Aura (An existing programming model launched by Salesforce in 2015).

• Drive Low-Code Development: LWC, combined with other Salesforce low-code tools like Lightning

App Builder and Lightning Flow, drives low-code development with clicks and simple drag and drop.

• Limitless Possibilities: LWC, combined with Salesforce pro-code tools like Salesforce DX, Enterprise

services like Salesforce Einstein or Salesforce IoT, and the other low-code modules, allows developers

to build large-scale customer experiences and extend the functionality of the CRM.

Developers can rest assured that aura components and Lightning web components not only can coexist but also

seamlessly interoperate, sharing the same high-level services:

Aura components and Lightning web components can coexist on the same page. Aura components can include

Lightning web components, and both share the same base Lightning components, which have already been

Patnaik R Journal of Scientific and Engineering Research, 2020, 7(12):250-257

Journal of Scientific and Engineering Research

251

implemented as Lightning web components. Additionally, Aura and Lightning web components share the same

underlying services, such as Lightning Data Service and User Interface API.

Figure 1: Web Stack Transformation [9]

2. Architecture and Functionalities

A. Technical Architecture

The Salesforce Lightning Web Components (LWC) architecture, a contemporary innovation in web

development within the Salesforce ecosystem, presents a nuanced adaptation of the traditional Model-View-

Controller (MVC) framework. This architectural divergence is primarily manifested in its dual-controller model,

which enables a more dynamic interaction between the client and server components [3]. Lightning Web

Components represents Salesforce's implementation of lightweight frameworks based on web standards. It

makes use of custom elements, templates, shadow DOM, decorators, modules, and various new language

constructs available in ECMAScript 7 and beyond.

• The model is integrally associated with Salesforce Objects such as Account, Contact, Employee, etc.,

illustrating LWC's data-centric aspect.

• The view is represented through HTML and CSS components, facilitating user interface design and

styling.

• The controller, a pivotal component of the LWC architecture, is divided into a client-side controller,

implemented through JavaScript, and a server-side controller, implemented through APEX. This

distinction enhances the framework's ability to handle complex business logic and data manipulation

tasks efficiently.

• The introduction of Shadow DOM in LWC significantly changed the framework's architecture by

providing encapsulation and isolation of components. Shadow DOM is a web standard that ensures a

component's internal workings, styles, and behaviors are hidden and unaffected by external styles or

scripts, leading to-

Isolated Styling: Styles defined within a component don't bleed out, and external global styles don't affect the

component.

Scoped JavaScript: The behavior inside the component does not affect the global scope, ensuring component-

specific functionalities remain isolated.

Leveraging Shadow DOM, Salesforce's Lightning Web Components (LWC) offer enhanced component reuse,

maintainability, and performance. This encapsulation technique allows for isolated component styling, creating

a more consistent user interface. Additionally, it streamlines event propagation and CSS isolation, leading to

quicker event handling and preserving component design integrity and application security [4].

From a development perspective, the LWC component bundle typically includes four types of files: .html, .css,

.js, and .js-meta.xml. The latter two are mandatory, with the .js file containing the JavaScript logic executed in

the browser and the .js-meta.xml file storing metadata such as version information, component visibility, and

placement details (e.g., visibility on the Home page or Record Detail page). While the .html and .css files are

optional, they are instrumental in defining the component's structure and style.

Patnaik R Journal of Scientific and Engineering Research, 2020, 7(12):250-257

Journal of Scientific and Engineering Research

252

The LWC framework facilitates a robust client-server interaction model, streamlining the development process

within the Salesforce platform. By offering a systematic and adaptable approach to component-based web

development, LWC meets the changing requirements of modern online applications inside the Salesforce

ecosystem.

B. Development Life-Cycle

In Lightning Web Components (LWC), lifecycle hooks offer a systematic framework essential for managing the

various stages of a component's existence within the application. These hooks provide specific entry points in

the component's lifecycle, enabling developers to execute code at critical phases like creation, rendering, re-

rendering, and removal from the DOM.

The key hooks include [6]:

• Constructor(): Invoked when a component instance is created, initializing component variables and

properties.

• ConnectedCallback(): Executes when the component is inserted into the DOM, suitable for setup or

initialization tasks.

• RenderedCallback(): Called after the component is rendered, ideal for post-render adjustments or

actions.

• DisconnectedCallback(): Invoked upon the component's removal from the DOM, used for cleanup

activities.

• ErrorCallback(): Handles errors within the component's lifecycle or event handlers.

This structured approach ensures precise control over component behavior and facilitates efficient resource

management, contributing significantly to the performance and reliability of LWC-based applications.

C. Debugging and Testing

Debugging and testing Lightning Web Components (LWC) is essential for their development. Constructed using

standard HTML and JavaScript, these components operate across various supported browsers on desktop

platforms. It is reported that developers may utilize conventional browser and JavaScript debugging tools, such

as Chrome DevTools, to debug their components. A Lightning Page can be created to facilitate debugging with

the added component. Subsequently, this page can be loaded in the preferred browser where inspection and

debugging tools are applied. The debugging process for LWC has been optimized specifically for Chrome

DevTools [7].

In production mode, LWC code is optimized for performance, with JavaScript code being minified to reduce its

size. However, in debug mode, JavaScript code is easier to read and debug, allowing developers to see the

uncompiled source code. To enable debug mode, follow the instructions in the Salesforce documentation.

Tools such as Jest, a JavaScript testing framework, are utilized by developers to perform unit testing on LWC

components in isolation. Jest tests can be run locally on your system without connecting to your browser or

Salesforce org [8].

The debugging and testing of LWC components are conducted using standard browser and JavaScript

debugging tools, such as Chrome DevTools, alongside testing frameworks like Jest. These methods are

employed to verify the functionality and performance of the components.

3. LWC Component Structure

The basic structure of an LWC includes:

• HTML file for the component's layout

• JavaScript file for the component's logic

• CSS file for the component's styles

• XML file for the component's metadata

These files work together to create a modular, reusable, and encapsulated web component within the Salesforce

platform.

The LWC file structure would look like this:

Patnaik R Journal of Scientific and Engineering Research, 2020, 7(12):250-257

Journal of Scientific and Engineering Research

253

Figure 2: LWC File Structure

HTML Template (.html file) - Defines the component's HTML structure and markup.

Figure 3: LWC HTML File

JavaScript Controller (.js file) - Contains the component's logic, event handling, and data processing using

JavaScript.

Figure 4: LWC JavaScript File

CSS Styles (.css file) - Provides the component's styling, scoped to the component to avoid global CSS

conflicts.

Figure 5: LWC CSS file

Configuration File (-meta.xml file) - Defines the metadata for the component, including where it can be used

(e.g., in Lightning App Builder, Community Builder, etc.).

Figure 6: LWC Meta File

Patnaik R Journal of Scientific and Engineering Research, 2020, 7(12):250-257

Journal of Scientific and Engineering Research

254

Figure 7: LWC Component Structure [13]

4. Literature Review

The literature review on Lightning Web Components (LWC) synthesizes advancements and technical

implementations from multiple authoritative sources. Initially introduced in December 2018, LWC is described

by Salesforce as leveraging modern JavaScript to enhance application development on its Lightning Platform,

focusing on high performance and streamlined processes [1][2]. The integration of MVC architecture where it

highlights its impact on improving UI and business logic separation, thereby enhancing maintainability and

scalability [3]. Further insights into the transition from Aura components to LWC are provided, emphasizing

performance enhancements and coding simplicity [4]. The role of Shadow DOM in ensuring component

modularity and design integrity is detailed, supporting the development of robust and scalable applications .

Lifecycle management practices and debugging strategies are also discussed, emphasizing the importance of

effective issue resolution and component efficiency [6][7]. Finally, Jest testing is noted for its critical role in

improving component quality through early error detection [8]. These collective insights underscore the robust

framework provided by LWC for developing efficient, scalable applications. Lightning Web Components not

only coexist and interoperate with the original Aura programming model, but also deliver unmatched

performance. Aura Components leverage their own component model, templates, and a modular development

programming model. Lightning Web Components are built on recent web standards, such as web components,

custom elements, Shadow DOM, and more.

Figure 8: LWC Services on top of Core Stack of Web Standards [5]

Patnaik R Journal of Scientific and Engineering Research, 2020, 7(12):250-257

Journal of Scientific and Engineering Research

255

Figure 9: Coexistence and Interoperability [9]

Harnessing the latest web stack, LWC boasts numerous advantages over aura components.

• Better performance of an LWC Application.

• Built on Modern web standards.

• Compatible with New and Existing Aura components

• Optimizing website speed for faster loading times.

• Improved security, enhanced testing, and better browser compatibility.

• The ease of development.

5. Lightning Web Components Performance Best Practices

Data Loading and Server Calls

• Use Lightning Data Service (LDS) for efficient data operations and reduced server calls.

• Implement Lazy Loading to load data only when necessary.

• Batch Requests to minimize the number of network round-trips.

• Cache Data to avoid repeated server calls for unchanged information.

Component Design and DOM Manipulation

• Compose Smaller Components to create lightweight and reusable pieces.

• Minimize Re-renders by using track and @api properties appropriately.

• Optimize DOM updates to ensure only necessary parts are re-rendered.

CSS, JavaScript, and Event Handling

• Scope CSS with Modules to avoid global style conflicts.

• Simplify CSS Rules to prevent rendering slowdowns.

• Attach Event Listeners Wisely and use Event Delegation to handle events efficiently.

Media Optimization and Profiling

• Lazy Load Images to improve load times.

• Optimize Image Sizes for quicker loading.

• Profile Components with tools like Chrome DevTools to identify performance issues.

• Monitor with Salesforce Lightning Usage App for insights and performance tracking.

6. Research Method

As part of an experiment to test its capabilities and performance as a programming tool, a section of a large

project was converted from Aura component to LWC. The project in question is Dream House, a real estate

company that uses the Salesforce platform to help brokers manage their properties and customers find their

dream homes. The experiment focused on updating the two most complicated pages of the project, namely

"Property Finder" and "Property Explorer," using LWC and additional customizations.

Patnaik R Journal of Scientific and Engineering Research, 2020, 7(12):250-257

Journal of Scientific and Engineering Research

256

Property Finder - It is a page that allows customers to search for properties using various filters. The results are

then displayed as a list of matching homes' photographs, with simple property details displayed when a property

is clicked or selected.

Property Explorer - It is similar to "Property Finder" but displays results as pin drops on a map instead of

individual photos.

The conversion of the components from Aura to LWC was a comprehensive task. Twenty-two components

across the two pages, 'Property Finder' and 'Property Explorer,' were transformed using the most straightforward

method possible to achieve the best ROI (balance of time invested and performance gains). This significant

number of components converted underscores the scale of the task and its impact on the project.

The Lightning Platform uses a standard metric called Experienced Page Time (EPT) to measure page load time.

EPT measures the time taken to load a page from the moment a user clicks to navigate to a page until the page is

fully loaded. The measurements were conducted in Lightning Platform's performance lab.

Salesforce Experienced Page Time (EPT) measures the time for a user to fully experience a Salesforce page,

from initiation to full interactivity. EPT provides a comprehensive view of page performance, including all

loading and rendering phases.

Network Time: The time taken for the request to travel to the server and for the server to send back the

response.Network Time: The time taken for the request to travel to the server and for the server to send back the

response.

Server Processing Time: The time taken by the Salesforce server to process the request and prepare the

response.

Browser Processing Time: The time taken by the user's browser to interpret and render the page.

EPT is crucial for understanding the actual user experience as it covers the entire page load journey, offering a

more accurate representation of performance. It helps identify bottlenecks and improve overall page

performance and user satisfaction.

7. Result

Figure 10: Aura to LWC Lab Measurements [10]

After converting DreamHouse from Aura to LWC, we noticed significant improvements. The development

experience aligned more with current web front-end development standards and patterns, and substantial

performance gains were observed. Lab measurements indicated improvements ranging from 2.4 percent to 63

percent.

7. Conclusion

In conclusion, Lightning Web Components offers a modern, performant, and developer-friendly framework that

aligns with the latest web standards. By embracing LWC, Salesforce developers can build sophisticated,

scalable, and maintainable applications that provide exceptional user experiences on the Lightning Platform.

LWC's event-driven architecture helps in building highly interactive and responsive applications. The

advantages extend to the ease of maintaining and updating the codebase due to the declarative nature of these

components. Overall, LWCs enable developers to create innovative solutions that support business advancement

and enhance user satisfaction.

Patnaik R Journal of Scientific and Engineering Research, 2020, 7(12):250-257

Journal of Scientific and Engineering Research

257

References

[1]. Salesforce Announces Lightning Web Components, a Modern JavaScript Programming Model for

Building Apps on the Lightning Platform in 2018, https://www.salesforce.com/news/press-

releases/2018/12/13/salesforce-announces-lightning-web-components-a-modern-javascript-

programming-model-for-building-apps-on-the-lightning-platform/J. Clerk Maxwell, A Treatise on

Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.

[2]. Introducing Lightning Web Components in Dec 2018, https://www.salesforce.com/news/press-

releases/2018/12/13/salesforce-announces-lightning-web-components-a-modern-javascript-

programming-model-for-building-apps-on-the-lightning-platform/.

[3]. Salesforce LWC - A Client-Centric MVC Architecture in Oct 2020,

https://www.linkedin.com/pulse/salesforce-lwc-mvc-architecture-prasanta-kumar-pardhi/.

[4]. Embracing Modernity with Lightning Web Components (LWC): Shifting from Aura to Salesforce’s

Cutting-Edge Front-end Development in Sept 2023, https://scrumdigital.com/blog/shifting-from-aura-

to-salesforces-cutting-edge-front-end-development/.

[5]. Introducing Lightning Web Components 2018

https://developer.salesforce.com/blogs/2018/12/introducing-lightning-web-components

[6]. Lifecycle hooks in Lightning Web Component in Dec 2020,

https://jayakrishnasfdc.wordpress.com/2020/12/06/lifecycle-hooks-in-lightning-web-component/.

[7]. Debug Lightning Web Components, 2019 https://developer.salesforce.com/blogs/2019/02/debug-your-

lightning-web-components

[8]. JEST - Testing Lightning Web Components 101, Aug 2020, https://www.linkedin.com/pulse/jest-

testing-lightning-web-components-101-swarna-gopalan/.

[9]. Lightning web components - Episode 1 - An Introduction 2018

https://www.slideshare.net/developerforce/lightning-web-components-episode-1-an-introduction

[10]. Case Study: DreamHouse Gains Speed by Switching to LWC , 2019

https://developer.salesforce.com/blogs/2019/06/case-study-dreamhouse-gains-speed-by-switching-to-

lwc

[11]. Lightning Components Performance Best Practices , 2017

https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-components-

performance-best-practices

[12]. Lightning Web Components Performance Best Practices, 2020

https://developer.salesforce.com/blogs/2020/06/lightning-web-components-performance-best-practices

[13]. Lightning Web Components Basics , 2019

https://trailhead.salesforce.com/content/learn/modules/lightning-web-components-basics/push-

lightning-web-component-files

https://www.salesforce.com/news/press-releases/2018/12/13/salesforce-announces-lightning-web-components-a-modern-javascript-programming-model-for-building-apps-on-the-lightning-platform/
https://www.salesforce.com/news/press-releases/2018/12/13/salesforce-announces-lightning-web-components-a-modern-javascript-programming-model-for-building-apps-on-the-lightning-platform/
https://www.salesforce.com/news/press-releases/2018/12/13/salesforce-announces-lightning-web-components-a-modern-javascript-programming-model-for-building-apps-on-the-lightning-platform/
https://www.linkedin.com/pulse/salesforce-lwc-mvc-architecture-prasanta-kumar-pardhi/
https://scrumdigital.com/blog/shifting-from-aura-to-salesforces-cutting-edge-front-end-development/
https://scrumdigital.com/blog/shifting-from-aura-to-salesforces-cutting-edge-front-end-development/
https://developer.salesforce.com/blogs/2018/12/introducing-lightning-web-components
https://jayakrishnasfdc.wordpress.com/2020/12/06/lifecycle-hooks-in-lightning-web-component/
https://developer.salesforce.com/blogs/2019/02/debug-your-lightning-web-components
https://developer.salesforce.com/blogs/2019/02/debug-your-lightning-web-components
https://www.linkedin.com/pulse/jest-testing-lightning-web-components-101-swarna-gopalan/
https://www.linkedin.com/pulse/jest-testing-lightning-web-components-101-swarna-gopalan/
https://www.slideshare.net/developerforce/lightning-web-components-episode-1-an-introduction
https://developer.salesforce.com/blogs/2019/06/case-study-dreamhouse-gains-speed-by-switching-to-lwc
https://developer.salesforce.com/blogs/2019/06/case-study-dreamhouse-gains-speed-by-switching-to-lwc
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-components-performance-best-practices
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-components-performance-best-practices
https://developer.salesforce.com/blogs/2020/06/lightning-web-components-performance-best-practices
https://trailhead.salesforce.com/content/learn/modules/lightning-web-components-basics/push-lightning-web-component-files
https://trailhead.salesforce.com/content/learn/modules/lightning-web-components-basics/push-lightning-web-component-files

