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Abstract In this paper, we consider an SIR epidemic model with nonlinear incidence rate and latency. The local 

stability conditions of the model proposed are established in the absence of time delay {τ= 0} and in the 

presence of time delay {τ> 0}. Numerical simulations are done with the DDE suite in Matlab and are found to 

be in agreement with analytical results obtained and the transient oscillations occasioned by the presence of time 

delay highlighted. 
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1. Introduction 

In this paper, we consider saturation incidence rate and assume the force of infection in the form 
𝜑𝑆 𝑡−𝜏 𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
 

which is saturated with the infectives. Introduction of the saturation factor makes the model more realistic 

because the number of effective contacts between infective individuals and susceptible individuals may saturate 

at high infective levels due to protective measures by the susceptibles e.g Measles. Incidence rate of this type 

have been widely studied, for example Z. Hu et al in [1], M.E. Alexander and S.M. Moghadas in [2] and S. 

Ruan and W. Wang in [3]. In our model, a delay term (τ> 0) is introduced to represent time delay describing the 

latent period of the disease. Systems with nonlinear incidence rate and latency are widely studied (See [4] – [12] 

and references therein). 

Analytically, we derive a threshold value (R0) and prove that when R0< 1, the disease free equilibrium point is 

locally asymptotically stable and unstable otherwise. Numerical simulations support our analytical calculations 

and also show that we have global asymptotic stability of the disease free equilibrium for R0< 1 and the endemic 

equilibrium for R0> 1. The paper is organized as follows: The model is described in Section 2. The basic 

reproduction number and relevant results for the stabilities of the disease free and endemic equilibria could be 

found in Section 3. We have numerical simulations in 4 and conclusion in Section 5. 

 

2. Derivation of the Model 

We consider an SIR model with a three dimensional differential equation system. Individuals are assumed to be 

in one of the following epidemiological states: Susceptibles (S) - at risk of contracting the disease, Infectives (I) 

- infected and capable of transmitting the disease, and Recovered (R) - population recovered from the infection. 

All recruitment to the system is into the susceptible class, and occurs at a constant rate β. We consider here a 

saturated incidence rate and assume the force of infection in the form 
𝜙𝑆 𝑡−𝜏 𝐼(𝑡−𝜏)

1+𝛼𝐼(𝑡−𝜏)
 which is saturated with the 

infectives. We present the model as follows: 

 
𝑑𝑆

𝑑𝑡
= 𝛽 − --𝜇𝑆 −

𝜙𝑆 𝑡 − 𝜏 𝐼(𝑡 − 𝜏)

1 + 𝛼𝐼(𝑡 − 𝜏)
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𝑑𝐼

𝑑𝑡
=

𝜙𝑆 𝑡 − 𝜏 𝐼(𝑡 − 𝜏)

1 + 𝛼𝐼(𝑡 − 𝜏)
−  𝜇 + 𝜇𝑑 + ϒ 𝐼                                                          1    

                                                               
𝑑𝑅

𝑑𝑡
= ϒ𝐼 − 𝜇𝑅                   

This model has the natural death rate and disease induced death rate 𝜇𝑑 . An infected individual has a recovery 

rate of (ϒ) into the recovery compartment. 𝜙 is the infection rate while 𝛼 is the saturation factor. Since this 

model is for human population, we assume that all its state variables and parameters are nonnegative for all t≥ 0. 

The region biologically relevant is given by 

Ω =   𝑆, 𝐼, 𝑅 ∈ ℛ+
3 : 0 ≤ 𝑆 + 𝐼 + 𝑅 ≤

𝛽

𝜇𝑚
                                                                (2)     

The total human population is given by N = 𝑆 + 𝐼 + 𝑅, so that 𝑑𝑁/𝑑𝑡 ≤ 𝛽 − 𝜇𝑚𝑁, thus 𝑁 → 𝛽/𝜇𝑚  as 𝑡 → ꝏ,  

Where 𝜇𝑚 = 𝑚𝑖𝑛{𝜇, 𝜇𝑑}. 

 

3. Stability Analysis 

The basic reproduction number for the model obtained by the first generation matrix approach introduced by 

Diekmann et al [13] is given as 

𝑅0 =
𝜙𝛽

𝜇(𝜇 + 𝜇𝑑 + ϒ)
                                                                                                               3     

The disease-free equilibrium given by𝐸0 =  𝑆0, 𝐼0 , 𝑅0  is the only equilibrium for R0≤ 1, where 

𝑆0 =
𝛽

𝜇
 ,    𝐼0 = 0 ,   𝑅0 = 0                                                                                          

If R0>1, then there is also an endemic equilibrium given by E
*
= (S

*
, I

*
,R

*
), where 

𝑆∗ =
(𝛼𝛽 + 𝜇 + ϒ + 𝜇𝑑)

𝜙 + 𝜇α
 

𝐼∗ = −
(𝜇2 + 𝜇ϒ + 𝜇𝜇𝑑 − 𝜙𝛽)

(𝜇2𝛼 + 𝜇αϒ + 𝜇α𝜇𝑑 + 𝜇𝜙 + 𝜙ϒ + 𝜙𝜇𝑑

 

𝑅∗ = −
ϒ(𝜇2 + 𝜇ϒ + 𝜇𝜇𝑑 − 𝜙𝛽)

𝜇(𝜇2𝛼 + 𝜇αϒ + 𝜇α𝜇𝑑 + 𝜇𝜙 + 𝜙ϒ + 𝜙𝜇𝑑

 

 

Stability of the Disease Free Equilibrium at 𝝉 = 𝟎. 

The characteristics equation after linearizing (1) about the disease free equilibrium E
0
 gives 

 𝜆 + 𝜇 2 −𝜇𝜆 + 𝜙𝛽𝑒−𝜏𝜆 − 𝜇ϒ− 𝜇2 − 𝜇𝜇𝑑 = 0                                                                                              (4) 

This gives𝜆1,2 = −𝜇 and the solution to the following transcendental equation 

𝜇𝜆 − 𝜙𝛽𝑒−𝜏𝜆 + 𝜇ϒ + 𝜇2 + 𝜇𝜇𝑑 = 0                                                                                                                 (5) 

At 𝜏 = 0, equation (5) reduces to 

𝜇𝜆 − 𝜙𝛽 + 𝜇ϒ + 𝜇2 + 𝜇𝜇𝑑 = 0           
This gives 

𝜆3 =  𝜇 + 𝜇𝑑 +  ϒ {𝑅0 − 1}         
This is stable if R0< 1 and marginally stable if R0 =1, giving us the following theorem. 

 

Theorem 1. 

The disease-free equilibrium point of the System (1) is locally asymptotically stable at 𝜏 = 0 when R0 < 1, 

marginally stable when R0 = 1 and unstable when R0> 1. 

 

Stability of the Disease Free Equilibrium at 𝝉 > 0. 

At 𝜏 > 0, equation (5) gives 

𝜇2 + 𝜇ϒ + 𝜇𝜆 + 𝜇𝜇𝑑 = 𝜙𝛽𝑒−𝜏𝜆                                                                                                                  (6) 

Suppose 𝜆 = 𝑖𝜔, (𝜔 > 0) is a root of (6) 

𝜇2 + 𝜇ϒ + 𝑖𝜇𝜔 + 𝜇𝜇𝑑 = 𝜙𝛽𝑒−𝑖𝜏𝜔  

Squaring both sides and adding, we have the following 

𝜔2 + (𝜇 + 𝜇𝑑 + ϒ)2 1 −  𝑅0
2 = 0                                                                                                         (7) 

Equation (7) has no real root for R0< 1. Hence it is stable for all 𝜏 > 0 giving the following theorem 

. 
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Theorem 2. 

The disease free equilibrium point (E
0
) of System (1) is locally asymptotically stable at 𝜏 > 0, whenever R0< 1 

and unstable when R0>1. 

 

4. Numerical Simulation 

We show in this section numerically, the established results in earlier sections about the stability of the System 

(1) as it relates to the time delay (τ), and the basic reproduction number (R0). We use the dde23 suite in Matlab 

to simulate the System (1) with the parameters as shown below the figures. The parameters are chosen solely for 

simulation convenience and do not reflect actual collected data. 

 
 

 

 

 

 

Solutions converge to the disease-free equilibrium point for 𝜏 = 1 and R0 = 0:8065 < 1, Fig 1a and endemic 

equilibrium point for 𝜏 = 1 and R0 = 2:1609 >1, Fig 1b, showing that the dynamics of the system depends only 

on the basic reproduction number. At R0< 1, the disease free equilibrium becomes stable which shows that the 

infection dies out of the population while at R0> 1, the endemic equilibrium becomes stable meaning that the 

disease will persist in the population. This simulation agrees with Theorems (1) and (2) in Section 3. 

In the next figure, we show the effect of the time delay𝜏on System (1) by plotting the number of infectives for 

different values of τ. 

 
 

 

 

In figure 2, at τ > 0, we observe an initial transient oscillations that is prolonged as τ increases, but the endemic 

equilibrium point of the system is always stable for all time delays. 

 

Figure 2: Simulation of the evolution of the number of infected individuals for different values of 

𝜏. Other parameters are: β = 0.85, μ = 0.098, φ = 0.34,  𝜇𝑑 = 0.038 and ϒ = 0.525. 

(b) R0= 2.1609> 1, μ = 0.38 (a) R0= 0.8065< 1, μ = 0.048 

Figure 1: Other parameters are: β = 0.85, 𝜙 = 0.34, 𝛼 = 065, 𝜇𝑑 = 0.038 

and ϒ= 0.525 
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5. Conclusion 

In this paper, we formulated an SIR epidemic model with a nonlinear incidence rate and latency. The threshold 

value R0 was found and analytical calculations and numerical simulations show that the local and global 

dynamics of the System (1) do not depend on the time delay but are completely determined by the values of the 

threshold number R0. We found that if R0< 1, the disease free equilibrium point is always stable for τ ≥ 0 and 

the endemic equilibrium point is always stable for τ ≥ 0 if R0> 1.  

The effect of time delay (𝜏) and the long term behaviour of the system (1), as highlighted in Fig 2, shows that at 

𝜏 > 0, an initial transient oscillations exist. The oscillations get prolonged as 𝜏  increases, but the endemic 

equilibrium point of the system is always stable for all time delays. The epidemiological interpretation of the 

oscillations experienced in the system at 𝜏 > 0, is that the population will have an initial period of epidemic 

fluctuation before it finally become endemic. 
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