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Abstract The problem of asymptotic analysis of a Neo-Hookean half space deforming under anti plane shear 

was investigated. The analysis of the model resulted into a partial differential equation for the determination of 

stresses and displacement. Analytically obtained closed form solution through asymptomatic analysis in 

Sobolev space of a Neo-Hookean Half space deforming under anti-plane shear and effort is minimized. Two 

cases were considered; the first case is a case where flaw is a circular cavity at the centre of the half space at an 

undeformed configuration. The second case is a case where the void is patched prior to deformation. The patch 

or filing is done with a material such that a perfect bond is created at the interface. In other words, there is no 

differential motion at the interface and in either case the analysis leads to an exact closed form solution for 

stresses and displacement. 

 

Keywords Hookean Deformation, Asymptotic Analysis, Anti – Plane Shear 

1. Introduction 

Anti – plane shear deformation problems arise naturally from many real world applications, such as rectilinear 

steady flow of simple fluids, interface stress effects of nanostructured materials, structures with cracks, 

layered/composite functioning materials and phase transitions in solids. During the past half century, such 

problems in finite deformation theory have been subjected to extensively study by both mathematician and 

engineering scientists. As indicated in the review article by Horgan, [1] anti-plane shear deformations are one of 

the simplest classes of deformations that solids can undergo. In anti-plane shear of a cylindrical body, the 

displacement is parallel to the generators of the cylinder and is independent of the axial co-ordinate. In recent 

years, considerable attention has been paid to the analysis of anti-plane shear deformations within the context of 

various constitutive theories (linear and non-linear) of solid mechanics. Such studies were largely motivated by 

the promise of relative analytic simplicity compared with plane problems since the governing equations are a 

single second order partial differential equation rather than higher-order or coupled systems of partial 

differential equation. Thus the anti-plane shear problem plays a useful role as a pilot problem, within which 

various aspects of solutions in solid mechanics may be examined in a particularly simple setting. 

The review of Literature shows that various authors have made a number of contributions towards providing a 

method of analysis that could readily give closed form solutions for the determination of stresses and 

displacement at various points of various solids deforming under anti-plane shear loading. Atkins, [2] seems to 

have been the first who studied deformations belonging to this class, for an incompressible isotropic elastic 

body. He provided an overview in which further analysis in this directions were based. Knowles [3] extended 

Atkins work by providing the general form that the stored energy should have in order that an isotropic and 
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incompressible material admits states of anti-plane shear. He also used the frame work of anti-plane shear to 

analyze a body containing a central crack. In the same paper he showed how the three differential equations of 

equilibrium can be reduced to a single one for the case of generalized Neo-Hookean materials. He also provided 

a necessary and sufficient conditions on the strain energy density function in order that a compressible isotropic 

material admits state of anti-plane shear. 

Jiang and Knowles [4] determined a special class of a compressible isotropic body that can sustain anti-plane 

shear. Tsai and Rosakis [5] worked on anisotropic bodies in the dynamical case for a compressible material. They 

determine the conditions for such materials to admit anti-plane shear deformation. Erumaka, [6] used an 

asymptotic approach to determine the solution of the boundry value problem which valuate the stresses and 

displacements in an Ogden solid deforming under anti-plane shear. His solution was considered as a very good 

approximation to the exact solutions. 

Zhou et al, [7] showed that in the vicinity of two collinear cracks perpendicular to the edges of an isotropic strip, 

the cracks were symmetrical with respect to the centerline of the strip when subjected to anti-plane traction. Li, [8] 

used the work of Zhou to obtain a closed-form solution for orthotropic strips. 

Stress analysis in an isotropic strip weakened by two collinear cracks situated on the centerline under anti-plane 

shear was carried out by Zhou et al [7]. In the above articles, the application of boundary conditions resulted in a 

set of integral equations which are solved by the schmidt’s method to obtain approximate solutions.  

Wu and Dzenis, [9] obtained closed-form solutions which are solved by the factors for an interfacial edge crack 

between two bonded semi-infinite dissimilar elastic strips. Li, [8] considered an interfacial crack between two 

bonded dissimilar semi-infinite orthotropic strips where the crack surface was under anti-plane traction. Closed 

form stress intensity factors were obtained for a strip with either clamped or traction – free boundaries. 

Lubarda [10] studied the effect of the couple stresses on the stress concentration around circular inclusions and 

inhomogeneities subjected to an anti-plane strain field. Couple stress theory has also been used by Shodja and 

Ghazisaeidi [11] to address the anti-plane problem of circular inhomogeneity in piezoelectric media. 

Haftbaradaran and Shodja [12] studied elliptic inhomogeneities and inclusions subjected to anti-plane loading 

within couple stress theory.  

 

2. Formulation of the Problem 

In this paper, the method proposed by Erumaka, [13] on “finite deformation of a class of Ogden solid under anti-

plane shear  is employed to provide an exact closed form solution for the boundary value problem arising from 

the anti-plane shear deformation of a Neo-Hookean half space containing central circular flaws.  Two cases are 

considered. The first is a case in which the flaw is a circular cavity at the centre of the half space at underformed 

configuration, while the second case is the situation in which the void is patched prior to deformation. The patch 

or filling is done with a material capable of creating a perfect bond at the interface. The bond is such that there is 

no differential motion at the interface. In either case the analysis leads to exact closed form solution for the 

determination of stresses and displacement at every point of the material. In this work, we shall consider an anti-

plane shear deformation of a class of an incompressible solid whose strain energy function is given by 

𝑊 =
𝜇

2
(𝐼1 − 3)           (2.1) 

Such a material is referred to as Neo-Hookean material. An asymptotic method is used to derive an exact closed 

form solution for the boundary value problem for the anti-plane shear deformation of a Neo-Hookean half space 

containing central circular flaws. We shall consider two cases. The first is a case in which the flaw is a circular 

cavity at the centre of the half space at undeformed configuration while the second case is the situation in which 

the void is patched prior to deformation. The patch or filling is done with a material such that a perfect bond is 

created at interface. This is to ensure that there is no differential motion at interface. In either case we aim at 

providing exact closed form solutions for the determination of stresses and displacement. We shall also 

determine the point of stress concentration indicating the positions of crack initiation.  
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3. Asymptotic Analysis of the Problem 

Let the deformation that takes the point  1 2 3, ,X X X  of the undeformed configuration to the point 

 1 2 3, ,x x x  of the deformed configuration of an isotropic, homogeneous, incompressible, elastic half space 

deforming under anti-plane shear in Cartesian coordinate be 

 

1 1

2 2

3 3 1 2

                                                                                                   3.1

,

x X

x X

x X g X X




 


  

 

where ,  1,  2  3iX i and are the co-ordinates of a point at the undeformed configuration. 

,  1,  2  3ix i and are the corresponding co-ordinate at the deformed configurations.g depends continuously 

on 
1 2  X and X . 

 

3.1. Deformation Gradient Tensor 𝑭  

We shall determine the deformation gradient, which describes how material line elements change their length 

and orientation during deformation. The deformation gradient tensor, 𝐹  is given by  

1 1 1

1 2 3

11 12 13

2 2 2
21 22 23

1 2 3

31 32 33

3 3 3

1 2 3

                                                                   (3.2)

 

i

R

x x x

X X X
F F F

x x x x
F F F F

X X X X
F F F

x x x

X X X

where i

   
 
     

      
           

    
     

1,2,3  1,2,3and R 

 

Using (3.1) and (3.2) we obtain the following as components of 𝑭  

1 1 1
11 12 13

1 2 3

2 2 2
21 22 23

1 2 3

3 3 3
31 1 32 2 33

1 2 3

1,  0,  0

0,  1,  0

, ,  , ,  1

x x x
F F F

X X X

x x x
F F F

X X X

x x x
F g F g F

X X X

  
     
  

  
     
  

  
     
  

      

Hence (3.2) can be written as the tensor 

1 2

1 2

1 2

1 0 0

0 1 0                                                                                                                       3.3

, , 1

 ,   ,

F

g g

g g
where g and g

X X

 
 

  
 
 

 
 
 

 

3.2. Left Cauchy – Green Deformation Tensor B  

Since the deformation equations are stated on the material or lagrangian mode, we shall obtain the left Cauchy – 

Green deformation strain tensors B . 

The left Cauchy – Green deformation gradient tensor B  is a symmetric second order tensor given by (Beatly, 

1962). 
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1

2

1 2

1

2

2 2

1 2 ,1 ,2

1 0 0 1 0 ,

B F F 0 1 0 0 1 ,                                                                                       3.3

, , 1 0 0 1

1 0 ,

           B 0 1 ,

, , 1

T

g

g

g g

Therefore

g

g

g g g g

  
  

    
  
  

 
 

  
   

1 1
2

2 2

2 2 2 2

1 2 1 2 1 2 1 2

2

1 1 2 1 1

2

                                                                                            3.4

1 0 , 1 0 ,

B B.B 0 1 , 0 1 ,

, , 1 , , , , 1 , ,

1 , , , , 2 ,

B

g g

g g

g g g g g g g g

g g g g g



  
  

    
       

 



 

 

     

2 2

2

2 2

1 2 2 2 1 2

2 2 2 2 2 2 4 2 2

1 1 2 2 1 2 1 2 1 1 2

,

, , 1 , , 2 , ,                            3.5

, 2 , , , 2 , , 1 3 , 3 , , 2 , ,

g

g g g g g g

g g g g g g g g g g g

 
 
   
 
        
 

 

3.3. The Principal Strain Invariants ,  1,2,3iI i   

The left Cauchy – Green tensor is a second order tensor and it is symmetric, then it has three principal strain 

invariant denoted by 1 2 3,    I I and I  

It has been established that the strain energy density functions of elastic materials are functions of the 

corresponding strain invariants. 1 2 3,    I I and I
 

The physical interpretation of 1 2 3,    I I and I  are the hydrostatic stress, shear stress and Von mises stress 

respectively. It is given in Beatly (1961) as  

 

1

2 2

2

2

3

1
                                                                                                                3.6

2

det

I trB

I trB trB

I B J



     
  

where tr denotes trace, J denotes Jacobian and detB denotes determinant of 𝐵 . Using (3.4) and (3.5), we have 

(3.6) as 

 

 

2 2

1 1 2

2 2

2

2
2 2 4 4 2 2

1 2 1 2 1 2

2
2 2 4 4 2 2

1 2 1 2 1 2

3 , ,

1

2

         3 4 , 4 , , , 2 , , ,

 9 6 , 6 , , , 2 , , ,

I trB g g

I trB trB

trB g g g g g g

also trB g g g g g g

   

     

     

     

 

Therefore, 
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1 1

2 2 4 4 2 2 2 2 4 4 2 2

2 1 2 1 2 1 2 1 2 1 2 1 2

2 2

2 1 2 1

2 2

2 2 2 23 1

2 2 1 2 1 2

2 2 2

1 2 2 1 1

1 9 6 , 6 , , , 2 , , 3 4 , 4 , , , 2 , , ,
2

3 , , I

1 , 0 , 0 1
det 1. 0. ,

, 1 , , , 1 , , , ,

               1. 1 , , , , ,

       

I g g g g g g g g g g g g

I g g

g g
I B g

g g g g g g g g

g g g g g

           

   

   
   

     

2 2

1 1        1 , , 1g g   

 

3 1,I  shows that the material is undiverging and incompressible deformation. We have  

   

2 2

1 1 2

2 2

2 1 2 1 2

3

I 3 , ,

I 3 , ,  I I                                                                                             3.7

I 1

g g

g g NOTE

  


    


 
 

3.4. Stress Tensor 𝝉  

The Cauchy stress tensor 𝜏 for incompressible material is given by (Holzapfel, [14]) as 

𝜏 
1

1 22 2                                                                                                     3.8I W B W B


     

where I is the unit tensor,  is the hydrostatic pressure which insures incompressibility, 

1

1

2

2

W
W

I

W
W

I









 

and W is the strain energy density function of the material considered. In this paper, we will consider the Neo-

Hookean material whose strain energy density function is given by: 

 1 3                                                                                                                            (3.9)
2

W I


 

where  is the shear modulus 

1

1

2

2

     ,  1,  2

 1,  
2

                                                                                                           (3.10)

 2,  0

i

i

W
W i

I

W
For i W

I

W
For i W

I




 


 
    


   

 
I1 = I2 we can use either I1 or I2 but not both. If I1 is used then I2 = 0 

Putting (3.10) in (3.8), the stress tensor reduces to  

𝜏 
12 BI W    

𝜏 
12 B             since 

22
I W

      
  

 

𝜏 B                                                                                                                (3.11)I    

where, 
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1

2

2 2

1 2 1 2

1 0 0

I 0 1 0                                                                                                          (3.12)

0 0 1

1 0 ,

B 0 1 ,                    

, , 1 , ,

unit tensor

g

g

g g g g

 
 

  
 
 

 
 

  
   

                                                                                3.13

 

Putting (3.12) and (3.13) in (3.11). 

1

2

2 2

1 2 1 2

1

2

2 2

1 2 1 2

0 , 0 0

0 , 0 0

, , , , 0 0

0 ,

0 ,                                                                             (3.14)

, , , ,

g

g

g g g g

g

g

g g g g

  

  

     

  

  

     

   
   

    
       

 
 

  
    

 

In Cartesian co-ordinate, 𝜏  is given as  

                                                                                                        (3.15)

xx xy xz

yx yy yz

zx zy zz

  

  

  

 
 

  
 
 

 

Comparing (3.15) and (3.14) we have the component form of the stresses as 

 

1

2

2 2

1 2

0

,                                                                                                      (3.16)

,

1 , ,

xx yy

xy yx

xz zx

yz zy

zz

g

g

g g

   

 

  

  

  

  


  


  
 

   


The works in literature shows that the analysis of problems of anti-plane shear deformations are better handled 

in cylindrical polar coordinates. Hence, we need to transform the field equation to the cylindrical polar 

coordinates. 

The relationship between the Cartesian and the cylindrical polar is given by     

 

1

2

3

1
2 2 2

1 2

1 2

1

cos

sin

                                                                                                      (3.17)

tan

X r

X r

X Z

r X X

X

X
















 


  


  
    

  

 

𝜏  

𝜏  

𝜏  
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Let g be a function of r and   that is  

   

     1 2

1

1 1 1

,                                                                                                                                3.18

, , ,
 , . .                  

g g r

g X X g r g rr
now g

X r X X



  





   
  

    
                                          3.19

 

From (3.17) we have 

 
1 1

sin
cos                                                                                                  3.20

r
and

X X r

 


 
  

 

 

Putting (3.20) in (3.19) 

 1

sin
, cos                                                                                                               3.21rg g g

r



 

 

Squaring (3.21) we have  

 
1

2 2 2 2 2

2

2 1
, cos cos sin sin                                                                         3.22

r rg g g g g
r r      

 

Also,

     
 1 2

2

2 2 2

, , ,
, . .                                                                 3.23

g X X g r g rr
g

X r X X

  



   
  

    

 

From (3.17) we have 

 
2 2

cos
sin                                                                                                    3.24

r
and

X X r

 


 
 

 

 

Putting (3.24) in (3.23) 

 2

cos
, sin                                                                                                            3.25rg g g

r



 

 

Squaring (3.25) we have  

 
2

2 2 2 2 2

2

2 1
, sin cos sin cos                                                           3.26r rg g g g g

r r
        

Substituting (3.21), (3.22), (3.25) and (3.26) into (3.16) 

 

 

 

 

2 2
2

0

1cos sin                                                                               3.27

1sin cos

11

xx yy

xy yx

xz zx r

yz zy r

zz r

g g
r

g g
r

g g
r 





   

 

    

    

  


  

 



   

  



    

 

The coordinate transformation between Cartesian and cylindrical polar coordinate (3.28) is given by the tensor  

𝜏 ∗ = 𝑅 𝜏 𝑅 𝑇                     (3.28) 
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cos sin 0

            R sin cos 0                                                                                     3.29

0 0 1

cos sin 0

          R sin cos 0                 

0 0 1

T

where

 

 

 

 

 
 

  
 
 

 
 

  
 
 

                                                                     3.30

                                                                                          

xx xy xz

yx yy yz

zx zy zz

  

  

  

 
 

  
 
 

                3.31

 

Putting (3.31), (3.30) and (3.29) into (3.28) 

 

cos sin 0 cos sin 0

sin cos 0 sin cos 0                                                   3.32

0 0 1 0 0 1

xx xy xz

yx yy yz

zx zy zz

      

      

  

     
    

      
    
    

 

 

cos sin cos sin cos sin cos sin 0

sin cos sin cos sin cos sin cos 0     3.33

0 0 1

xx yx xy yy xz yz

xx yx xy yy xz yz

zx zy zz

       

       

  

     
  

        
  
  

From (3.27)

 
0xy yx    

Therefore, (3.33) reduces to 

2 2

2

cos sin sin sin cos sin 0

sin cos sin cos sin cos 0  

0 0 1

cos sin cos sin cos sin cos sin

cos sin cos sin sin

xx yy xz yz

xx yy xz yz

zx zy zz

xx yy xx yy xz yz

xx yy

     

     

  

       

    

   
  

     
  
  

   

    2cos sin cos           3.34

cos sin sin cos

xx yy xz yz

zx zy zx zy zz

  

    

 
 

   
    

 

In components 

                                                                                                                         3.35

rr r rz

r z

zr z zz



  



  

  

  

 
 

  
 
 

 

Comparing (3.35) and (3.34) we have the following  

𝜏  

𝜏 ∗ 

𝜏 ∗ 

𝜏 ∗ 

𝜏 ∗ 

𝜏∗  
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2 2

2 2

cos sin

cos sin

cos sin
                                                                       

cos sin

sin cos

rr xx yy

r r yy xx

rz zr xz yz

z z yz xz

xx yy

zz zz

 

 



  

     

   

   

  

 

 


   


   


   


  
 

                           3.36

 

Substituting (3.27) into (3.36) we have  

 

2 2

2

0

                                                                                                  3.37

1
1

rr

r r

rz zr r

z z

zz r

g

g
r

g g
r



 

  



   

 

  


 

  





   
 


  

 

 

     
  

 

3.5. Equation of Equilibrium 

The equilibrium equation for the isotropic homogenous deformation is given by  

.𝑑𝑖𝑣 𝜏 ∗  = ∇. 𝜏 ∗ = 0  (3.38) 

Which in component form is the same as  

 

1
0

21
0                                                                            3.39

1
0

r rrrr rz
r

r z r

zrz zz rz
z

B
r r z r

B
r r z r

B
r r z r

 

   




   



   



  



   
       


   

     
   

  
        

Where ,    r zB B and B  are the components of the body forces in ,    r and z directions respectively.  From 

(3.37) and (3.39) the only non-zero component of equilibrium equation is the axial component given by 

 
1

0                                                                                        3.40zrz zz rz
zB

r r z r

  



  
    

  
In the absences of body force, (3.40) reduces to  

 
1

0                                                                                                 3.41zrz zz rz

r r z r

  


     
  

From (3.37) 

,  ,  0zrz zz
rr

g
g

r r z

   



     
  

 

Then, equation of equilibrium becomes  
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2

2

0

1 1
0                                                                                                      3.42

rr r

rr r

g
g g

r r

g g g
r r










  

 
   

 
 

Since   0   we have that (3.42) now becomes  

 2

1 1
0                                                                                                             3.43rr rg g g

r r
  

 

4. Application of the Problem - Boundry Value Problem I 

Consider a solid in a state of strain characterized by the strain energy density function (3.9), containing a central 

circular cavity of radius ' 'a and under an anti-plane shear loading. 

                             
 

Figure 1: A plane cross section of the solid 

The surface D is traction free.  The boundary conditions are that at infinity the stress shall approximate that of 

simple shear and that the boundary of the hole r a shall be traction free. The corresponding boundary 

conditions here are given as: 

 
sin ,           

                                                                                           4.1.1
0,                   r

g kr r

g r a

 


  
 

Therefore, we need to solve equation (3.43) subject to the boundry condition (4.1). we seek for an asymptotic 

solution g in W
1,2

 (Sobolev space of order 2) which approximates the solution of the boundary value problem. 

Now let 

 2
sin                                                                                              4.1.2

b c
g k r

r r

 

    
  

Where ,          0 2 ,a r       b and c are to be determined and k is the magnitude of shear as 

.r  It is easy to see that the assumed form of g automatically satisfies the boundary condition (4.1.1a).  We 

now consider boundary condition (4.1.1b).  Differentiating (4.1.2) with respect to r we have  

 2 3

2
1 sin                                                                                                         4.1.3r

b c
g k

r r


 
   

 
Substituting (4.1.3 ) into (4.1.1b) we obtain  

 2 3

2
1 sin 0                                                                                                          4.1.4

b c
k

a a


 
   

 

Since 0  sink and  is not identically zero we have 

1x  

2x
 

a
 

D
 

g(r,Ө) 



Chibueze EB et al                                   Journal of Scientific and Engineering Research, 2020, 7(12):127-142 

 

Journal of Scientific and Engineering Research 

137 

 

 2 3

2
1 0                                                                                             4.1.5

b c

a a
  

This implies that 

 3

3

           2                                                                                                     4.1.6

2
                                                                  

a ab c

a c
or b

a

 


                                             4.1.7

Substituting (4.1.7) into (4.1.2) we have 

 
2

2

1 2
 sin                                                                                    4.1.8

a
g k r c

r r ar


  
     

  

where ' 'a  is the radius of the central cavity and c is the parameter to be determined. From (4.1.8), we obtain 

,   r rrg g and g  as 

𝑔𝑟 = 𝑘  1 −
𝑎2

𝑟2 + 𝑐  
−2

𝑟3 +
2

𝑎𝑟2  𝜃 sin 𝜃       (4.1.9) 

𝑔𝑟𝑟 = 𝑘  1 −
2𝑎2

𝑟3 + 𝑐  
6

𝑟4 −
4

𝑎𝑟3  sin 𝜃                      (4.1.10) 

𝑔𝜃 = 𝑘  𝑟 +
𝑎2

𝑟
+ 𝑐  

1

𝑟2 −
2

𝑎𝑟
  cos 𝜃                (4.1.11) 

𝑔𝜃𝜃 = −𝑘  𝑟 +
𝑎2

𝑟
+ 𝑐  

1

𝑟2 −
2

𝑎𝑟
  sin 𝜃           (4.1.12) 

Substituting (4.1.19), (4.1.10) and (4.1.12) into left hand side of (3.43) 

2 2

3 4 3 2 2 3

2

2 2

2 6 4 2 2
sin 1 sin

1 2
                                                                         sin 0                   4.1.

a k a
k c c

r r ar r r ar r

k a
r c

r r r ar

 



      
           

      

  
      

  
 

2 2 2

3 4 3 3 3 4 3 4 3

13

2 6 4̀ 1 2 2̀ 1 2
sin 0

a c c a c c a c c
k

r r ar r r ar r r r r ar


 
           

 
Which simplifies to  

   4

3
, , sin                                                                                                                4.1.14

kc
r c

r
  

 

Equation (4.1.14) is the error term 

 

4.1. Minimization of the Error 

If the assumed g is the exact solution of the boundry value problem, the substitution of (4.9), (4.10) and (4.12) 

into (3.43) would have satisfied the equilibrium equation, rather, it gave us a deviation which is an error. 

We seek to minimize this error in the Sobolev space (space of infinitely differentiable functions). The advantage 

of minimizing in the sobolev space is that both the function and its rate of change are controlled. 

The norm on Sobolev space of order two in polar coordinate is given as  

   
2

2 2 2

20

1
, ,                                                                        4.1.15r

a
r c rdr d

r



     
 

   
 

   

where 
r  is the partial derivative of the   with respect to r  

 
 is the partial derivative of  with respect to   
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Squaring (4.1.14) we have  

 
2

2 2 2

8

9
sin                                                                                                          4.1.16

c
k

r
 

 
  

 

 

Differentiating (4.1.14) with respect to r 

 5

12
 sin                                                                                                              4.1.17r

c
k

r
 

 
   

 
 

Squaring (1.1.17) we have  

 
2

2 2 2

10

144
sin                                                                                                        4.1.18r

c
k

r
 

 
  

 

 

Differentiating (4.1.14) with respect to   

 4

3
 cos                                                                                                        4.1.19

c
k

r
 

 
  

 
 

Squaring (4.1.19) we have 

 
2

2 2 2

8

9
cos                                                                                                 4.1.20

c
k

r
 

 
  

 
 

Substituting (4.1.16), (4.1.18) and (4.1.20) into (4.1.15) 

 

 

 

1

22
2 2 2 2

8 10 2 80

1

22
2 2 2 2

7 9 90

2
2 2 2

7 9 0

9 144 1 9
, , sin cos  

9 144 9
, , sin cos  

9 144 9
, , . sin

a

a

a

r c k c rdrd
r r r r

r c k c drd
r r r

r c k c dr d
r r







    

    

   







     
       

     

     
       

     

   
    

 

 

 

 

     

 

 

1

22
2

9 0

1

22 2
2 2

6 8 80 0

1

2
2 2

6 8 8

2 2

6 8

. cos

3 18 1 9 1
, , lim . 1 cos 2 lim . 1 cos 2

2 2 8 2

3 18 9
, ,

2 8

3 18
, ,

2

a

r r

a a
r r

dr d
r

r c k c d
r r r

r c k c
a a a

r c k c
a a



 

 

    

   

  



 

 
 

  

      
        

    

     
       

     

  

 

 

 

1

2

8

9
                                                                                        4.1.21

8a

  
  

  
 

This error is minimum when  , , 0r c
c
 





 

Therefore (4.21) becomes 
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2

6 8 8

1

2
2 2

6 8 8

2

6 8 8

2

3 18 9
2

2 81
, , 0

2
3 18 9

2 8

3 18 9
                     0

2 8

                                since 0

k c
a a a

r c
c

k c
a a a

k c
a a a

k



 







  
       


  

   
  

  
    

  



 

Then 

 
6 8 8

3 18 9
0

2 8
c

a a a

 
   

 
 

Therefore 

 0                                                                                                                            4.1.22c 

Substituting (4.1.22) into (4.1.7) we have  

 2                                                                                                                        4.1.23b a  

Substituting (4.1.22) and (4.1.23) into (4.1.2) we have  

 
2

sin                                                                                                      4.1.24
a

g k r
r


 

  
 

 

This is exact.  

Using (4.1.24) we obtain   rg and g  as 

2

2

2

1 sin

cos

r

a
g k

r

a
g k r

r






 
  

 

 
  

 

 

Now substituting (4.1.26) and (4.1.25) into (3.38) we have the stress components as  

2

2

2

2 4 2 2
2

4 2

sin

0

1 sin

cos

2
1 cos 2

rr

rz r

rz zr

z z

zz

a
k

r

k a
r

r r

k a k a
k

r r





 

    

 

   


  

  

  

 

 
   

 

 
   

 

 
    

 

 

 

4.2. Boundary Value Problem II 

We now consider the case in which the void is patched with a bonding material. The patch is such that there is 

no differential movement between the bonding fibre and the material. Again the system is subjected to an anti-

plane loading. 
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Figure 2: A plane cross section of the solid 

In this case the boundary conditions are  

 
sin ,           

                                                                                           4.2.1
0,                   

g kr r

g r a

 


  
 

Once again we let the solution be 

 2
sin ,   0                                                                               4.2.2

b c
g k r r

r r


 
     

  
 

At the interface, ,  0r a g   gives 

2
sin 0

b c
k a

a a


 
   

 
 

Hence we have 
3 0a ab c    

Which gives  

 
 

3

                                                                                               4.2.3
a c

b
a

 
  

Therefore 

 

3

2

2

2

sin

1 1
  sin                                                                                   4.2.4

a c c
g k r

ar r

a
k r c

r r ar





 
   

 

  
     

  

 

From (4.2.4) we obtain ,  ,   r rrg g and g  as  

 
2

2 3 2

2

3 4 3

2 1
1 sin                                                                                      4.2.5

2 6 2
sin                                      

r

rr

a
g k c

r r ar

a
g k c

r r ar





  
     

  

  
    

  
 

2

2

2

2

                                                   4.2.6

1 1
cos  

1 1
sin                                                                          

a
g k r c

r r ar

a
g k r c

r r ar









  
     

  

  
      

  
           4.2.7

 

1x  

D
 

2x
 

a
 



Chibueze EB et al                                   Journal of Scientific and Engineering Research, 2020, 7(12):127-142 

 

Journal of Scientific and Engineering Research 

141 

 

Substituting (4.25-4.27) into (3.43) we obtain  
2

3 4 3 2 3 2

2

2 2

2 2 2

3 3 3 4 4 4 3 3 3

4

2 6 2 2 1
sin 1 sin

1 1
                       sin  0

2 6 2 2

3
     

a k a
k c c

r r ar r r r ar

k a
r c

r r r ar

k k ka ka ka kc kc kc kc kc kc

r r r r r r r r ar ar ar

kc

r

 



       
           

     

  
      

  

          

                                                                                                                                   4.2.8

(4.2.8) gives the error. Minimizing again in the sobolev space we see from previous analysis that 0c  for 

minimum error. Consequently we have  

 2                                                                                                                    4.2.9b a 

So that  

 
2

sin                                                                                                                    4.2.10
a

g k r
r


 

  
 

 

as the displacement and  

 
2

2

2

1 sin                                                                                              4.2.11

cos                                                          

rz

z

a
k

r

k a
r

r r


  


 

 
  

 

 
  

 
 

 
2 4 2 2

2

4 2

                                 4.2.12

2
1 cos 2                                                                    4.2.13zz

k a k a
k

r r
  

 
    

 
are the stresses. 

 

5. Conclusion  

In paper, we have used the asymptotic method to simplify the analysis of a Neo-Hookean half-space deforming 

under anti-plane share loading. Two major problems were solved. The first is a half plane containing a central 

circular cavity and the second is the same half space with the circular hole filled with some inclusion in such a 

manner that there is no differential movement between the solid inclusion and the original material. In either 

case the exact deformation functions and stress functions were got. For the first case these are given in equations 

(4.1.24) through (4.1.27) and for the second case they are given in equations (4.2.10) through (4.2.13). It is easy 

to see the superiority of this method over the method of separation of variables and other methods. 

Here, one can easily determine the exact displacement and stresses at every plane section of the material by 

mere substitutions of the coordinates of points desired. The method, however, has assumed that the dimensions 

of the material are very large in comparison with the dimension of the hole. Consequently, the end effect 

including shape are neglected. The process also permits the use of any fibre to fill the central cavity since the 

only requirement is that the interface should be strongly bonded. We must note here that the homogeneity 

property of the material permit the analysis to be done at every cross section of the solid. Consequently, this 

finds its application in the construction industries where metal sheets are needed. The commonest are failure 

resulting from fixing of bolt connecting metal sheets to columns beams or other frames. The minimization of the 

error in the sobolev norm is advantageous since it controls both the functions and its rate of change. 
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From the solutions, we see that the maximum stress for the solid with a central cavity occurs when 0   while 

it occurs when 
2


  , when the cavity is filled. These therefore, suggest points of possible development of 

cracks.  The observations above show that the result can be applied to the analysis of problem of crack and crack 

extensions.  
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