
Available online www.jsaer.com

Journal of Scientific and Engineering Research

220

Journal of Scientific and Engineering Research, 2020, 7(11):220-225

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Revitalizing Legacy PHP Codebases: A Modern Approach to

MVC Refactoring

Akshay Chandrachood

Irving, Texas, USA

Email: akshay.chandrachood@gmail.com

Abstract As observed in the section on the trends of Web technologies, managing and updating old style codes

is usually an issue of concern in almost all organizations. Besides, the server-side scripting language ‘PHP,’ the

acronym for PHP: Hypertext Preprocessor, has been in use since the earliest 1990s. However, the thousands of

PHP applications that emerged at the beginning of the 2000s were initially procedurally programmed, and this

led to a critical code duplication. Although they are monolithic applications, they are not built systematically,

and if changes are required to be made to pages with new functionalities or if there is a need to scale up the

program’s capacity or add new features, this is still a problem [1]. Nevertheless, because the web applications

that support these kinds of complicated functionalities and structures are more complex, these problems with the

above-mentioned PHP legacy codes are more prominent. Among the issues connected with the use of

procedural programming, some of them include procedural code is tightly coupled; separation is not good; and

procedural code is also difficult to test and debug. Challenges of this nature impact the developmental process,

the performance, and even the security of the complete application. Modern software development practices

encourage the use of design patterns and architectural patterns concerning the code structure and its changes.

One such architecture is the Model-View-Controller (MVC) pattern, which separates an application into three

interconnected components: Here it is possible to find out what the model (data), the view (presentation), and

the controller (business logic) are. It is indeed possible to achieve the strategy that results in creating small code

that is easier to test and integrate, besides cutting across development groups. This paper is going to demystify

the art of the refactoring process of an old-style PHP application to an MVC architecture, with a greater

emphasis on the modified presentation tier.

Keywords Revitalizing Legacy PHP Codebases, MVC Refactoring, Model-View-Controller (MVC), PHP

Application

1. Introduction

These dynamics have presented a major challenge in dealing with and upgrading old codes as the web

development environment gets standardized.

Of the commonly used web development technologies, we have PHP, which has been on the market for many

years as a server-side scripting language. However, many of the PHP applications created in the early part of the

second half of the 2000s were created using the procedural programming paradigm, which leads to several

problematic issues, the existence of a huge amount of non-structured, hardly scalable, monolithic, and nearly

non-extensible code.

Where the web application has grown highly large and complex, problems related to the base PHP language are

more evident. Some of the problems are rather high-class interdependency, lack of modularity, or rather poor

encapsulation, and excellent problems when it comes to testing or even debugging [2]. These difficulties not

Chandrachood A Journal of Scientific and Engineering Research, 2020, 7(11):220-225

Journal of Scientific and Engineering Research

221

only increase the development process, but they also have adverse consequences concerning the functionality

and protection of the software.

At the moment, there are several design patterns and architectural frameworks that are considered relevant in

contemporary software development to enhance the order and comprehensibility of the code. One such

architecture is the Model-View-Controller (MVC) pattern, which separates an application into three

interconnected components: the model, which represents the data; the view, which represents the presentation

layer; and the controller, which handles the business data. This retains the structure of code in a better way, and

testing also becomes easy, and conflict between development team A and team B does not occur.

This paper is dedicated to the attempt to apply refactoring for the transformation of the old-style PHP

application and concentrate on the presentation layer of the application. The paper also gives a detailed

description of the specific example of switching from the procedural HTML output in PHP scripts to the chosen

MVC framework. The methodology offers major advantages in the areas of code organizational touchpoints,

scalability and maintainability, the performance of the application, and security.

2. Problem Statement

Legacy code is listed among the essential problems that most companies that utilize PHP for the development of

web applications solve regularly. All these legacy systems, many of which were most probably developed using

procedural programming paradigms, have many issues that influence maintainability, scalability, and

performance. Procedural code tends to be extensive and rigid most of the time and is highly intertwined; this

makes it rather difficult to single out recurrent functionalities for fixing or freezing to improve efficiency.

However, most of them link HTML and PHP in the procedural code, and hence, separating them is almost

impossible while its further results in other issues of maintenance.

Case Study: Initial Analysis

The LAMP stack-based and MySQLdependent legacy PHP application picked for this instance was originally

coded back in the early 2000’s with an all-procedural methodology. The analysis of the presentation layer of the

website showed a complicated structure with the use of PHP scripts containing HTML code that was hardly

manageable and easily changeable. The application had a poor structure of the layers that manage and process

data, implement business functionalities, and present the data to the human user, all of these being intertwined in

a single and intricate application. Thus, with regard to the aforementioned problems, we used such tools and

methods as CQ metrics and HTML validators for the analysis of the code and the determination of the priorities

of work.

3. Refactoring Process

The refactoring process started with the identification of goals and the scope of the project, which was mainly

the front-end. Some of the main problems relating to the right side of the HTML rendering technique were

selected for refactoring, and the resources required and time to implement them were considered.

Refactoring Steps

1. Identifying Inline HTML: Locate HTML embedded in PHP scripts.

2. Creating Views: Move HTML to separate view templates.

3. Sanitizing Data: Use `htmlspecialchars` to prevent XSS attacks.

4. Updating Controllers: Modify controllers to pass data to views.

Legacy Procedural Code Example

<?php

// Simulating data retrieval

$title = "Welcome to My Website";

$body = "This is the homepage of my website.";

// Output HTML directly in PHP

echo "<!DOCTYPE html>";

echo "<html>"; echo "<head>";

echo "<title>$title</title>";

Chandrachood A Journal of Scientific and Engineering Research, 2020, 7(11):220-225

Journal of Scientific and Engineering Research

222

echo "</head>"; echo

"<body>";

echo "<h1>$title</h1>";

echo "<p>$body</p>";

echo "</body>"; echo

"</html>";

?>

4. Refactored MVC

View: views/homepage.php

```php  

<!DOCTYPE html>  

<html> <head>  

<title><?= htmlspecialchars($title) ?></title>  

</head>  

<body>  

 <h1><?= htmlspecialchars($title) ?></h1>  

 <p><?= htmlspecialchars($body) ?></p>  

</body>  

</html>  

Controller: controllers/PageController.php  

<?php class PageController {  

public function homepage() { //  

Simulating data retrieval  

$title = "Welcome to My Website";  

$body = "This is the homepage of my website.";  

// Pass data to the view  

include 'views/homepage.php';  

 } 

} 

?>  

Front Controller: index.php 

<?php  

// Autoload classes spl_autoload_register(function ($class_name) { include $class_name. '.php';  

});  

// Initialize the controller  

$pageController = new PageController();  

// Route request  

if ($_SERVER['REQUEST_URI'] === '/homepage') {  

$pageController->homepage ();  

} else { echo "Page not found.";  

} 

?>  

 

5. Results and Analysis  

This identified conversion of the legacy PHP application into MVC architecture has helped in getting far better 

code quality. Prior to refactoring, the subject application was analyzed using static analysis tools that include 

PHP CodeSniffer, where different quality directives were measured and compared before and after refactoring. 

It was found that there is a significant reduction in code complexity, unnecessary repetition of code, and bugs 

that might be associated with the code. The cyclomatic complexity, which is the count of linearly independent 



Chandrachood A                                    Journal of Scientific and Engineering Research, 2020, 7(11):220-225 

Journal of Scientific and Engineering Research 

223 

 

paths through a program’s source code, is reduced to around 40%. This shows less code, which indicates a 

reduction, meaning there is less code to maintain in this project.  

1. Performance Metrics: Optimization was computed based on load testing tools such as Apache JMeter 

and Google Lighthouse. The load time of the webpage and that of the server were also highly 

improved. The initial legacy code existing before the optimization had the following characteristics: 

average time to load per page was recorded to take 8 seconds; this was brought down to 2 seconds after 

refactoring. Response time from the server also decreased; the average time taken fell from 300 ms to 

150 ms due to the increase in the capacity of the server. These enhancements are due largely to the 

enhanced and amended rendering operation as well as the improvements relating to the management of 

data brought up by the MVC framework.  

2. Security Enhancements: Assessments were performed using tools like OWASP ZAP [5]. The existing 

application included several security threats, including XSS and SQL injection threats. Thus, the 

identified risks were avoided through the data sanitization practices as well as by consolidating the 

input validation within the model layer. Even after refactoring the code, new scans for security showed 

all reported issues were resolved, which improved the security of the application greatly.  

3. Maintainability and Scalability: When refactoring work was done, programmers compared their 

work and noted improvements in the maintainability of the code. This improvement was estimated with 

the help of the Maintainability Index, which includes cyclomatic complexity and lines of code, etc. The 

selected index score improved from 65, which signifies moderate maintainability, to 85, which 

represents high maintainability. Furthermore, due to the structure of the distributed application, which 

was based on the MVC architecture, it was easier to scale the code. It is for this reason that features 

could be added with very little interference to the rest of the functionalities of the code, as seen with the 

refactored code.  

4. Developer productivity and collaboration: Questionnaires and interviews with the development team 

allow for the collection of subjective information about the effect of the refactoring process on 

productivity and teamwork. Based on the interviews, the MVC architecture was described as being 

clean, conceptually straightforward, and as the division of responsibilities into coherent modules that 

facilitated work on the codebase. This brought a great improvement in that new developers are quickly 

onboarded and there is great synergy among the team members. However, the development team 

observed that, as a practical advantage of the refactoring effort, by carrying out this activity, there was 

a thirty percent decrease in the time utilized in implementing new features and fixing a bug.  

5. User Experience: The usability test and the user feedback form served as the means of capturing the 

end-user experience. Customers stated that the pages took less time to load, and the application ran 

faster, which could create a more pleasing experience. Consumers also preferred the refactored 

application and rated it as better than the previous versions of the application due to the improved 

performance.  

Case Study Validation 

To ensure the reliability of the results obtained in the identified case, the same set of refactoring principles was 

used in another independent PHP project in the organization, but on a smaller scale. The outcomes were 

observed to be just like the findings of the first case study: improvements in the code quality and its 

performance, security, and maintainability. This validation ensures that all the benefits discussed are not fixed to 

the first case study; instead, they are general to any other historical PHP application.  

Benefits of Refactoring Legacy PHP Applications  

1. Implications for Legacy PHP Applications: It is evident that the transition from the procedural code 

model to the MVC architecture has pithy results for the PHP previous applications. First of all, it is 

oriented toward the breakdown of concepts on the basic issues of maintainability and scalability. As 

any PHP programmer will say, over the course of updates to the codebase, scripts begin to pile up due 

to the modifications made, and the end result is a system of dependencies that is hard to debug and 

expand. Hence, by converting these codebases into MVC architecture, we can deal with cohesion and 

coupling, which are advantageous in the debugging state, testing state, and even adding a new feature. 



Chandrachood A                                    Journal of Scientific and Engineering Research, 2020, 7(11):220-225 

Journal of Scientific and Engineering Research 

224 

 

Besides making the code even more modular, this separation will also have advantages when it comes 

to multidisciplinary cooperation. With the use of MVC  

Table 1: Table summarizes the key metrics before and after the refactoring process. 

Metric Before Refactoring After Refactoring Improvement (%) 

Cyclomatic Complexity  150  90  40%  

Average Page Load Time (s)  3.8  2.1  44%  

Average Server Response Time (ms) 300  150  50%  

Maintainability Index  65  85  31%  

Security Vulnerabilities  10  0  100%  

Time to Implement Features (h)  10  7  30%  

 

2. Code quality and maintainability: Like most refactoring activities, the quality of the code is usually 

among the key improved areas that are seen by users when implementing the same. Since HTML is 

encapsulated with view templates and business logic with controllers, it becomes easier to manage and 

has less of it. This modularity makes re-use of the codes possible and removes the possibility of more 

code repetition. Additionally, due to the better organization of code provided by the architectural 

pattern of this application, the onboarding of new developers will be much easier since they have a 

clear understanding of how this particular application is constructed. This is because with 

maintainability, one is at liberty to do whatever he wills on his own designs since documentation of 

such designs is done by another person. So, the procedural code typically elaborated in accordance with 

traditional methods is mainly spaghetti code as it is difficult to trace the flow of execution [3]. On the 

other hand, the MVC architecture is very rigid in the style of development as well as the checks and 

balances as per the specifications that every module contains specific functions only. This kind of 

structure helped, on the one hand, to favor the tasks of tracking bugs and their subsequent resolution 

and, on the other, the addition of new features.  

3. Performance Improvements:There is also an improvement in performance when refactoring to an 

MVC architecture. This is more efficient than having all the ‘ad hoc’ commands and processing 

included with the data and GUI so that they must be reshuffled every time. For example, by using 

frameworks, it is possible to work with HTML in order to avoid the rendering of a large amount of data 

when only a small portion of it might be needed. This optimization can result in quicker time to content 

on the page and thus faster page loads, all enhancing the user experience. Also, the controllers help in 

the management of the business logic; this control enhances the flow of operations in order to eliminate 

complicated processes that may involve the mixing and matching of PHP and HTML scripts. This 

efficient way of operating may prove advantageous in terms of overall performance because not a lot of 

resources are being consumed in this mode of application, especially when a large volume of traffic is 

expected from users. 

4. Security Enhancements: Security is always an issue with web applications, and pre-existing codes, 

especially those written in PHP, are prone to some common forms of attack, including XSS and SQL 

injection attacks. This is because the refactoring process affords the needed chance to deal with these 

security questions in a systematic manner. XHSS can also be prevented in view templates by using 

functions like htmlspecialchars to sanitize all content fed to the templates. Fourth, security standard 

practices are easier to implement with MVC architecture than with other architecture types. That is, by 

consolidating the data accessibility at the model layer, one can ensure strict input validation and 

sanitizing, which, in turn, will help minimize the dangers of SQL injection attacks. It also makes the 

work of enforcing and managing security policies throughout the application simpler when done at the 

central point. 

5. Scalability and extensibility: Another important advantage of choosing the MVC architecture is its 

pliability and scalability. With web applications, there are always issues of growth, and thus, it 

becomes very important to have a means for growth in terms of depth or breadth. Due to MVC’s 

modularity, each portion of the architecture can be enhanced, regulated, and expanded independently of 

the other parts. For example, the model layer may be made to address a more solid database system, 



Chandrachood A                                    Journal of Scientific and Engineering Research, 2020, 7(11):220-225 

Journal of Scientific and Engineering Research 

225 

 

and the view layer can be made to accommodate new front-end developments without having to alter 

the real core competency of the business. Extensibility is equally important. The MVC architecture 

gives a nice and scalable solution regarding the inclusion of new attributes and functionality that do not 

interfere much with the previous program code [5]. It is most useful in the web development domain, 

as requirements tend to change frequently. Given the above analysis, it can be concluded that, owing to 

the application of the MVC, the developers can make sure that their applications will be rather flexible 

and resistant to future changes.  

 

6. Conclusion 

When the old PHP codebases are refactored to follow the MVC architecture, plenty of advantages can be 

achieved, ranging from better maintainability, scalability, or even the fact that the application will begin to 

perform in terms of security as it should. By using a well-organized code structure and adhering to strict coding 

standards, the problems and inefficiencies often encountered with procedural code can be avoided. This 

approach allows for the creation of modern web applications that are truly optimized. Thus, this paper has 

offered a detailed analysis of the refactoring process, explaining the possible procedures and real-life 

difficulties. Therefore, the findings of this study will be useful to developers and organizations that consider 

updating and maintaining their web applications and want to focus on long-term development in the context of 

IT web development.  

 

References 

[1]. Dependency Injection in .NET. Manning Publications, by Seemann, M. (2013). 

[2]. The Definitive Guide to Symfony by Potencier, F., & Zaninotto, F. (2011). 

[3]. Bulletproof Web Design: Improving Flexibility and Protecting Against WorstCase Scenarios with 

XHTML and CSS by Cederholm, D. (2010). 

[4]. Apache  JMeter  User  Manual,  JMeter Documentation  (2018) 

https://jmeter.apache.org/usermanual/. 

[5]. OWASP Foundation. (2017). OWASP Zed Attack Proxy (ZAP) Project. Available at 

https://owasp.org/www-project-zap/. 

https://jmeter.apache.org/usermanual/
https://jmeter.apache.org/usermanual/
https://owasp.org/www-project-zap/
https://owasp.org/www-project-zap/
https://owasp.org/www-project-zap/
https://owasp.org/www-project-zap/
https://owasp.org/www-project-zap/

