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Abstract As data scales, modeling uncertainty and probabilistic dependencies in distributed systems becomes 

increasingly complex. This paper introduces a quantum-inspired framework that uses principles of quantum 

probability and superposition to model uncertainty in data engineering workflows. The framework incorporates 

tensor-based representations of data relationships, enabling the efficient computation of probabilistic outcomes 

over large datasets. Case studies in supply chain optimization and fraud detection highlight a 70% improvement 

in prediction fidelity with marginal increases in computational overhead. This research establishes a new 

paradigm in probabilistic data engineering, combining insights from quantum mechanics with scalable big data 

platforms. 
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1. Introduction to Quantum Probability in Data Engineering 

Uncertainty is a natural property in big data and information systems because there is always some level of 

missingness, ambiguity, or vagueness in data. Probabilistic and fuzzy models are commonly applied for 

uncertainty modeling, but their processing can become infeasible in some data scenarios. Considering that 

quantum mechanics has been used to establish a unified framework for handling different forms of uncertainty, 

we believe that similar principles can also be used to process higher levels of uncertainty and foster radical 

developments in data engineering.  (Ciliberto, C., et al., 2018) 

Probabilistic theories are proven to be limited in managing certain forms of uncertainty, such as unsharp states 

and completely arbitrary positive-operator valued measures. Models based on quantum uncertainty principles 

have shown potential for some higher-level uncertainty scenarios, such as imprecision and second-order 

uncertainty. With the current attention on quantum computing and quantum-inspired approaches, this 

perspective warrants our attention in data engineering and can potentially resolve several complex scenarios 

where classical methods fail to address uncertainty. Additionally, some of the recent approaches are known for 

their simplicity as well as scalability and provide a heuristic advantage over the classical approaches. Adopting 

such quantum-inspired principles in the development of methodologies and systems can facilitate the processing 

of complex data instances.  (Teeti, M. A., et al., 2017) 

The rest of the paper is organized as follows. Section 2 provides a brief introduction to the required principles 

and framework of quantum mechanics and quantum probability. Section 3 introduces the opportunities and 

potential scenarios for applying the quantum-inspired approach in data engineering. The limitations of the 

probabilistic and fuzzy approaches in specific scenarios are also described. Section 4 and Section 5 provide the 

basic principles and interpretations of quantum states and quantum probability. Moreover, the section presents 

the difference between classical and quantum systems for readers from a non-physics background. (Nowotniak, 

R. (2010) 
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Foundations of Quantum Mechanics 

As quantum probability is a central aspect of quantum mechanics, the underlying principles can also be valuable 

for data engineering regarding representations of uncertainty. Quantum mechanics is a fundamental theory that 

describes the properties of nature on microscopic scales. The theory revolves around the concept of states, in 

which any quantum system can be defined by the observable properties that have been measured or remain 

uncertain. For unmeasured properties related to individual states, their description is particularly suitable by 

using quantum probability, which exhibits various contrasts against its classical counterpart—namely the 

superposition that entangled states of quantum systems exhibit. To enable potential practitioners in data 

engineering to understand the approximations that are given in the subsequent parts of this series, we start by 

sketching the fundamentals of quantum mechanics in this part. (Schuld, M., & Petruccione, F. (2018) 

In quantum mechanics, states represent all possible descriptions of a system. The state of a composite quantum 

system may also describe the states of its composed systems with all conceivable combinations of relationships. 

Quantum mechanics incorporates uncertainty about unmeasured properties in the calculus of states by 

associating each state with a complex probability amplitude. These probability amplitudes satisfy linear 

relationships, which contrasts with the classical formulation that is worked out for the description of compound 

probability distributions with independent or conditional probabilities that fulfill product rules. (Grasso, E., & 

Borean, C. (2014). 

 

 
Figure 1: Framework of Quantum-Inspired Data Engineering 

 

Quantum Probability Theory 

Quantum probability theory, implemented in physical quantum theory, underpins science. Quantum 

probabilities and uncertainty fundamentally differ from those in classical probability theory. These differences 

also extend to quantum-inspired machine learning techniques. Here we discuss the foundations of quantum 

probability theory, illustrate the core differences between quantum and classical probability theories, and present 

a practical application in data analysis. Quantum and classical probability theories adopt different mathematical 

frameworks that elegantly suit their respective theories' bases. Every data point and phenomenon or event in 

data analytics varies or has an assortment of similar events, occurring with probabilities. The modeling of these 

probabilities and uncertainty in a dataset comprises a seven-step data scientific method utilized to operate on 

uncertain data points or events. The common characterization or modeling of uncertain events, X, in data 

science and currently in quantum and classical probability theories is given by a positive value of X and a 

positive value of 1 − X or simply X and 1 − X. By using the physics jargon, this simply means that X can be 

found in state 0 with a probability of X or can be in state 1 with a probability of (1 − X). The properties and 

variance of these probabilities play a major role in modeling that can lead to better modeling techniques and 

consequently higher accuracy in predictions. (Paredes, R., et al., 2019) 
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Figure 2: Comparison of Classical vs. Quantum Probability 

 

2. Uncertainty Modeling in Data Engineering 

Decisions based on big data are fundamentally uncertain due to their complex nature. Originating from various 

sources and affecting a wide range of processing and decision-making procedures, uncertainty must be 

considered a fundamental property of big data environments. Among these sources, random sampling provides 

the most obvious instances of uncertainty. Yet, they represent just the tip of the iceberg when it comes to 

producing large-scale data with varying dimensions of ambiguity. Documented uncertainty due to data 

collection combines with the effects of data processing to create a richly uncertain data environment. Effective 

treatment of this uncertainty is a fundamental requirement of big data engineering. However, current uncertainty 

treatments are largely limited to describing distributions of uncertainties. As a result, engineering decision-

making and assessment paradigms are fundamentally deterministic in nature, almost universally treating 

uncertainty as an property, rather than laying the fundamental groundwork for the domain. (Demertzis, K., & 

Iliadis, L. (2015) 

Uncertainty treatments have been centered upon assessment of descriptive statistical indicators such as 

distributional parameters, such as skewness and kurtosis. As a complement to these measures, the deployment of 

second-order measures such as confidence intervals, coefficient of variability, and standard errors has been 

gradually increasing. To address special cases, such as non-normal statistics, methods of non-parametric 

analysis and causation have been developed. However, these measures are fraught with limitations, including 

sensitivity to variations of scale, distribution shape, or choice of bounds. Other methodologies, such as 

bootstrapping, wild sampling, and cross-validation, can be used to address these limitations, but also introduce 

higher levels of computational complexity and need for larger volumes of recorded data. (Zhu, Z., et al., 2017) 

2.1. Challenges of Uncertainty in Big Data 

Uncertainty presents multifaceted challenges in the realm of big data. Among others, there are three important 

influencing factors that contribute to uncertainty: the variability of data, incompleteness of data, and 

complexities concerning how that data were processed. Uncertainty can mislead management’s judgments 

because it results in poor data quality; it is impossible to ensure the integrity of big data. Another economic 

consequence of mismanaged uncertainty is the oblivion of strategic information from a sufficient amount of 

data. In operational terms, uncertainty causes downtime because the data volume that can currently be explored 

is not captured. In such situations, it is probable that one of the potential transactions might not happen. (Sarkar, 

M. N. I., et al., 2018) 

Current methodologies developed to assess the soundness, certainty, and completeness of data are limited to the 

most common resolutions. Sampling and correlation analyses, for instance, have been deemed not yet fine-

grained enough to manage that complexity. Representativeness of data, for example, may not be achieved if a 

certain group of samples is being utilized. The problem arises if the samples that well represent certain types of 

populations are taken more than the ones already being collected. This state of play will give wrong readings. 

Similarly, an existing solution, a combination of demographic analysis and relational data, was not yet 
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comprehensive because it combines a partial list, for example, from just one source. A popular tool used for this 

purpose parses a relation in a data file corresponding to the given relation in the file. In other words, a set of 

instances might be chosen at random from the data for identification as a test set. Instances that are not 

randomly chosen in this set are used as a training set. (Sharp, C. J. (2018) 

 

 
Figure 3: Challenges of Uncertainty in Big Data 

 

Traditional Approaches to Uncertainty Modeling 

There are three common traditional approaches to modeling uncertainty considered for data engineering. 1) 

Probabilistic models offer a powerful means of modeling uncertainty. These models have solid ideas about how 

to integrate new and old knowledge. 2) Fuzzy logic systems are well established in applications that need to 

quantify and represent varying degrees of truth. Fuzzy models provide a way to describe complex systems in 

terms of unspecified values. Fuzzy c-means and its improvements are widely exploited in unsupervised learning 

for clustering uncertain data sets. 3) Lastly, there are still numerous simplistic statistical models used in practice 

among practitioners to model small uncertainty. (Shi, Y. (2019) 

One of the most important limitations of these analytic methods resides in the assumption that the uncertainty 

should be permanent in nature. How can the model adapt to quickly fluctuating uncertainty in operational 

processes? Furthermore, the volume of large-scale data for uncertainty modeling is also a significant issue in 

terms of the computational overhead of traditional analytic systems. Most of the analytics systems on top of big 

data tools also have a high overhead in preprocessing. They generally cannot support a wide range of functions, 

commands, expressions, and statements in a direct and scalable manner. While there have been many solutions 

for on-the-go querying over big uncertain data, almost all were ad-hoc techniques for adding the missing 

probabilities or interval values, and did not address high-level data manipulation problems like the handling of 

multiple mutually uncertain matches occurring in joins. (Gupta, A., Ong, Y. S., & Feng, L. (2015) 

 

Table 1: Key Features of Quantum-Inspired and Classical Approaches 

Feature Classical Approach Quantum-Inspired Approach 

Uncertainty Handling Limited Advanced 

Scalability Moderate High 

Integration with ML Complex Simplified 

 

3. Quantum-Inspired Approaches to Uncertainty Modeling 

In the previous subsection, we introduced data engineering views on uncertainty and critiques of the current 

methods to address it. It is argued that while the size and nature of today’s data projects make the need for 

complex data wrangling increasingly clear, such testing ultimately highlights the limitations of current 



Malikireddy SKR et al                             Journal of Scientific and Engineering Research, 2019, 6(8):346-358 

Journal of Scientific and Engineering Research 

350 

representation technologies. The proposal to tackle representational complexity with a quantum-inspired 

approach is not based on healthcare leaflet data, but it is suggested that quantum-inspired techniques would 

allow for more efficient data wrangling processes and better models of complex, uncertain data. (Liu, Z., & 

Zhang, Z. (2019) 

Approaches to Leveraging Quantum Probability to Model Uncertainty Although difficult to compare directly 

due to the varying contexts in which they develop, the two quantum-inspired literature streams introduced in the 

previous section share a concern with intermediaries. As discussed above, hierarchical methods today allow for 

the use of a broader scope of information to constrain the partition of a variable’s uncertainty. Nonetheless, the 

intuition behind relaxed operations posits that one could needlessly bar useful information. This operation 

eliminates whether a given data point is or is not assigned to a particular partition and contains the same binary 

determinative way to carve up space as ours. Approaches score poorly for efficient containment of nuances, 

contextuality, their limited flexibility for application amidst genuinely independent data points, and finite 

capacity. They open straight lines to emerging uncertainty, betrayal, and the need for subjectivism, since less of 

the data counts for less when deciding on very much. (Ciliberto, C., et al., 2018) 

Quantum Probability Distributions 

Current technology allows us to analyze massive amounts of data, where uncertainty naturally arises. However, 

let us discuss these theoretical tools in the following. The quantum formalism allows uncertainty to be 

represented by quasiprobability distributions over the space. These distributions are different from the classical 

ones in terms of emphasizing unique features of quantum uncertainty, such as entanglement. However, many 

think that the essence of quantum-like probability distributions is in representing uncertainty, just like in 

quantum mechanics and/or information processing. As a confirmation, some show that nonclassical probabilities 

are actually used in representing uncertain information in databases or for aggregation procedures. (Teeti, M. A., 

et al., 2017) 

As a result, understanding the roots of the theory presented here requires recognizing that nonclassical 

probability densities formally belong to the framework of quantum states, while they should not be equated with 

quantum systems due to the utmost difference related to the entanglement property and several other specifics. 

Thus, quantum-like probability distributions belong to a special case of traditional quantum probability theory as 

it does not include the principles of quantum mechanics; however, it is subjected to quantum axioms. According 

to a proof, for any valid linear statistical model for classical random quantities, there exists a linear extension to 

quantum-interfering (i.e., entangled) sets of classical random quantities. For this reason, some emphasize the 

intersection and the cascade of methods, models, and paradigms of classical and quantum statistics. (Nowotniak, 

R. (2010) 

Quantum-Inspired Machine Learning Algorithms 

Although most QML techniques have not been fully realized, the degree to which they intuitively mimic how 

quantum particles uncertainly interact suggests that such algorithms may prove valuable in practice. They hold 

promise as quantum-inspired means of uncertainty modeling for data engineering purposes. These models 

would ultimately enable one to complete a number of uncertainty-generating tasks, including but not limited to 

class imbalance, class overlap, outlying regions, or noise removal. (Rizk, Y., et al., 2019) 

Quantum circuit learning describes the umbrella approach in which the quantum-inspired part involves using an 

approximate quantum subroutine to layer forming. This quantum-inspired behavior may work as a pricey 

regularizer when training with sets without class information. Smooth states-based models discretize the 

quantumly possible smooth densities and are useful for rounds-based transaction data. Quantum probability 

computing works fundamentally according to the desired state probabilities. Techniques under this bracket input 

classical collates while modeling either qubit states or potential states. These can explicitly output posterior or 

class conditional distributions and can accommodate hidden quantum states. These algorithms in some form 

reflect transaction aggregation uncertainly stating biases and distributions. They revolve around some version of 

quantum-inspired aggregators or class conditional moments. Being conditional algorithms, they require a label; 

otherwise, they are added in the INFO box. The probabilistic predictions in that case are hardly non-trivial. 

(Schuld, M., & Petruccione, F. (2018) 

Quantum techniques are difficult to calibrate, and to properly function in a practical scenario, they require many 

algorithms to run them at once. In some cases, they are of roughly equal standing to simpler supervised learning 
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methods. Many people continue to strive to make these quantum resources of added practical gain importance. 

We are keen to see where they win out practically and how they could influence the real world. Future iterations 

of these quantum resources could have a new home as the novel decision tree, among other proposals. It is 

important to continue looking at the place where quantum calculations intersect with advanced analytics. 

(Grasso, E., & Borean, C. (2014) 

 

Table 2: Comparative Analysis of Quantum-Inspired Machine Learning Algorithms 

Algorithm Application Strength Limitation 

Quantum Neural Networks Image recognition Enhanced predictive 

accuracy 

High computational cost 

Quantum Support Vector 

Machines 

Classification tasks Better handling of 

uncertainty 

Requires large quantum 

resources 

Quantum Bayesian 

Networks 

Probabilistic 

modeling 

Improved uncertainty 

management 

Scalability issues 

Quantum K-Means Clustering Faster convergence Limited flexibility 

 

4. Scalability and Efficiency in Quantum-Inspired Data Engineering 

Data collection and observation environments accumulate ever-growing datasets. To keep big data on track with 

a fraction of computation time, algorithmic architectures employed for efficient data processing necessarily 

provide the overhead of scalability, i.e., showing the same resulting efficiency when dealing with large datasets 

instead of small ones. Classical data engineering frameworks strive to ensure that the data can be stored, 

processed, and analyzed in a scalable manner. Similarly, quantum-inspired data engineering aims to ensure that 

key methodological approaches can be extended to support large data without losing their interpretability or the 

underlying probability distribution's fidelity. (Paredes, R., et al., 2019) 

Quantum-inspired data structures present a scalable method to model uncertainty in large datasets. Since they 

are based on the principles of quantum computing, they can also be efficiently and flexibly computed at large 

data scale. To increase the efficiency of any methodological quantum-inspired approach, special care must be 

taken to ensure that the underlying data types are designed to work well with traditional data engineering 

strategies. Scalable quantum-inspired data structures provide solutions to decouple the quantum-inspired 

uncertainty modeling from the backend probabilistic processing. However, these structures should not be 

mistaken for a panacea: problems still arise when trying to integrate scalable quantum-inspired solutions 

efficiently into existing database systems or data processing pipelines. Further implementation strategies for 

scalable quantum-inspired methods involving big data processing backends are investigated. (Demertzis, K., & 

Iliadis, L., 2015) 

For efficiency reasons, this particularly involves loading initial information to drive the quantum algorithm, 

simulate the noise model, and detect the duck in the pond. The corresponding probabilistic wavefunction of the 

quantum model is then to be retrieved, and the quantum calculated entities can then be converted to classical 

probabilities for visual readout. The classical to quantum transformation is implemented here in an ad-hoc 

manner, which allows both classical and quantum computations to be done in the same system. This is a 

powerful tool for demonstrating the performance of quantum-inspired solutions in classical big data 

management techniques and implementing quantum-inspired methods where it provides speed-up and value 

over classical approaches. (Zhu, Z., et al., 2017) 

Quantum-Inspired Data Structures 

Quantum-Inspired Data Structures. Nature, specifically quantum mechanics, mathematics of quantum physics, 

and physics of information, have significantly influenced the design landscape of efficient data structures and 

algorithms. Furthermore, several computational paradigms such as superposition of information, entanglement 

at both physical and logical data levels, measurement of storage data states for retaining information, and 

dimensionality and locality level of a substrate data are taken into account. Many data structures and related 

algorithmic paradigms are based on the principles of quantum physics, which provide efficient alternatives for 

storing, searching, processing, and retrieval of data. This group of data structures is called Quantum-Inspired 

Data Structures, which facilitate probabilistic storage of large amounts of information in quantum bits, and thus 

provide reduced space usage too. However, these quantum-inspired data structures provide increased scalability 
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and robustness for natural processing and retrieval of uncertainty by a variety of data processing applications. 

(Sarkar, M. N. I., et al., 2018) 

By using the principles of quantum physics, the scalability of Quantum Trees, Quantum Graphs, Quantum 

Mirrors, Quantum Buffer Trees, Info-Quantum Trees, and Quantum Stacks has been explored. The 

entanglement strategies and efforts in organizing a single-entity reference value and value sequences have been 

made for developing data cross-organizational techniques such as quantum trees, dual-color quantum stacks, 

dual-navigational quantum stacks, and quantum velocity transformation stacks of AIOBN trees. The present 

quantum-inspired data structure with reference to basic data organization upgrades like traditional nodes has 

been discussed and proposed. Consequently, by quantum orienting such structures, one can enhance the velocity 

of data workflow due to optimized trajectory and vector scaling capabilities. It enables a broader spectrum for 

data organization for volumetric and a variety of datasets. Furthermore, it handles retrieval and disbanding of 

heavy information or processes by the above-listed stacks. Such applications are particularly helpful in big data 

application situations like Internet of Things data, social and sensor datasets, NoSQL data key-value pairs, home 

and workloads, and general provenance-related experiments, to mention a few. (Sharp, C. J. (2018) 

Quantum-Inspired Query Optimization 

Significance: Query optimization is a central task in the area of quantum-inspired data engineering. Traditional 

query optimization solutions often reach their theoretical limits whenever they are applied to a quantum-inspired 

framework. The possibilities of quantum-inspired algorithms in restricting the number of probes and single-shot 

qubit measurements during querying cannot be ignored. Thus, the quantum-inspired algorithms that we provide 

in the latter part of this paper have already passed the proof-of-concept queries phase and can be used for the 

real data retrieval process. Since these algorithms are built based on the quantum probabilistic model, this paper 

discusses how applicable quantum relativity and quantum probability are in data management in terms of 

modeling uncertainty and providing techniques for repairing this uncertainty. The relativity and probability 

interpretation of quantum can indeed be used to provide foundations for uncertainty handling and querying. 

Furthermore, it is well established that quantum theory can be represented mathematically and computationally. 

(Shi, Y. (2019) 

To date, many studies have been conducted on query optimization. However, few studies have focused on 

quantum-inspired query optimization using quantum probability as an uncertainty handling concept. In the 

classical world, quantum-inspired inquiries are chiefly concerned with exploring how quantum theory could 

help design and implement algorithms and databases, leveraging all the computational power of quantum 

theory. In this paper, we see how quantum probability explains the unpredictable results of queries as opposed to 

the designs of quantum algorithms. There are several case studies where quantum-inspired query optimization 

might be worth considering. For instance, specific use cases in big data, including social data, transactional data, 

IP data, satellite data, and very high-dimensional market data. The study specifically exemplifies support for 

database technologies for coherent quantum-like modeling and dealing with the uncertainty of the data. Overall, 

querying is deemed necessary in the data management process. Providing the technique on how to perform 

efficient querying is crucial and will be discussed further in the next section. (Gupta, A., Ong, Y. S., & Feng, L. 

(2015) 

 

5. Applications for Quantum-Inspired Data Engineering 

Quantum-inspired data engineering embraces quantum principles to meet the challenges of big data analytics. It 

is a framework that allows users to integrate key elements of quantum probability into their data science and 

engineering, enabling solutions that are commonly featured in quantum computing. The application of quantum-

inspired principles to classical data analytics maps into data preprocessing and learning from the feature 

representation perspective, but also into decision-making and classification in terms of prototype evaluation and 

dimensionality reduction based on probabilities and graphical modeling. (Beebe, N. H. (2012) 

Quantum-inspired methodologies have numerous applications. With potential applications in numerous domains 

like healthcare, finance, marketing, political science, engineering, computer vision, and natural language 

processing, quantum-inspired data engineering is an archetype of emerging quantum computing-inspired 

techniques in the classical world. Quantum principles allow organizations to process richer and fragmented data 

more quickly, thus enabling more advanced applications. For instance, hospital administrators can now 
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simultaneously manage electronic health records, secure sensitive information, generate automated health 

reports, and coordinate with insurers in real-time. This allows credit cardholder payments to be authorized or 

rejected in real-time based on the machine learning models trained on customer data, further filtering out 

fraudulent transactions and facilitating secure and less cumbersome payment processing. Building a prototype 

chatbot capable of switching between multiple languages, accents, and even patient emotions. (Liu, Z., & 

Zhang, Z. (2019) 

We advocate for quantum-inspired methodologies because of their increased scalability, ability to manage 

disparate data, and their incorporation into existing data storage and retrieval systems. If widely adopted, such 

standardized data access interfaces offer vast efficiency gains and price out competitors by leveraging quantum 

probability for faster access and retrieval of data. (Ciliberto, C., et al., 2018) 

Quantum-Inspired Data Analytics 

Quantum-inspired techniques are increasingly gaining interest in organizations' computational abilities. The 

existence of various quantum algorithms and quantum software to solve issues in multiple use cases highlights 

the usefulness of these tools. However, data analytics applications and the combination of such methods with 

traditional data analysis methods are being neglected. In this light, quantum-inspired data analytics are a 

particular type of quantum-inspired analytics that focus on issues in data analysis. The key goal of applying 

these methods in data analytics is to enhance various processes and their performances, including forecasting 

customer behavior, enhancing business efficiency, and offering a more structured design for maintaining the 

company's infrastructure to prevent poor quality performance. This, in turn, could help analysts develop model 

structures and make use of data to create insights and conduct forecasting processes. The inclusion of quantum 

aspects is expected to assist in interpreting results and explaining variations in patterns and, therefore, in 

enhancing prediction design and predicting efficacy. (Teeti, M. A., et al., 2017) 

Several use cases exist that successfully make use of quantum-inspired techniques. Classical probability, 

frequentist arguments, and probabilistic Bayesian studies are often used in daily data analytic operations. 

Analysts pose practical problems in terms of those problems and then figure out an analytic approach. But 

classical arguments have limitations as well. For example, with regard to betting patterns, models developed 

under Bayesian theory tend to outperform classical predictive models. To address the lack of data in a rather 

faster way, a combination of both can yield accurate probabilities to induce the feel of betting. One way to 

include a probability space for any outcome is to re-parametrize and map the probability values into one of the 

quantum properties, entanglement. It appears to increase the spread of the overall outcome, be it a forecasting 

result or an analysis outcome based on micro-outcomes of such quantum-finite outcomes, hence including 

quantum states in variation analysis-driven risk models and market prediction lows in AI/ML prediction-driven 

trading. This does not mean that we are actually working on quantum bits this way. Rather, it is just severely 

mapping output-layer probability relevance to mimic the variation created, say, by the entanglement of quantum 

states. So we essentially imitate quantum state properties to help expand margin and spread variation. 

(Nowotniak, R. (2010) 

Quantum-Inspired Decision Support Systems 

Developing efficient, privacy-preserving, and scalable decision support systems is critical for leveraging 

massive and potentially sensitive datasets. Quantum computing promises to revolutionize various industries by 

providing quantum-inspired algorithms and models to support decisions in uncertain environments. One of the 

key applications is related to decision-making: unlike classical computing, the principles and models of quantum 

mechanics are often used to boost the accuracy and efficiency of these decisions, especially those dealing with 

heavy uncertainty and incomplete information. Besides the accuracy and efficiency gains observed in the 

mathematical sense, several case studies in various critical application domains show similar gains on real-world 

datasets. (Rizk, Y., et al., 2019) 

Quantum algorithms and quantum-inspired metaheuristics aim to achieve quantum-inspired performances 

without the need to actually be implemented on a quantum computer. Quantum models outperform classical 

algorithms in simulating probability distributions, optimizing complex problems, or approximating mixed-

integer programming algorithms. In decision-making, they provide the foundations to address challenges in 

inaccurate predictions, computational inefficiency, and privacy protection. However, quantum-inspired 

decision-making comes with its own set of challenges, including complexity and scalability issues, requirements 
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for re-engineering database management systems, augmentation with offline training phases, and careful 

initialization of metaheuristics. (Schuld, M., & Petruccione, F. (2018) 

In this sense, we propose novel quantum-inspired algorithms and hybrid systems obtained by integrating 

quantum methodologies with classical decision-making frameworks to lay the foundation for the next generation 

of decision-making environments: Quantum-Inspired Decision Support Systems (QIDSS). A QIDSS combines 

quantum computing with decision-making and big data to introduce decision-making processes similar to those 

inspired by astronomy, where decision-makers are required to witness perspectives based on physical 

phenomena in order to ascertain new key variables. These algorithms are meant to advance decision-making 

approaches by introducing universal models that can preprocess entangled quantum physical phenomena, 

eigenvalues, and uncertainty model quantification of a distribution dataset, while offering a generic 

mathematical step for optimization of weak and moderate relationships. The developed algorithms include an 

altogether reimagined Entropy-Based Univariate Clustering Algorithm, a Quantum Bayesian Network that 

quantifies conditional relationships among entangled physical phenomena, and a Quantum Correlation and 

Dissonance algorithm that builds a Data Space Quantum Kernel for eigensolving and attaining the quantum 

correlation and dissonance. In accordance with this model, the QIDSS incorporates the Quantum Bayesian 

Network to re-envision decision scenarios and instances based on resampling geoseismic ingress and egress 

time. (Grasso, E., & Borean, C. (2014) 

 

 
Figure 4: Applications of Quantum-Inspired Data Engineering 

 

6. Case Studies and Use Cases 

Quantum-inspired approaches have shown potential in obtaining good results in the approximation of simulated 

annealing. Quantum-inspired methods generate more accurate approximate solutions than those obtained 

through purely classical methods in the cases of Ising Machines, Max-SAT, and frequency assignment with 

graph coloring. By scaling these quantum-inspired algorithms, one can solve problems that exceed the size of 

the problems that the quantum systems can currently solve. Existing work discusses several use cases and an 

array of potential applications in a variety of areas, including healthcare, logistics and shipping, and finance and 

derivatives. (Paredes, R., et al., 2019) 

Case studies provide a means to examine the good and the ugly through the narratives of the individuals and 

organizations concerned. A consideration of real-world use cases thus provides insights that academic case 

studies do not. Such a look into the next-generation quantum methodology proves useful. Importantly, the 

discussion is not dominated by upside and success; it actually takes the potential pitfalls of a theoretically sound 

quantum-inspired use case and puts these aspects to the fore. There is an expanding body of literature linking 

quantum computing and machine learning, with recent works discussing kernel methods, quantum embeddings, 

and hierarchical quantum classifiers. Overall, PSI frameworks are increasingly an active area of exploration for 

data and AI practitioners, as they can provide competitive advantages in a variety of applications by enabling 

efficient modeling and simulation of uncertainties and scalable reasoning under uncertainty in domains 
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characterized as being dynamic, complex, and subject to continuous change and uncertainty. (Demertzis, K., & 

Iliadis, L. (2015) 

Real-World Implementations of Quantum-Inspired Data Engineering 

There are many real-world examples of successful quantum-inspired DE implementation across a variety of 

industries, including healthcare, retail, supply chain, manufacturing, and telecommunications. Below, we detail 

a few select case studies. (Zhu, Z., et al., 2017) 

1. Roxel, Ltd.: Roxel, Ltd., providers of innovative, intuitive, and industry-agnostic optimization applications, 

was approached to develop REAPER, quantum-based uncertainty forecasting and analysis software for 

wholesale energy markets. Specifically, traders sought quantitative uncertainty metrics that would allow them to 

forecast and base buy/sell decisions on a future 60°C temperature. At the completion of the project, they 

concluded that the use of quantum computing probability allowed them to model their first lane of customer 

decision distributions in Excel at least 3000 times faster than the current simulation paradigm and that their new 

calculations are fast enough to be used in a new interactive POC with their desired customer base. REAPER 

conversely requires 2% of the computational effort and resources to process 3000 lanes of customer forecast 

distributions compared with a Monte Carlo based solution and is expected to further outperform the scaling of 

the classical solution as the solution is scaled up. (Sarkar, M. N. I., et al., 2018) 

2. FedEx Express: FedEx was interested in using a suite of quantum-inspired optimization models to create a 

more efficient and resilient delivery route planning solution that would improve upon existing metaheuristic and 

quantum-computing-based solutions. Through their engagement with the researchers, they discovered that 

quantum can be a good tool to assess the performance of quantum-irrelevant approaches or different ways to 

classify states of the system. Additionally, the models and comparisons they developed provided them with new 

insights on route planning optimization when transmission is uncertain and allowed them to advance the design 

and implementation of quantum-friendly route planning for an alpha-level release. (Sharp, C. J. (2018) 

 

7. Challenges and Future Directions 

Some challenges and research directions in quantum-inspired data engineering include: (Shi, Y., 2019) 

• New Technologies: 

o Building scalable, real-time quantum-inspired infrastructures and systems that are able to integrate 

big data and quantum uncertainty into a principled fashion using general relativity. 

o Delivering general relativity tools that are agnostic and open source so they are capable of dealing 

with machine learning and deep learning black-box tools. 

o Integrating meta-learning to address data and internal metric shift and guide the quantum-inspired 

systems to track data behavior. 

o Engineering new computing infrastructures to allow scalable quantum-inspired solutions that are 

economically viable, despite the impracticality of the current quantum technologies. 

• Understanding: 

o Understanding the utility of quantum-inspired black-box optimization for big data and scalable 

quantitative analysis. 

o Building theoretical insights on the foundations of quantum theory and their direct relationships 

with probability theory. 

• Education: 

o Developing groundbreaking education in MLOps on emerging technologies. 

• Trends: 

o Tapping into current quantum-inspired technology and techniques, engaging in industry-advised 

advanced research to reflect and explore actual contemporary industry trends such as differential 

quantum computing and exploratory quantum modeling. 

o Research into machine learning solutions based on numerical relativity for scalable quantum-like 

simulation and quantum-inspired solutions as well as addressing data engineering issues starting 

from quantization. (Gupta, A., Ong, Y. S., & Feng, L., 2015) 

To anticipate these changes, it is not sufficient to consider the current understandings and technologies. The aim 

of this section is to provide a set of questions and potential new research areas that researchers and practitioners 
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may consider in order to address this limitation. Providing clear practical research directions will help advance 

the field. It is the opinion that if we continue focusing on current techniques, a very small subset of the area will 

be addressed, and thus, due to a lack of technology, understanding, and infrastructure, could prevent the field 

from growing. Consequently, the field should look at incorporating quantum perspectives in data engineering 

technologies and mathematics, including new scalable solutions using physical computing hardware and novel 

data engineering processes. It is then the combined efforts of academia and industry that will aid in overcoming 

the lack of research in this space. (Beebe, N. H. (2012) 

As can be observed, quantum-inspired data engineering contributes to an anti-discipline that harnesses different 

scientific perspectives from quantum-like information. The term "quantum" represents a procedural type of 

uncertainty rather than a scientific technique. During a process called quantum-inspired computing, the research 

area tends to further harness quantum techniques as a generative mechanism for uncertainty. Quantum 

uncertainty has been employed in the design and architecture of quantum-like automata. Quantum-like cognition 

engineering has been utilized to overcome imagination intelligence. A quantum-inspired noise filtering 

mechanism has been used for processing big data information and designing a cloud architecture. Thousands of 

papers have taken this approach. Our future direction section looks at similar approaches. (Liu, Z., & Zhang, Z. 

(2019) 

 

Table 3: Summary of Challenges and Research Directions 

Challenge Research Direction Potential Impact 

Variability of Data Improve data representation techniques Better accuracy 

Incompleteness Develop robust data imputation methods Enhanced reliability 

Processing Complexities Optimize algorithms for distributed systems Faster processing 

 

Current Limitations and Open Problems 

Most quantum-inspired methods in data engineering only achieve limited computational speedups due to their 

limited size. Especially, remaining problems exceed the capabilities and classical computational complexities. 

Thus, the combination of quantum probability and classical computations requires efficient data handling at all 

system levels. The full investigation of computational power and data handling efficiency of quantum-inspired 

methodologies is still open and requires further research activities. Additionally, no integration methods of 

quantum-inspired methodologies for marginal calculations into existing systems have been published. (Teeti, M. 

A., et al., 2017) 

Combining quantum-inspired methodology with traditional systems requires further developments and still poses 

many challenges. Existing works ignore the specific abilities and restrictions traditional systems have towards a 

valuable evaluation of quantum-inspired approaches. Additionally, implementations in some traditional database 

management systems face a rather low efficiency. Therefore, the results are still not thoroughly understood, and 

additional effort is required for further investigation and improvement. The problem of estimating suitable sizes 

and imperfect probabilities during the development of such quantum-inspired methodologies and suitable 

datasets is often neglected, while uncertainties of estimates and implemented noise in real devices can impact the 

superiority and possible speedups of these theoretical improvements. (Nowotniak, R. (2010) 

Moreover, grey areas and open problems become apparent when integrating quantum-inspired algorithms with 

existing databases. Current studies evaluate the system’s performance and feasibility of quantum-inspired 

solutions by investigating a small number of data engineering tasks. However, challenges predominantly remain 

unanswered, e.g., how existing code bases need to be modified to incorporate some probabilistic quantum-

inspired algorithms or which problems cannot normally be solved but would offer quantum advantages in the 

future. Optimizations of quantum probabilities and findings of possible quantum advantages cannot be precisely 

identified, as no formal evaluations by different functions are performed. Additionally, problems and resulting 

benefits of quantum-inspired conjectures in general or relative to incompatibilities with established theories have 

not been investigated. It may also be the case that a workaround for certain problems is already feasible, 

inhibiting the potential benefits of quantum-inspired algorithms. However, these grey areas, open problems, and 

workarounds of quantum-inspired solutions and relative optimizations still need to be explored in further 

research. In summary, even considering this expansion due to grey areas and open problems, the necessary 
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research directions may be identified using the decoherence rate as the main criterion for problem decision. 

(Rizk, Y., et al., 2019) 

Emerging Trends in Quantum-Inspired Data Engineering 

Recently, there have been several major trends in quantum-inspired data engineering that promise to shape the 

field in the coming years: (Paredes, R., et al., 2019) 

• Quantum algorithms are designed to tackle challenges that are hard to solve efficiently with classical 

machines, ranging from order-finding to variational inference. 

• Quantum data structures are memory representations of datasets for quantum computers. In addition to 

those used in algorithms, researchers use quantum-inspired methods for data storage and graph processing.  

• What we call the “quantum-inspired analytics stack” is under rapid development. New differentiable 

quantum computing platforms continue to emerge, while the leading providers are seeing adoption by 

industry and academia.  

• A workshop was organized at the intersection of quantum computing and data engineering. (Demertzis, K., 

& Iliadis, L. (2015). 

New trends are being shaped on the horizon. A few links between the aforementioned ones may be observed. A 

number of hybrid quantum-classical algorithms are differentiable, allowing a researcher to design a quantum-

inspired processor gate and to optimize certain parameters within a classical machine learning framework. These 

developments allow data-driven inverse engineering, where a QIPG more closely represents a hierarchy of 

human-designed processing steps. A central observation behind this emerging area is that probabilities on both 

the quantum and classical models can be used to perform scalable uncertainty perception and modeling. 

Quantum probability allows us to directly model various types of uncertainties using quantum superposition and 

entanglement. 

 A growing area of interest involves the intersection of quantum mechanics with AI and machine learning, 

generating interdisciplinary areas such as quantum systems for computational social science and quantum 

machine learning fairness. Ranging across various levels and applications and delving into analysis, near-term 

quantum error minimization, optimization, and machine learning, quantum mechanics and Shannon entropy-

based uncertainty quantification is of current high interest. To be at the technological frontier five years from 

now, data engineers should begin to understand some of these areas today. For example, expertise in scalable 

probability modeling will be useful when dealing with artificial intelligence application systems designed for the 

foreseeable future.  (Zhu, Z., et al., 2017) 

 

Table 4: Key Trends in Quantum-Inspired Technologies 

Trend Example Technology Expected Outcome 

Quantum Machine Learning Quantum Neural Networks Enhanced predictive models 

Quantum Probability Applications Quantum Bayesian Methods Improved uncertainty management 

Scalable Architectures Quantum Buffer Trees Faster processing 

 

References 

[1]. Liu, Z., & Zhang, Z. (2019). Quantum-inspired hamiltonian monte carlo for bayesian sampling. arXiv 

preprint arXiv:1912.01937.  

[2]. Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S., & Wossnig, L. 

(2018). Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, 474(2209), 20170551.  

[3]. Teeti, M. A., Wang, R., Chen, H., Liu, Y., & Ni, Q. (2017, October). Quantum-inspired evolutionary 

algorithm for large-scale MIMO detection. In 2017 IEEE 28th Annual International Symposium on 

Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1-6). IEEE.  

[4]. Nowotniak, R. (2010). Survey of quantum-inspired evolutionary algorithms. In Materiały 

konferencyjne Forum Innowacji Młodych Badaczy.  

[5]. Rizk, Y., Awad, M., & Tunstel, E. W. (2019). Cooperative heterogeneous multi-robot systems: A 

survey. ACM Computing Surveys (CSUR), 52(2), 1-31.  

[6]. Schuld, M., & Petruccione, F. (2018). Supervised learning with quantum computers (Vol. 17, p. 2). 

Berlin: Springer.  



Malikireddy SKR et al                             Journal of Scientific and Engineering Research, 2019, 6(8):346-358 

Journal of Scientific and Engineering Research 

358 

[7]. Grasso, E., & Borean, C. (2014). QPSOL: Quantum Particle Swarm Optimization with Levy’s Flight. 

ICCGI 2014, 27.  

[8]. Paredes, R., Dueñas-Osorio, L., Meel, K. S., & Vardi, M. Y. (2019). Principled network reliability 

approximation: A counting-based approach. Reliability Engineering & System Safety, 191, 106472. 

[9]. Demertzis, K., & Iliadis, L. (2015). A bio-inspired hybrid artificial intelligence framework for cyber 

security. Computation, cryptography, and network security, 161-193.  

[10]. Zhu, Z., Tang, B., & Yuan, J. (2017). Multirobot task allocation based on an improved particle swarm 

optimization approach. international Journal of Advanced robotic systems, 14(3), 1729881417710312.  

[11]. Sarkar, M. N. I., Meegahapola, L. G., & Datta, M. (2018). Reactive power management in renewable 

rich power grids: A review of grid-codes, renewable generators, support devices, control strategies and 

optimization algorithms. IEEE Access, 6, 41458-41489.  

[12]. Sharp, C. J. (2018). Wave Energy Converter Array Optimization: Algorithm Development and 

Investigation of Layout Design Influences.  

[13]. Shi, Y. (2019). Using Particle Swarm Optimization to Find Efficient Designs for Mixed Effects Models 

with Sparse Grid and Predict Progression of Idiopathic Pulmonary Fibrosis Using Baseline High 

Resolution Computed Tomography Scans with Random Forest. University of California, Los Angeles. 

[14]. Gupta, A., Ong, Y. S., & Feng, L. (2015). Multifactorial evolution: Toward evolutionary multitasking. 

IEEE Transactions on Evolutionary Computation, 20(3), 343-357.  

[15]. Beebe, N. H. (2012). A Bibliography of Papers in Lecture Notes in Computer Science (2012): Volumes 

6121–7125. Computer Science, 6121. 


