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Abstract In this paper, we introduce and investigate a unification of starlike and convex functions of order 

 0,1   in the unit disk in complex plane. We obtain upper bound estimate for the second Hankel 

determinant of the functions belonging to this class. Some consequences of the results obtained here are also 

discussed. 
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1. Introduction and Preliminaries 

Let   and A  be the class of analytic functions in U  normalized by 

(0) (0) 1 0f f    , in the form 

.                              (1.1) 

It is well-known that a function  is said to be univalent in U  if the following condition is satisfied:

1 2 1 2 if  ( ) ( )z z f z f z   or 1 2( ) ( )f z f z  if 1 2z z . We define by S  the subclass of A  which is also 

univalent.  

Some of the important subclasses of S  are 
*( ) and ( )S C  , respectively, starlike and convex functions of 

order 0  . By definition (see for details, [2, 4], also [12])     

* ( )
( ) :  Re ,   

( )

zf z
S f S z U

f z
 

  
     

  
                               (1.2) 

and  

( )
( ) :  Re 1 ,   

( )

zf z
C f S z U

f z
 

  
      

  
.                           (1.3) 

For 0   the subclasses 
* *(0)S S  and (0)  C C  are, respectively, well known starlike and convex 

functions in U . It is easy to verify that 
*C S S  . For details on these classes, one could refer to the 

monograph by Goodman [4].      

In 1976, Noonan and Thomas [10] defined the thq Hankel determinant of f  for  by  
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 , 1 1a  . 

For 2q   and  1n   Fekete and Szegö [3] considered the Hankel determinant of f  as 

1 2 2

2 1 3 2

2 3

 
(1)

 

a a
H a a a

a a
   . They made an earlier study for the estimates of  

2

3 2a a  when 1 1a   with 

real . The well-known result due to them states that if f A , then 

 

 

 

2

3 2

3 4                   if  ,0 ,

2
1 2exp   if  0,1 ,

1

4 3                  if  1, .

a a

 


 



 

   


 
     

 
   

 

Furthermore, Hummel [6, 7] obtained sharp estimates for 
2

3 2a a  when f  is a convex function and also 

Keogh and Merkes [8] obtained sharp estimates for 
2

3 2a a  when f  is a close-to-convex function, starlike 

and convex function in U .  

The second Hankel determinant 2 (2)H  is given by 
2

2 2 4 3(2)H a a a  . One of the important tools in the 

theory of analytic functions is the functional 
2

2 2 4 3(2)H a a a   which is known as the second Hankel 

determinant. The bounds for the second Hankel determinant obtained for the classes starlike and convex 

functions in [13].  

Motivated by the aforementioned works, we define a subclass of univalent functions S  as follows. 

Definition 1.1. A function f S  given by (1.1) is said to be in the class  M  ,  0,1 , 0    if the 

following condition is satisfied 

 
 

 

  
 

Re 1
zf zzf z

f z f z
  

  
   

 
 

, z U . 

Definition 1.2. A function f S  given by (1.1) is said to be in the class M  , if the following condition is 

satisfied 

 
 

 

  
 

Re 1 0
zf zzf z

f z f z
 

  
   

 
 

, z U . 

Remark 1.1. Choose 0   in Definition 1.1, we have function class    *

0M S  ,  0,1  . 

Remark 1.2. Choose 1   in Definition 1.1, we have function class    1M C  ,  0,1  . 

The main object of the present paper is to find upper bound estimates for the second Hankel determinant of the 

functions belonging to the class  M   and its special cases.  

To prove our main results, we shall need the following lemmas concerning functions with positive real part (see 

e. g. [1, 5, 9, 11]). 

We denote by  , the class of the functions p  analytic in U  with expansion series  
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1 n

n

n

p z p z




    

and satisfying  0 1p  ,  Re 0p z   for each z U     

Lemma 1.1. If p , then provided estimates 2,  1,2,3,...np n   . These estimates are sharp for the 

function  
1

1

z
p z

z





. 

Lemma 1.2. If the function p , then 

 
 

2

2 1

1,          0,2 ,
2max 1,  1 2

2 1 ,  elsewhere.
p p






 
    



  

Lemma 1.3. If the function p  and  0,1B ,  2 1B B D B   , then 

3

3 1 2 12 2p Bp p Dp   . 

 

2. Upper bound for the second Hankel determinant of the class  M   

In this section, we prove the following theorem on upper bound estimate for the second Hankel determinant of 

the function class  M  .  

Theorem 2.1. Let the function ( )f z  given by (1.1) be in the class  M  ,  0,1  , 0  .  Then, 

 

     

     
    

   
 

             

2

2

2 4 3 4 2

2

3 2

23

3 2 4 2 3

2

1

3 1 1 2 1 3

1 1 2 1 5
1 7 4 5 3 1 ,  0, ,

4 1 3 1

4 1 1 2 3 1 1 3 12 1 1 3 ,   ,1

a a a


  

  
     

 

       


 

  

    
       

      


        

 

for 0 4.9527  ,  where 
   

  

2

2

1 1 3
1

2 1 5 1 2

 


 

 
 

 
 and 

             

     

3 2 4 2 3 2

2

2 4 3 4 2

4 1 1 2 3 1 1 3 12 1 1 3 1

3 1 1 2 1 3
a a a

      

  

         
  

  
 

 

for each  0,1  and 4.9527  . 

Proof. Let  f M  ,   0,1  , 0  . Then,  

 
 

 

  
 

   1 1
zf zzf z

p z
f z f z

   


    


, z U ,                     (2.1) 

where p .    

By simple computation from (2.1) for the coefficients 2a , 3a  and 4a , we obtain 
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1

1
a p









,                                                                                  (2.2) 

 

  

   

2

2

3 2 12

1 3 11

2 1 2 2 1 1 2
a p p

 

  

 
 

  
,                                      (2.3) 

 

  

   

  

    

2

4 3 1 2

32

3

13

1 5 11

3 1 3 2 1 1 2 1 3

17 6 1 1
       .

6 1 1 2 1 3

a p p p

p

 

   

  

  

 
 

   

  


  

                         (2.4) 

From (2.2) – (2.4) for the second Hankel determinant 
2

2 4 3a a a  we can easily establish  

 
    

   

   

2 2

22 41 2
2 4 3 1 2 12 4 2

1 1 3
1

3 1 1 3 4 1 2 4 1 1 2

p p
a a a I I p

 


    

   
     

      

, 

where  

  

  

  

   

22 2

3

1 3 1 2 12 3

17 6 1 13 1 1 3

2 1 1 2 2 1 1 2
I p p p p

   

   

   
  

   
,

   

   
2

2 2 12

2 1 5 1 2 1

1 1 3
I p p

  

 

  
 

 
. 

 Thus, for 
2

2 4 3a a a  we can write the following inequality 

 
    

   

   

2 2

42 1 22

2 4 3 1 2 12 4 2

1 1 3
1

3 1 1 3 4 1 2 4 1 1 2

p p
a a a I I p

 


    

   
     

      

.  (2.5) 

Now we will use Lemma 1.3 to find a upper bound estimate for 1I .  

Let’s write the expression 1I  as follows: 

3

1 3 1 2 12I p Bp p Dp   , 

where  

   

  

2

2

3 1 3 1

4 1 1 2
B

 

 

 


 
 and 

  

   

22

3

17 6 1 1

2 1 1 2
D

  

 

  


 
. 

It is clear that 0B   for each  0,1   and 0  . Also, it can be easily shown that 1B   if 0  , 

where  

  

 

2

0 2

4 1 1 2
1

3 1 3

 




 
 


. 

Since 0 0   for each 0   and  0,1  , condition 0   evidently satisfied. Thus,  0,1B  for 

each  0,1   and 0  .  

Also, it is easily shown that D B  when 1  , where  
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2 2

1 2

3 1 1 3
1

2 1 2 17 6 1

 


  

 
 

  
. 

We can easily show that 
1 0   for each 0  . Since  0,1   so that 1   for each 0  . Thus, 

D B  for each  0,1   and 0  . 

The inequality  2 1B B D   is likewise can be proved for each 0  . 

Thus, in view of Lemma 1.3, we can write 1 2I   for each 0  . 

For 2I  we write 

2

2 2 1
2

I p p


  , 

where  

   

   
2

4 1 5 1 2 1

1 1 3

  


 

  


 
. 

Now, we use Lemma 1.2 to find a upper bound estimate for 2I . It is clear that 0   for each  0,1   and 

0  . Also, 2   if  2  , where  

   

  

2

2

1 1 3
1

2 1 5 1 2

 


 

 
 

 
. 

We can easily show that 2 0   when 4.9527  . Thus, since  0,1  , condition 0   evidently 

satisfied for  each 4.9527  . On the other hand  2 0,1   when 0 4.9527  .   

Thus, in view of Lemma 1.2, we obtain the following inequality for 2I   

 

 

2

2

2

1,   0, ,
2

1,         ,1
I

  

 

  
 



 

for 0 4.9527   and 2 2I   for 4.9527  .    

Thus, applying Lemma 1.3 and Lemma 1.2 for 1I  and 2I  in (2.5), respectively, and again using the 

inequalities 2np  , 1,2,3n   from Lemma 1.1 for 
2

2 4 3a a a , we get  

 
    

   

   
 

    

   

   
 

2 2
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22

2 4 3 2 2

22 4 2

4 1 1 34 1
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3 1 1 3 1 2 1 1 2
1
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for  0 4.9527  ,  where 
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4 1 5 1 2 1

1 1 3
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 and  
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for 4.9527  .  

Thus the proof of Theorem 2.1 is competed.  

The following theorem is direct result of Theorem 2.1. 

Theorem 2.2. Let the function ( )f z  given by (1.1) be in the class M  , 0  .  Then, 

          

     

3 2 32

2

2 4 3 4 2

1 7 4 5 3 1 1 2 1 5 4 1 3

3 1 1 2 1 3
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for 0 4.9527  ,  where 
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 and 

         

     

3 2 4 3

2

2 4 3 4 2

4 1 1 2 3 1 1 3 12 1 3

3 1 1 2 1 3
a a a

    

  

      
 

  
 

for  0,1  and 4.9527  . 

Taking 0   and 1   in Theorem 2.1, we obtain the following results. 

Corollary 2.1.  Let the function ( )f z  given by (1.1) be in the class  *S  ,  0,1  .  Then, 

 
2

2

2

2 4 3

2

1
12 15 20,   0, ,

1 2

3 1
12 24 19,  ,1 .

2

a a a

  


  

  
       

  
       

 

Corollary 2.2. Let the function ( )f z  given by (1.1) be in the class  C  ,  0,1  .  Then, 

 
  

 

2

2

2 4 3
2

5
16 3 1 41 32 ,  0, ,

1 9

216 5
60 96 1 ,               ,1 .

9

a a a

  


 

  
        

  
       

 

Corollary 2.3.  Let the function ( )f z  given by (1.1) be in the class 
*S .  Then, 

2

2 4 3

20

3
a a a  . 

Corollary 2.4. Let the function ( )f z  given by (1.1) be in the class C .  Then, 

2

2 4 3

139

216
a a a  . 
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