
Available online www.jsaer.com

Journal of Scientific and Engineering Research

233

Journal of Scientific and Engineering Research, 2019, 6(6):233-238

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Building Custom CI/CD Pipelines for Java Applications in

GitLab

Praveen Kumar Koppanati

praveen.koppanati@gmail.com

Abstract: For modern software development, especially for Java applications Continuous Integration and

Continuous Deployment (CI/CD) pipelines is a vital aspect. This paper aims to provide an in-depth exploration

of building custom CI/CD pipelines in GitLab specifically for Java applications. In this guide, we are going to

touch upon proper ways on how you should integrate GitLab CI/CD with Java development tools and strategies

for pipeline optimization towards effective testing, as well as deployment; analyze Docker methodology where

environment consistency is a concern. This will emphasize the key areas to be considered for security,

performance and scalability. The analysis also covers automation techniques for testing and deployment,

ensuring high code quality and fast iteration cycles. Developers can therefore use GitLab CI/CD and Java tools

in tandem to simplify their workflow, with a consistent stream of production-ready software delivered

efficiently.

Keywords: CI/CD, GitLab, Java applications, Continuous Integration, Continuous Deployment, Automation

Testing, DevOps, automation, Docker, software development, testing, deployment.

1. Introduction

Software development practices have significantly evolved over the past few decades, with automation taking

center stage in many development workflows. A transformation of such a practice in the development cycle has

been around the introduction of Continuous Integration (CI) and Continuous Deployment (CD) pipelines. A

CI/CD pipeline automates the testing, building and deployment of code so that changes in production are

quicker but also free from human errors.

Fig. 1 Overview of CI/CD Process

Koppanati PK Journal of Scientific and Engineering Research, 2019, 6(6):233-238

Journal of Scientific and Engineering Research

234

In the context of Java applications, building a custom CI/CD pipeline requires a deep understanding of both the

CI/CD tools available and Java-specific testing, building, and deployment strategies. GitLab CI/CD is one of the

leading platforms that offers a fully integrated CI/CD solution in just one project by using native Git repository,

enabling us to have automation across all stages and fields of software development. In this article, we will see

how to create custom CI/CD pipelines for java applications using GitLab. We will also discuss the key points of

consideration and best practices along with some tools that could help in improving our pipeline.

2. Understanding GitLab CI/CD

GitLab CI/CD is tightly integrated with GitLab, a Git-based source code management (SCM) system. It

provides a powerful, flexible system for automating code testing, building, and deployment. GitLab CI/CD

operates through pipelines defined in a .GitLab-ci.yml file located at the root of a repository. This file defines

the various stages of the pipeline (e.g., build, test, deploy), and the specific tasks or jobs to be executed within

each stage.

Key Concepts in GitLab CI/CD: Before delving into the details of building a custom CI/CD pipeline, it's

important to understand several core concepts:

• Jobs: Individual tasks that GitLab Runner executes, such as compiling Java code, running tests, or deploying

to a server.

• Stages: A pipeline is divided into stages such as build, test, and deploy. Jobs within a stage can run in parallel,

but stages run sequentially.

• Runners: GitLab Runners are responsible for executing jobs defined in the pipeline. Runners can be shared or

project specific.

• Artifacts: Intermediate files generated by one stage of the pipeline, such as compiled Java classes or test

reports, can be passed on to subsequent stages as artifacts.

Fig.2 GitLab CI/CD Architecture

3. Building A Java-Specific CI/CD Pipeline

To construct an effective CI/CD pipeline for Java applications, it’s essential to account for the various stages of

Java development which include compilation, testing, and packaging. Tools like Maven or Gradle, along with

GitLab's CI/CD, offer a smooth workflow from code commit to deployment.

Configuring GitLab Runner: The GitLab Runner is a crucial component of the CI/CD pipeline as it executes

the jobs defined in the .GitLab-ci.yml file. To support Java applications, the Runner needs to be configured with

a Java Development Kit (JDK). Depending on your environment, GitLab offers several types of Runners:

• Shell Runners: Simple but rely on the host machine’s configuration.

Koppanati PK Journal of Scientific and Engineering Research, 2019, 6(6):233-238

Journal of Scientific and Engineering Research

235

• Docker Runners: Allow the use of Docker containers, providing a more isolated and consistent environment

for running jobs.

A Docker Runner is often preferred for Java applications due to the ability to define and use specific Docker

images that contain JDK, Maven, or Gradle. This ensures that the build environment is consistent across

different stages of the pipeline and different team members.

In the example above, a Maven-based Java application is built and tested using Docker images that have Maven

and JDK pre-installed.

4. Testing And Quality Assurance in The Pipeline

Testing is an essential aspect of any CI/CD pipeline, and for Java applications, several testing frameworks can

be used within the pipeline, such as JUnit, TestNG, and Mockito. Additionally, static code analysis tools like

SonarQube and Checkstyle can be integrated to ensure code quality.

Unit Testing with Junit: JUnit is one of the most widely used testing frameworks for Java applications. By

integrating JUnit tests into the CI/CD pipeline, you can automatically run tests every time code is pushed to the

repository, ensuring that new changes don’t break existing functionality.

JUnit generates reports in the target/surefire-reports directory. These reports can be archived as artifacts,

allowing developers to access test results easily.

Code Quality with SonarQube: SonarQube is a popular tool for continuous code quality inspection. It can be

integrated into the pipeline to perform static code analysis, detecting code smells, bugs, and potential security

vulnerabilities.

By running SonarQube scans as part of the test stage, Java applications can be continuously analyzed for code

quality issues, improving long-term maintainability.

Koppanati PK Journal of Scientific and Engineering Research, 2019, 6(6):233-238

Journal of Scientific and Engineering Research

236

5. Deployment Automation

Deployment in a CI/CD pipeline can take many forms, depending on the infrastructure used to host the Java

application. GitLab CI/CD supports various deployment strategies, including:

• Traditional deployment to virtual machines or on-prem servers

• Containerized deployment using Docker and Kubernetes

• Cloud-native deployment to platforms like AWS, Azure, or Google Cloud

Deploying to a Traditional Server: In many enterprise environments, Java applications are deployed to

traditional servers. GitLab CI/CD can automate this process by using SSH to connect to the server and deploy

the application.

This simple script transfers the built JAR file to the server and restarts the application, providing a fully

automated deployment pipeline.

Deploying with Docker: Docker is increasingly being used for Java application deployments due to its ability

to create lightweight, consistent environments. GitLab CI/CD can be configured to build a Docker image of the

Java application and push it to a Docker registry.

Using Docker enables developers to ensure that the application runs in the same environment in production as it

does during development and testing.

Fig 3: Pipeline Success Rate by Stage

6. Advanced Pipeline Features

While the basic pipeline covers build, test, and deployment, GitLab CI/CD offers several advanced features that

can enhance the pipeline.

Koppanati PK Journal of Scientific and Engineering Research, 2019, 6(6):233-238

Journal of Scientific and Engineering Research

237

Pipeline Triggers: GitLab supports pipeline triggers that can initiate pipelines based on external events. This

can be useful in cases where you want to trigger the pipeline after a successful deployment or based on events in

another system.

Parallel Testing: For larger projects with extensive test suites, testing can become a bottleneck. GitLab CI/CD

allows for parallel job execution, enabling multiple tests to run simultaneously.

By dividing the test suite into separate jobs, overall test execution time can be reduced.

7. Security Considerations

Security should be a primary concern in any CI/CD pipeline. For Java applications, special attention must be

given to:

• Dependency management: Tools like OWASP Dependency-Check can be integrated into the pipeline to

detect vulnerabilities in third-party libraries.

• Credential management: Sensitive information such as API keys and passwords should be stored securely,

using GitLab’s CI/CD environment variables or Vault integration.

Using environment variables prevents sensitive information from being hardcoded into the pipeline scripts.

8. Conclusion

GitLab with a custom CI/CD pipeline for Java applications create less human intervention automated process

that increased software delivery velocity and quality of the delivered product. Utilizing the powerful CI/CD

features of GitLab, developers can write pipelines that specifically cater towards their project requirements and

provide a consistent approach with less manual involvement.

GitLab CI/CD helps teams keep code quality high with advanced tools like Docker, SonarQube and automated

deployments all while enabling rapid iteration cycles. Flexible, automated pipelines will become even more

essential for modern software development as the industry evolves.

References

[1]. Stolberg S. Enabling Agile Testing through Continuous Integration. 2009 Agile Conference. 2009;.

https://doi.org/10.1109/AGILE.2009.16

[2]. Arefeen, M. S., & Schiller, M. (2019). Continuous integration using GitLab. Undergraduate Research

in Natural and Clinical Science and Technology Journal, 3, 1-6.

[3]. M. Meyer, "Continuous Integration and Its Tools," in IEEE Software, vol. 31, no. 3, pp. 14-16, May-

June 2014, doi: 10.1109/MS.2014.58

Koppanati PK Journal of Scientific and Engineering Research, 2019, 6(6):233-238

Journal of Scientific and Engineering Research

238

[4]. M. Kettani and Y. Benferhat, "Best Practices for Continuous Integration with GitLab CI/CD ," 2017

International Conference on Information and Communication Technology Convergence (ICTC), 2017,

pp. 240-246. DOI: 10.1109/ICIW.2017.33

[5]. S. A. I. B. S. Arachchi and I. Perera, "Continuous Integration and Continuous Delivery Pipeline

Automation for Agile Software Project Management," 2018 Moratuwa Engineering Research

Conference (MERCon), Moratuwa, Sri Lanka, 2018, pp. 156-161, doi:

10.1109/MERCon.2018.8421965

[6]. B. Kratz, "Containerizing Java Applications with Docker for CI/CD Pipelines," 2018 IEEE

International Conference on Cloud Computing (CLOUD), 2018, pp. 825-830. DOI:

10.1109/ICCW.2018.00825

[7]. Ståhl D, Bosch J. Modeling continuous integration practice differences in industry software

development. Journal of Systems and Software. 2014;87:48-59.

https://doi.org/10.1016/j.jss.2013.08.032

[8]. K. Beck, "Continuous Integration," in Extreme Programming Explained: Embrace Change, Addison-

Wesley, 1999.

[9]. M. Fowler, "Continuous Integration," ThoughtWorks, [Online]. Available:

https://martinfowler.com/articles/continuousIntegration.html.

[10]. Docker Inc., "What is Docker?," Docker Docs, [Online]. Available: https://docs.docker.com/get-

started/overview/.

[11]. E. Gamma and K. Beck, JUnit: A Cook’s Tour, Addison-Wesley, 2002.

[12]. OWASP, "OWASP Dependency-Check," OWASP, [Online]. Available:

https://www.owasp.org/index.php/OWASP_Dependency_Check.

[13]. GitLab Inc., "GitLab CI/CD Documentation," GitLab, [Online]. Available:

https://docs.GitLab.com/ee/ci/.

[14]. SonarQube, "SonarQube Documentation," SonarQube, [Online]. Available:

https://docs.sonarqube.org/latest/.

