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Abstract Predation is an interaction between two populations of animals in which one (the predator) hunts, 

captures, and kills the other (prey) for food. The main purpose of this thesis is to study and compare the 

behavior of prey-predator interactions in two nonlinear population models, one without delay and the other with 

delay. In each case, we obtained three equilibrium states: the trivial state where both populations are extinct, the 

endemic state where both populations exist and another state where the prey population exists but the predator 

population is extinct. In the model without delay, we showed that the endemic state is asymptotically stable 

while the trivial state and the state where the predator population is extinct are unstable. However, in the model 

with delay, we proved that the endemic state and the state where the predator population is extinct are 

asymptotically stable while the trivial state is unstable. Furthermore, we carried out numerical experiments 

where we compared the dynamics of the prey and predator populations. We found that in each model the prey 

and predator populations oscillate with time; in particular, the two populations circle around their endemic 

equilibrium states. 
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1. Introduction   

In ecology, predation is an interaction between two populations of animals in which one (the predator) hunts, 

captures, and kills the other (prey) for food. Predator-prey relationship form important links in many food 

chains. They are also important in regulating population sizes of both predator and prey, especially when the 

predator relies on a single prey species. Examples of predator-prey relationship are cats and rats, and lizards and 

grasshoppers [1]. 

Four types of predation may be distinguished. Herbivores are animals that prey on green plants or their seeds 

and fruits; often the plants eaten are not killed but may be damaged. Typical predation occurs when carnivores 

prey on herbivores or other carnivores. Insect parasitism is another form of predation, in which the insect 

parasite lays eggs on or near the host insect, which is subsequently killed and eaten. Finally, cannibalism is a 

special form of predation, in which the predator and the prey are the same species. All these processes can be 

described with the same kind of mathematical models [2]. 

Mathematical models have been used extensively to build up hypothesis about what happens when two species 

live together either sharing the same food, occupying the same space, or preying on or parasitizing the others. 

The best-known models of these phenomena are the Lotka-Volterra equations, which were derived 
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independently [3]. The set of equations to describe the interaction between population of predators and preys are 

as follows. 

𝑑𝑥

𝑑𝑡
 = 𝑎𝑥 − 𝑏𝑥𝑦 

𝑑𝑦

𝑑𝑡
= −𝑝𝑦 + 𝑞𝑥𝑦 

where 𝑥 𝑡  is the prey population at time 𝑡, 𝑦(𝑡) is the predator population at time 𝑡 and 𝑎, 𝑏, 𝑝, 𝑞 are positive 

constants,  

The Lotka-Volterra predation model predicts oscillations between predators and prey that are called neutrally 

stable because the oscillations are determined by the starting conditions. Such neutral stability is the same 

stability shown by a frictionless pendulum and will be very susceptible to all disturbances found in natural 

populations.  

Kapur [4] modeled a population-growth and prey-predator models in terms of delay-differential equations 

(DDE). The postulate is that the birth-rate at time 𝑡 depends on the population size at time 𝑡 − 𝜏, 𝜏 > 0 and the 

death-rate depends on the population size at time, 𝑡. Assuming that the interaction between prey and predators 

species results in instantaneous loss to the prey species, but a gain to the predator species, we get the model 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦 

𝑑𝑦

𝑑𝑡
=  −𝑝𝑦 + 𝑞𝑥 𝑡 − 𝜏 𝑦(𝑡 − 𝜏) 

The effect of predation on population has been studied theoretically and practically because it has great 

economic implication for man. Predator-prey relationship helps in the control of pest population (biological 

control) which, when applied on a large scale, will save man from the effects of chemical control i.e 

biomagnifications of insecticidal residues through food chain [5]. 

The first equation in the Lotka-Volterra model is a linear equation of population growth with predation. This can 

be written as a non-linear model of population growth with predation as follows; 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑐𝑥2 −  𝑏𝑥𝑦, 

where 𝑐 is another positive constant. 

Predation is the description of a biological interaction where a predator (an organism that is hunting) feeds on 

its prey (the organism that is attacked), [6]. Predators may or may not kill their prey prior to feeding on them, 

but the act of predation always results in the death of its prey and the eventual absorption of the prey’s tissue 

through consumption. Other categories of consumption are herbivores (eating parts of plants) and detritivory, 

the consumption of dead organic material (detritus). All these consumption categories fall under the rubric of 

consumer-resource systems [7]. It can often be difficult to separate various types of feeding behaviors [6]. For 

example, some parasitic species prey on a host organism and then lay their eggs on it for their offspring to feed 

on it while it continues to live or on its decaying corpse after it has died. The key characteristic of predation 

however is the predator’s direct impact on the prey population. On the other hand, detritivores simply eat dead 

organic material arising from the decay of dead individuals and have no direct impact on the “donor” organisms. 

Mathematical models have been used extensively to build up hypothesis about what happens when two species 

live together either sharing the same food, occupying the same space, or preying on or parasitizing the others. 

The best-known models of these phenomena are the Lotka- Volterra equations, which were derived 

independently, (Lotka [3]) in the United States and (Volterra 1926) in Italy. The set of equations to describe the 

interaction between populations of predator and prey are as follows, 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦, 

𝑑𝑦

𝑑𝑡
=  −𝑝𝑦 + 𝑞𝑥𝑦, 

where 𝑥(𝑡) is the prey population at time 𝑡, 𝑦(𝑡) is the predator population at time 𝑡 and 𝑎, 𝑏, 𝑝, 𝑞 are positive 

constants. The first equation in the Lotka-Volterra model is a linear equation of population growth with 

predation. This can be written as a nonlinear model of population growth with predation as follows; 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑐𝑥2 −  𝑏𝑥𝑦, 
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where 𝑐 is another positive constant.  

According to [8], in ecosystems, species are connected through intricate tropic relationship defining complex 

networks, the so called food chains. Understanding the structure and mechanisms underlying the formation of 

these complex chains is of great importance to ecology. In particular, the food chain structure provides insight 

into the behavior of ecosystem under perturbations such as the extinction of existing species, [9]. 

2.1. Preliminaries 

A wide variety of natural phenomena can be modeled by a system of two first-order autonomous system of 

ordinary differential equations (ODE) of the form 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦)                    (2.1.1) 

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦)                                                                                                              (2.1.2) 

 Where 𝑓 and 𝑔 are differential functions in some region D of the 𝑥𝑦 − plane, called the phase plane of the 

system (2.1.1) and (2.1.2). Then, given 𝑡0 and any initial point (𝑥0 , 𝑦0) of D, there is a unique solution 𝑥 =

𝑥 𝑡 , 𝑦 = 𝑦(𝑡) of (2.1.1) and (2.1.2) that is defined on some open interval (𝑎, 𝑏) containing 𝑡0 and satisfying the 

initial conditions; 

𝑥 𝑡0 =  𝑥0  ,       𝑦 𝑡0 =  𝑦0                                                                                    (2.1.3) 

An equilibrium state of the system in (2.1.1) and (2.1.2) is a state  𝑥∗, 𝑦∗  such that 

𝑓 𝑥∗, 𝑦∗ = 𝑔 𝑥∗, 𝑦∗ = 0                                                                                         (2.1.4) 

For any equilibrium state  𝑥∗, 𝑦∗  of the system, the constant-valued solutions  

𝑥 𝑡 ≡  𝑥∗ ,        𝑦 𝑡 ≡  𝑦∗                                                                                       (2.1.5) 

 satisfy equations (2.1.1) and (2.1.2). Such a solution is called an equilibrium solution of the system. The 

trajectory of the equilibrium solution consists of the single point(𝑥∗, 𝑦∗).   

The linear form of the system (2.1.1) and (2.1.2) can be represented as 

𝑋 ′ = 𝐴𝑋                  (2.1.6) 

where 𝐴 is a 2 × 2 matrix with constant coefficients and 𝑋 is a 2 by 1 column vector.  

 

Definition 2.1.1 (Stability of an equilibrium state (𝑥∗, 𝑦∗)) 

Let 𝑋∗ = (𝑥∗, 𝑦∗) be an equilibrium states of an autonomous system, and  

𝑋 = (𝑥 𝑡 , 𝑦(𝑡)) denote the solution that satisfies the initial condition 𝑋0 = (𝑥0 , 𝑦0), where 𝑋0  ≠  𝑋∗, 

a. We say that   𝑋∗ is a stable equilibrium state when, given 𝜖 >  0 there exists 𝛿 > 0 such that;  𝑋0 −

𝑋∗<𝛿⇒𝑋𝑡−𝑋∗<𝜖 for all 𝑡>0. 

b. If, in addition, 𝑙𝑖𝑚𝑡→∞𝑋 𝑡 =  𝑋∗ whenever 𝑋0 −  𝑋∗ < 𝛿, we call 𝑋∗ an asymptotically stable 

equilibrium state. 

c. It is unstable, if it is not stable. 

Theorem 2.1.1 

Suppose that the matrix 𝐴 in (2.1.6) has eigenvalues 𝜆1 , 𝜆2. Then the stability of any solution of (2.1.6) is 

determined according to the following criteria: 

i. If the real part of an eigenvalue 𝑅𝑒 𝜆𝑖 <  0, 𝑖 = 1, 2 then there is uniform and asymptotic stability. 

ii. If 𝑅𝑒 𝜆𝑖 ≤  0 for all  𝑖 = 1, 2 and algebraic multiplicity equals the geometric multiplicity whenever 𝜆𝑖  

= 0 for any 𝑖 them there is uniform stability. 

iii. If 𝑅𝑒 𝜆𝑖 >  0 for at least one 𝑖 or the algebraic multiplicity is greater than the geometric multiplicity 

should be, 𝑅𝑒 𝜆𝑖 = 0, then there is instability. 

Note that the algebraic multiplicity of an eigenvalue of a matrix is the multiplicity of such an eigenvalue as a 

root of the characteristic equation while the geometric multiplicity is the multiplicity of an eigenvector 

corresponding to the given eigenvalue. 

The first step in investigating the stability of the system (2.1.1) and (2.1.2) at an equilibrium state (𝑥∗, 𝑦∗) is by 

finding its Jacobian matrix at (𝑥∗, 𝑦∗).The process is called linearization [10]. 

We assume that the functions 𝑓and 𝑔 are continuously differential in a neighborhood of  𝑥∗, 𝑦∗ . 
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Let,𝑢 = 𝑥 −  𝑥∗, 𝑣 = 𝑦 − 𝑦∗, so that 
𝑑𝑥

𝑑𝑡
=

𝑑𝑢

𝑑𝑡
 and  

𝑑𝑦

𝑑𝑡
=

𝑑𝑣

𝑑𝑡
, that is, 𝑥 = 𝑢 +  𝑥∗, 𝑦 = 𝑣 +  𝑦∗, and equation 

(2.1.1) and (2.1.2) becomes 
𝑑𝑢

𝑑𝑡
= 𝑓(𝑢 + 𝑥∗, 𝑣 +  𝑦∗)                    (2.1.7) 

𝑑𝑣

𝑑𝑡
= 𝑔(𝑢 + 𝑥∗, 𝑣 +  𝑦∗)                        (2.1.8) 

Then the Taylor formula for 𝑓 and 𝑔 about the equilibrium state  𝑥∗, 𝑦∗  gives  

𝑓 𝑢 +  𝑥∗, 𝑣 +  𝑦∗ =  𝑓𝑥 𝑥∗, 𝑦∗ 𝑢 +  𝑓𝑦   𝑥∗, 𝑦∗ 𝑣 +  1(𝑢, 𝑣)           (2.1.9) 

𝑔 𝑢 +  𝑥∗, 𝑣 +  𝑦∗ =  𝑔𝑥 𝑥∗, 𝑦∗ 𝑢 +  𝑔𝑦   𝑥∗, 𝑦∗ 𝑣 +  2(𝑢, 𝑣)                           (2.1.10) 

where   1(𝑢, 𝑣)  and 2(𝑢, 𝑣) have the property that 

𝑙𝑖𝑚 𝑢 ,𝑣 →0  
 1(𝑢 ,𝑣) 

 (𝑢 ,𝑣) 
=  𝑙𝑖𝑚 𝑢 ,𝑣 →0  

 2(𝑢 ,𝑣) 

 (𝑢 ,𝑣) 
= 0  

That is, in the neighborhood of 𝑥∗, 𝑦∗ , the expression 1(𝑢, 𝑣) and 2(𝑢, 𝑣) are small in comparison 

with (𝑢, 𝑣) , which is itself small. In matrix form, (2.1.9) and (2.1.10) become 

 𝑢 ′

𝑣 ′
 =   

𝑓𝑥 𝑥∗, 𝑦∗ 𝑓𝑦 𝑥∗, 𝑦∗ 

𝑔𝑥 𝑥∗, 𝑦∗ 𝑔𝑦 𝑥∗, 𝑦∗ 
  𝑢

𝑣
 +    1(𝑢 ,𝑣)

 2(𝑢 ,𝑣)
                                                 (2.1.11) 

The matrix 

𝐽 =    
𝑓𝑥 𝑥∗, 𝑦∗ 𝑓𝑦 𝑥∗, 𝑦∗ 

𝑔𝑥 𝑥∗, 𝑦∗ 𝑔𝑦 𝑥∗, 𝑦∗ 
             (2.1.12) 

Is the Jacobian Matrix of the system (2.1.1) and (2.1.2), evaluated at the equilibrium state  𝑥∗, 𝑦∗ . The system in 

(2.1.11) is called the linearization of (2.1.1) and (2.1.2) about the equilibrium state  𝑥∗, 𝑦∗ . 

Theorem 2.1.2 (stability criteria for plane autonomous system) 

Let 𝑋∗ be an equilibrium state of the plane autonomous system (2.1.1) and (2.1.2) where 𝑓 𝑥, 𝑦  and 𝑔 𝑥, 𝑦  

have continuous first partial derivatives in a neighborhood of  𝑋∗. 

a. If the eigenvalues of (2.1.12) have negative real parts, then 𝑋∗ is an asymptotically stable equilibrium 

state. 

b. If (2.1.12) has an eigenvalue with positive real part then 𝑋∗ is an unstable equilibrium state. 

 

2.2. The Mathematical Models 

We consider two population models for a prey-predator interaction given, [3]. The first model is the model 

without delay which is given by 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑐𝑥2 −  𝑏𝑥𝑦                                                                                           (2.2.1) 

𝑑𝑦

𝑑𝑡
=  −𝑝𝑦 + 𝑞𝑥𝑦          (2.2.2) 

where 𝑎, 𝑏, 𝑐, 𝑝 and 𝑞 are all positive constants, (Rodney 1978). We shall denote the equations (2.2.1) and 

(2.2.2) as model A. 

The second model, which has a delay [4], and is given as  

 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑐𝑥2 −  𝑏𝑥𝑦          (2.2.3) 

𝑑𝑦

𝑑𝑡
=  −𝑝𝑦 + 𝑞𝑥 𝑡 − 𝜏 𝑦(𝑡 − 𝜏)                                                                         (2.2.4) 

where 𝜏 > 0 is the delay. We shall label the equations (2.2.3) and (2.2.4) as model B. 

The variables and parameters of models A and B are as defined below. 

𝑦 𝑡 = The number of predator at time 𝑡 

𝑥 𝑡 = The number of prey at time 𝑡 

𝑎 = The growth rate of prey 

𝑏 = The rate of decrease of the prey due to inhibition by the predator. 

𝑐 = The rate of decrease of the prey due to insufficient food. 

𝑝 = The death rate of the predators. 

𝑞 = The rate of increase of the predator due to successful attacks on the prey. 
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 2.3. Equilibrium States 

2.3.1. The Equilibrium States of Model A 

In this section, the existence of the equilibrium states of model A is discussed. At the equilibrium state, 
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
= 0. Therefore, equating the left hand sides of model A to zero gives 

𝑎𝑥 − 𝑐𝑥2 −  𝑏𝑥𝑦 = 0         (2.3.1.1) 

−𝑝𝑦 + 𝑞𝑥𝑦 = 0           (2.3.1.2) 

Factorizing the equations (2.3.1.1) and (2.3.1.2), and solving 

We obtained the following equilibriums for model A:  0, 0 , (
𝑎

𝑐
, 0), (

𝑝

𝑞
,

𝑎𝑞−𝑐𝑝

𝑏𝑞
). 

Thus we have proved the following lemma. 

 

Lemma 2.3.1 

Given that 𝑎, 𝑏, 𝑐, 𝑝, 𝑞 > 0 

a. Then there exists an equilibrium state  𝑥∗, 𝑦∗ = (
𝑎

𝑐
, 0) of model A. 

b. If 𝑎𝑞 > 𝑐𝑝, then there exists another equilibrium state  𝑥∗, 𝑦∗ =  (
𝑝

𝑞
,

𝑎𝑞 −𝑐𝑝

𝑏𝑞
) of model A. 

c. There exists a trivial equilibrium state,  𝑥∗, 𝑦∗ = (0, 0) of model A. 

 

2.3.2. The Equilibrium State of Model B 

We can find the equilibrium states of the system (2.2.3) and (2.2.4), by putting 
𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
= 0 and replacing; 

𝑥 𝑡 =  𝑥 , 𝑥 𝑡 −  𝜏 =  𝑥 , and 𝑦 𝑡 =  𝑦 , 𝑦 𝑡 −  𝜏 =  𝑦 . The equations (2.2.3) and (2.2.4) becomes 

𝑎𝑥 − 𝑐𝑥 2 −  𝑏𝑥 𝑦 = 0         (2.3.2.1) 

and 

−𝑝𝑦 +  𝑞𝑥 𝑦 = 0           (2.3.2.2) 

 These equations (2.3.2.1) and (2.3.2.2) are similar to equations (2.3.1.1) and (2.3.1.2). Therefore, solving the 

algebraic equations (2.3.2.1) and (2.3.2.2) simultaneously for 𝑥  and 𝑦 , we obtain the following equilibrium 

states (0, 0), (
𝑎

𝑐
, 0) and (

𝑝

𝑞
,

𝑎𝑞−𝑐𝑝

𝑏𝑞
). These equilibrium states exist if and only if lemma 2.3.1 holds 

2.4.1. The Stability of Equilibrium States of Model A 

We now analyze the stability of each of equilibrium states of (2.2.1) and (2.2.2) found in section (2.3.1). First 

we shall compute the Jacobian matrix of the system (2.2.1) and (2.2.2). 

Let  

𝑓 𝑥, 𝑦 = 𝑎𝑥 − 𝑐𝑥2 − 𝑏𝑥𝑦 

and 

𝑔 𝑥, 𝑦 =  −𝑝𝑦 + 𝑞𝑥𝑦 

Then 

𝑓𝑥 𝑥, 𝑦 = 𝑎 − 2𝑐𝑥 − 𝑏𝑦 

𝑓𝑦 𝑥, 𝑦 =  −𝑏𝑥 

𝑔𝑥 𝑥, 𝑦 = 𝑞𝑦 

𝑔𝑦 𝑥, 𝑦 =  −𝑝 + 𝑞𝑥 

Therefore, the Jacobian matrix of the system (2.2.1) and (2.2.2) is given by  

𝐽 =  
𝑎 − 2𝑐𝑥 − 𝑏𝑦 −𝑏𝑥

𝑞𝑦 −𝑝 + 𝑞𝑥
         (2.4.1.1) 

Computing the Jacobian matrix (2.4.1.1) at the equilibrium state (0, 0) gives 

𝐽(0,0) =  
𝑎 0
0 −𝑝

           (2.4.1.2) 

The characteristic equation for the Jacobian matrix (2.4.1.2) is 

det 𝐽 0,0 − 𝜆𝐼 =  0 

Thus 
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𝑎 −  𝜆 0

0 −𝑝 −  𝜆
 = 0 

or 

 𝑎 −  𝜆  −𝑝 −  𝜆 =  0, 

either 

𝑎 −  𝜆 = 0 or – 𝑝 −  𝜆 = 0 

That is, 

𝜆1 = 𝑎 > 0 or 𝜆2 =  −𝑝 < 0 

Therefore, the equilibrium state (0, 0) is unstable by theorem (2.1.2). We shall now analyze the equilibrium 

state (
𝑎

𝑐
, 0) for stability. Evaluating the Jacobian matrix (2.4.1.1) at the equilibrium state (

𝑎

𝑐
, 0) gives 

𝐽
 
𝑎

𝑐
,   0 

=   
−𝑎

−𝑎𝑏

𝑐

0 −𝑝 +  
𝑎𝑞

𝑐

                          (2.4.1.3) 

The eigenvalues for this Jacobian matrix (2.4.1.3) is obtained as follows; 

 
−𝑎 −  𝜆

−𝑎𝑏

𝑐

0
−𝑐𝑝 + 𝑎𝑞

𝑐
−  𝜆

 = 0 

or 

 −𝑎 −  𝜆  
−𝑐𝑝 + 𝑎𝑞

𝑐
−  𝜆 =  0 

This gives  

𝜆1 =  −𝑎 < 0 or 𝜆2 =  
−𝑐𝑝   + 𝑎𝑞

𝑐
 

      =  
𝑎𝑞  − 𝑐𝑝

𝑐
> 0, 

Because 𝑎𝑞 > 𝑐𝑝 by lemma 2.3.1 b. 

Therefore, the equilibrium state (
𝑎

𝑐
, 0) is unstable by theorem 2.1.2 

Next we shall examine the stability of the equilibrium state (
𝑝

𝑞
,

𝑎𝑞−𝑐𝑝

𝑏𝑞
) by evaluating the Jacobian matrix 

(2.4.1.1) at the equilibrium state (
𝑝

𝑞
,

𝑎𝑞−𝑐𝑝

𝑏𝑞
) to obtain the matrix 

𝐽 =   

−𝑐𝑝

𝑞

−𝑏𝑝

𝑞
−𝑎𝑞−𝑐𝑝

𝑏
0

          (2.4.1.4) 

The eigenvalues of the matrix (2.4.1.4) can be obtained as follows 

 

−𝑐𝑝

𝑞
−  𝜆

−𝑏𝑝

𝑞
𝑎𝑞 − 𝑐𝑝 

𝑏
−𝜆

 = 0 

or 

−𝜆  
−𝑐𝑝

𝑞
−  𝜆 + 

𝑏𝑝

𝑞
 
𝑎𝑞 − 𝑐𝑝

𝑏
 = 0 

or 

𝜆2 + 
𝑐𝑝𝜆

𝑞
+ 

𝑝

𝑞
 𝑎𝑞 – 𝑐𝑝 = 0 

Multiplying each term by 𝑞 we get 

𝑞𝜆2 +  𝑐𝑝𝜆 + 𝑝 𝑎𝑞 –  𝑐𝑝 = 0 

 And solving quadraticaly, we obtained the following results; 

Therefore, 

𝜆1 < 0, 𝜆2 = 
−𝑐𝑝

𝑞
< 0  

Therefore, the equilibrium state (
𝑝

𝑞
,

𝑎𝑞−𝑐𝑝

𝑏𝑞
) is asymptotically stable. 



Atindiga TS et al                                       Journal of Scientific and Engineering Research, 2019, 6(6):165-183 

 

Journal of Scientific and Engineering Research 

171 

 

We shall now summarize the results obtained for the three equilibrium states of model A in the following lemma 

Lemma 2.4.1 

Given 𝑎, 𝑏, 𝑐, 𝑝, 𝑞 > 0 in (2.2.1) and (2.2.2), 

a. The equilibrium state (0, 0) is unstable. 

b. The state (
𝑎

𝑐
, 0) is also unstable equilibrium state. 

c. The equilibrium state  
𝑝

𝑞
,

𝑎𝑞−𝑐𝑝

𝑏𝑞
  is asymptotically stable, provided 𝑎𝑞 > 𝑐𝑝. 

 

2.4.2. The Stability of Equilibrium State of Model B 

The stability of the equilibrium states of the prey-predator model of the system (2.2.3) and (2.2.4) can be 

analyzed as follow: 

We start with the equilibrium state  𝑥, 𝑦  = (0, 0) 

Let 

𝑢 = 𝑥 − 𝑥  and 𝑣 =  𝑦 − 𝑦  

     = 𝑥 − 0           = 𝑦 − 0 

     = 𝑥                  = 𝑦 

Therefore, 
𝑑𝑢

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
 and  

𝑑𝑣

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
 

Substituting into the system (2.2.3) and (2.2.4) we get 
𝑑𝑢

𝑑𝑡
= 𝑎𝑢 − 𝑎𝑢2 −  𝑏𝑢𝑣         (2.4.2.1) 

𝑑𝑣

𝑑𝑡
=  −𝑝𝑣 + 𝑞𝑢 𝑡 −  𝜏 𝑣(𝑡 −  𝜏)        (2.4.2.2) 

Neglecting squares and products of 𝑢 𝑡 , 𝑣(𝑡), 𝑢 𝑡 −  𝜏  and 𝑣(𝑡 −  𝜏) from the system (2.4.2.1) and (2.4.2.2), 

we obtain the Jacobian matrix 

𝐽 =   
𝑎 0
0 −𝑝

  

This Jacobian matrix is the same with the one obtained from model A. Therefore, the equilibrium state (0, 0) is 

unstable, see section 2.4.1 

We consider the next equilibrium state  𝑥 , 𝑦  = (
𝑎

𝑐
, 0) 

Let 

𝑢 = 𝑥 −  
𝑎

𝑐
 and 𝑣 = 𝑦 − 0 

That is,  

𝑥 = 𝑢 + 
𝑎

𝑐
,     𝑦 = 𝑣 

Therefore, 
𝑑𝑥

𝑑𝑡
=  

𝑑𝑢

𝑑𝑡
  and 

𝑑𝑦

𝑑𝑡
=  

𝑑𝑣

𝑑𝑡
 

Again, substituting into the system (2.2.3) and (2.2.4), equation (2.2.3) gives 
𝑑𝑢

𝑑𝑡
= 𝑎  𝑢 +  

𝑎

𝑐
 −  𝑐(𝑢 + 

𝑎

𝑐
)2 −  𝑏(𝑢 +  

𝑎

𝑐
)𝑣       (2.4.2.3) 

Expanding the brackets and simplifying the expression (2.4.2.3), we have 

𝑑𝑢

𝑑𝑡
= 𝑎𝑢 + 

𝑎2

𝑐
−  𝑐  𝑢2 + 

2𝑎𝑢

𝑐
+  

𝑎

𝑐
 

2

 −  
𝑏𝑎𝑣

𝑐
− 𝑏 𝑢𝑣 

       =  𝑎 − 2𝑎 𝑢 −  
𝑎𝑏𝑣

𝑐
−  𝑐𝑢2 – 𝑏𝑢𝑣   

or 
𝑑𝑢

𝑑𝑡
=  −𝑎𝑢 −  

𝑎𝑏𝑣

𝑐
 −  𝑐𝑢2  – 𝑏𝑢𝑣         (2.4.2.4) 

Equation (2.2.4) gives 

𝑑𝑣

𝑑𝑡
= −𝑝𝑣 + 𝑞  𝑢 𝑡 −  𝜏 + 

𝑎

𝑐
 𝑣(𝑡 −  𝜏) 

or 
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𝑑𝑣

𝑑𝑡
=  −𝑝𝑣 + 

𝑎𝑞

𝑐
 𝑣 𝑡 −  𝜏 +  𝑞𝑢(𝑡 −  𝜏)𝑣(𝑡 −  𝜏)      (2.4.2.5) 

Neglecting the squares and products of 𝑢 𝑡 , 𝑣(𝑡), 𝑢 𝑡 −  𝜏  and 𝑣(𝑡 −  𝜏) in equation (2.4.2.4) and (2.4.2.5) we 

get the linear delay-differential equations 
𝑑𝑢

𝑑𝑡
=  −𝑎𝑢 −  

𝑎𝑏𝑣

𝑐
            (2.4.2.6) 

𝑑𝑣

𝑑𝑡
=  −𝑝𝑣 + 

𝑎𝑞

𝑐
𝑣(𝑡 −  𝜏)          (2.4.2.7) 

To find the characteristic equation and eigenvalues, 

Let 

𝑢 𝑡 =  𝐴𝑒𝜆𝑡 ,     𝑣 𝑡 =  𝐵𝑒𝜆𝑡  

This implies that, 

 𝑢(𝑡)
𝑣(𝑡)

 =  𝑒𝜆𝑡  𝐴
𝐵
           (2.4.2.8) 

where 𝐴 and 𝐵 are non-zero real numbers while 𝜆 may be real or complex. 

Then, 
𝑑

𝑑𝑡
 𝑢(𝑡)

𝑣(𝑡)
 =  𝜆𝑒𝜆𝑡  𝐴

𝐵
          (2.4.2.9) 

Substituting equations (2.4.2.8) and (2.4.2.9) into equation (2.4.2.6) and (2.4.2.7), we get  

𝐴𝜆𝑒𝜆𝑡 = 𝑎𝐴𝑒𝜆𝑡 −  
𝑎𝑏

𝑐
𝐵𝑒𝜆𝑡         (2.4.2.10) 

and 

𝐵𝜆𝑒𝜆𝑡 = −𝑝𝐵𝑒𝜆𝑡 +  
𝑎𝑞

𝑐
𝐵𝑒𝜆(𝑡− 𝜏)        (2.4.2.11) 

Multiplying equation (2.4.2.10) by 𝑒−𝜆𝑡 , we get 

𝐴𝜆 = −𝑎𝐴 −  
𝑎𝑏

𝑐
𝐵         (2.4.2.12) 

We shall divide (2.4.2.11) by 𝐵𝑒𝜆𝑡  to get 

𝜆 = −𝑝 +  
𝑎𝑞

𝑐
𝑒−𝜆𝜏          (2.4.2.13) 

Multiplying equation (2.4.2.13) by A we get 

𝐴𝜆 = −𝑝𝐴 + 
𝑎𝑞

𝑐
𝐴𝑒−𝜆𝜏          (2.4.2.14) 

Subtracting equation (2.4.2.14) from (2.4.2.12) gives 

 𝑝 − 𝑎 𝐴 −  
𝑎𝑏

𝑐
𝐵 −  

𝑎𝑞

𝑐
𝐴𝑒−𝜆𝜏 = 0 

This gives 

𝑎𝑏𝐵 + 𝑎𝑞𝐴𝑒−𝜆𝜏

𝑐
  = (𝑝 − 𝑎)𝐴 

That is, 

𝑎𝑞𝐴𝑒−𝜆𝜏 = 𝑐𝐴 𝑝 – 𝑎 − 𝑎𝑏𝐵 

or 

𝑒−𝜆𝜏 =  
𝑐𝐴 𝑝 – 𝑎 −  𝑎𝑏𝐵

𝑎𝑞𝐴
 

Taking the natural logarithm of both sides we have 

−𝜆𝜏 = ln(
𝑐𝐴 𝑝 − 𝑎 − 𝑎𝑏𝐵

𝑎𝑞𝐴
) 

This gives 

𝜆 =  
−1

𝜏
ln(

𝑐𝐴 𝑝−𝑎 −𝑎𝑏𝐵

𝑎𝑞𝐴
)         (2.4.2.15) 

where 𝐴 ≠ 0 and 𝐵 ≠ 0. All other parameters are positive. This solution (2.4.2.15) is undefined if  
𝑐𝐴 𝑝−𝑎 −𝑎𝑏𝐵

𝑎𝑞𝐴
 < 0, this solution (2.4.2.15) exists if and only if 𝑐𝐴 𝑝 − 𝑎 − 𝑎𝑏𝐵 and 𝑎𝑞𝐴 have the same 

arithmetic signs. We shall discuss the solution of (2.4.2.15) at the various values of 𝐴 and 𝐵 for which the 

solution is defined. 

Case I  (𝐴 < 0) and (𝐵 < 0) 

Let  𝛼 =  𝑐𝐴 𝑝 − 𝑎 − 𝑎𝑏𝐵 and 𝛽 = 𝑎𝑞𝐴 



Atindiga TS et al                                       Journal of Scientific and Engineering Research, 2019, 6(6):165-183 

 

Journal of Scientific and Engineering Research 

173 

 

 and so 

𝛽 < 0 

and 

𝛼 < 0 if 𝑝 > 𝑎 and 𝑐𝐴 𝑝 − 𝑎 >  𝑎𝑏𝐵 

Thus 

𝜆 =  
−1

𝜏
ln  

𝛼

𝛽
 <  0 

Case II (𝐴 < 0 and 𝐵 > 0) 

Again 

𝛽 < 0  

and 

𝛼 < 0 if 𝑝 > 𝑎 and 𝑎𝑏𝐵 > 𝑐𝐴(𝑝 −  𝑎) 

This gives 

𝜆 =  
−1

𝜏
ln  

𝛼

𝛽
 <  0 

Case III (𝐴 >  0 and 𝐵 <  0) 

𝛽 > 0 

and 

𝛼 > 0 if 𝑝 < 𝑎 

or 

𝛼 > 0 if 𝑝 > 𝑎 and 𝑎𝑏𝐵 > 𝑐𝐴(𝑝 −  𝑎) 

Thus  

𝜆 =  
−1

𝜏
ln  

𝛼

𝛽
 <  0 

Case IV  (𝐴 >  0 and 𝐵 >  0) 

we get 

𝛽 > 0 

and 

𝛼 > 0 if 𝑝 > 𝑎 and 𝑎𝑏𝐵 < 𝑐𝐴(𝑝 −  𝑎) 

Again 

𝜆 =  
−1

𝜏
ln  

𝛼

𝛽
 <  0 

 Therefore, the equilibrium state (
𝑎

𝑐
, 0) is asymptotically stable if the four cases discussed above hold. We shall 

consider the situation in which equation (2.4.2.10) and (2.4.2.11) have  complex solutions. 

To this end, let 

𝜆 = 𝑟 + 𝑖𝑠          (2.4.2.16) 

Substituting (2.4.2.16) into (2.4.2.12) and (2.4.2.14) we have 

𝐴 𝑟 + 𝑖𝑠 =  −𝑎𝐴 −  
𝑎𝑏𝐵

𝑐
         (2.4.2.17) 

and 

𝐴 𝑟 + 𝑖𝑠 =  −𝑝𝐴 + 
𝑎𝑞

𝑐
𝐴𝑒−𝜏(𝑟+𝑖𝑠) 

or 

𝐴 𝑟 + 𝑖𝑠 =  −𝑝𝐴 + 
𝑎𝑞

𝑐
𝐴𝑒−𝜏𝑟 (cos 𝜏𝑠 −  𝑖 sin(𝜏𝑠))      (2.4.2.18) 

Subtracting (2.4.2.18) from (2.4.2.17) gives 

 𝑝 −  𝑎 𝐴 −  
𝑎𝑏

𝑐
𝐵 −  

𝑎𝑞

𝑐
𝐴𝑒−𝜏𝑟 (cos 𝜏𝑠 −  𝑖 sin 𝜏𝑠 ) = 0 

or 

𝑎𝑞

𝑐
𝐴𝑒−𝜏𝑟  cos 𝜏𝑠 −  

𝑖𝑎𝑞

𝑐
𝐴𝑒−𝜏𝑟 sin 𝜏𝑠 = 

𝑐𝐴 𝑝 − 𝑎 −  𝑎𝑏𝐵

𝑐
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That is, 

𝑎𝑞𝐴𝑒−𝜏𝑟 cos 𝜏𝑠 −  𝑖𝑎𝑞𝐴𝑒−𝜏𝑟 sin(𝜏𝑠) = 𝑐𝐴 𝑝 –  𝑎 − 𝑎𝑏𝐵                   (2.4.2.19) 

Equating the real and imaginary parts of equation (2.4.2.19) we get 

𝑎𝑞𝐴𝑒−𝜏𝑟 cos 𝜏𝑠 =  𝑐𝐴 𝑝 –  𝑎 − 𝑎𝑏𝐵         (2.4.2.20) 

and 

𝑎𝑞𝐴𝑒−𝜏𝑟 sin(𝜏𝑠) = 0                       (2.4.2.21) 

In equation (2.4.2.21), 

sin(𝜏𝑠) = 0, since 𝑎, 𝑞 > 0, 𝐴 ≠ 0 and 𝑒−𝜏𝑟  ≠ 0 

This implies that 

𝜏𝑠 = 𝑛𝜋,        𝑛 = 0, 1, 2 … 

From equation (2.4.2.20), if 𝑛 = 0 

Cos 𝜏𝑠 = 𝑐𝑜𝑠0 = 1 

Putting cos 𝜏𝑠 = 1 in equation (2.4.2.20) gives 

𝑎𝑞𝐴𝑒−𝜏𝑟 =  𝑐𝐴 𝑝 –  𝑎 − 𝑎𝑏𝐵 

𝑒−𝜏𝑟 =  
𝑐𝐴 𝑝 − 𝑎 −  𝑎𝑏𝐵

𝑎𝑞𝐴
 

Taking the natural logarithm of both sides we get 

−𝜏𝑟 = ln(
𝑐𝐴 𝑝 − 𝑎 −  𝑎𝑏𝐵

𝑎𝑞𝐴
) 

That is, 

𝑟 =
−1

τ
ln(

𝑐𝐴 𝑝−𝑎 − 𝑎𝑏𝐵

𝑎𝑞𝐴
)          (2.4.2.22) 

This equation (2.4.2.22) is the same as (2.4.2.15) which we discussed before. 

If 𝑛 = 1 

cos(𝜏𝑠) =  cos 𝜋 =  −1 

If we put cos(𝜏𝑠) =  −1 in equation (2.4.2.20), it will violate the condition imposed on the solution (2.4.2.15). 

Therefore, we shall only consider the values of 𝑛 for which 

cos(𝜏𝑠) = 1 (𝑖. 𝑒  𝑛 = 0, 2, 4). Hence, the equilibrium state  
𝑎

𝑐
, 0  is asymptotically stable as earlier discussed. 

Lastly, we shall investigate the stability of the equilibrium state  
𝑝

𝑞
,
𝑎𝑞−𝑐𝑝

𝑏𝑞
  of the system (2.2.3) and (2.2.4). 

Let 

𝑢 = 𝑥 −  
𝑝

𝑞
 and 𝑣 = 𝑦 −  

𝑎

𝑏
+ 

𝑐𝑝

𝑏𝑞
 

That is, 

𝑥 = 𝑢 −  
𝑝

𝑞
,         𝑦 = 𝑣 + 

𝑎

𝑏
−  

𝑐𝑝

𝑏𝑞
      (2.4.2.23) 

Then, 
𝑑𝑥

𝑑𝑡
=  

𝑑𝑢

𝑑𝑡
,        

𝑑𝑦

𝑑𝑡
=  

𝑑𝑣

𝑑𝑡
                       (2.4.2.24) 

Substituting (2.4.2.23) and (2.4.2.24) into (2.2.3) and (2.2.4) we get the following, equation (2.2.3) gives 

𝑑𝑢

𝑑𝑡
= 𝑎  𝑢 + 

𝑝

𝑞
 −  𝑐  𝑢 + 

𝑝

𝑞
 

2

−  𝑏  𝑢 + 
𝑝

𝑞
  𝑣 + 

𝑎

𝑏
−  

𝑐𝑝

𝑏𝑞
  

or 

𝑑𝑢

𝑑𝑡
= 𝑎𝑢 + 

𝑎𝑝

𝑞
−  𝑐  𝑢2 + 

2𝑝𝑢

𝑞
+  

𝑝

𝑞
 

2

 − 𝑏  𝑢𝑣 +
𝑎𝑢

𝑏
−

𝑐𝑝𝑢

𝑏𝑞
+

𝑝𝑣

𝑞
+

𝑎𝑝

𝑏𝑞
−

𝑐𝑝2

𝑏𝑞2
  

= 𝑎𝑢 +  
𝑎𝑝

𝑞
 −  𝑐𝑢2  −  

2𝑐𝑝𝑢

𝑞
 −   

𝑐𝑝2

𝑞2
 –  𝑏𝑢𝑣  –  𝑎𝑢 +  

𝑐𝑝𝑢

𝑞
 −  

𝑏𝑝𝑣

𝑞
 −  

𝑎𝑝

𝑞
 +

𝑐𝑝2

𝑞2
  

Therefore, 
𝑑𝑢

𝑑𝑡
=  −  

𝑐𝑝𝑢

𝑞
−  

𝑏𝑝𝑣

𝑞
−  𝑐𝑢2 −  𝑏𝑢𝑣                 (2.4.2.25) 

Also, equation (2.2.4) gives 
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𝑑𝑣

𝑑𝑡
=  −𝑝  𝑣 +  

𝑎

𝑏
 −  

𝑐𝑝

𝑏𝑞
  +  𝑞  𝑢 𝑡 –  𝜏  +  

𝑝

𝑞
  𝑣 𝑡 –  𝜏  +  

𝑎

𝑏
 −  

𝑐𝑝

𝑏𝑞
  

or 

𝑑𝑣

𝑑𝑡
 =  −𝑝𝑣 –  

𝑎𝑝

𝑏
 +  

𝑐𝑝2

𝑏𝑞
 + 

𝑞  𝑢 𝑡 −  𝜏 𝑣 𝑡 –  𝜏 +
𝑎

𝑏
 𝑢 𝑡 −  𝜏   –  

𝑐𝑝𝑢 𝑡 –  𝜏 

𝑏𝑞
 –  

𝑝𝑣 𝑡 –  𝜏 

𝑞
+  

𝑎𝑝

𝑏𝑞
 −  

𝑐𝑝2

𝑏𝑝2
  

=  −𝑝𝑣 −  
𝑎𝑝

𝑏
 +  

𝑐𝑝2

𝑏𝑞
 + 𝑞𝑢 𝑡 −  𝜏 𝑣 𝑡 –  𝜏 +  

𝑎𝑞

𝑏
𝑢 𝑡 – 𝜏 −  

𝑐𝑝

𝑏
𝑢 𝑡 –  𝜏  

+ 𝑝𝑣 𝑡 –  𝜏 + 
𝑎𝑝

𝑏
 −  

𝑐𝑝2

𝑏𝑞
 

Therefore, 
𝑑𝑣

𝑑𝑡
 =  −𝑝𝑣 +  

𝑎𝑞  −𝑐𝑝

𝑏
𝑢 𝑡 − 𝜏 +  𝑝𝑣 𝑡 –  𝜏 +  𝑞𝑢 𝑡 –  𝜏 𝑣 𝑡 –  𝜏       (2.4.2.26)   

Neglecting the squares and products of 𝑢 𝑡 , 𝑣 𝑡 , 𝑢 𝑡 –  𝜏  and 𝑣 𝑡 –  𝜏  in equation (2.4.2.25) and (2.4.2.26) 

we get the linear delay-differential equations 
𝑑𝑢

𝑑𝑡
 =  −

𝑐𝑝

𝑞
𝑢 𝑡  −  

𝑏𝑝

𝑞
𝑣 𝑡       (2.4.2.27) 

and 
𝑑𝑣

𝑑𝑡
 =  −𝑝𝑣(𝑡)  +  

𝑎𝑞  −𝑐𝑝

𝑏
𝑢 𝑡 − 𝜏 +  𝑝𝑣 𝑡 –  𝜏        (2.4.2.28) 

Substituting (2.4.2.8) and (2.4.2.9) into (2.4.2.27) and (2.4.2.28), we obtain 

𝐴𝜆𝑒𝜆𝑡  =  −
𝑐𝑝𝐴𝑒𝜆𝑡

𝑞
 −  

𝑏𝑞𝐵 𝑒𝜆𝑡

𝑞
                         (2.4.2.29) 

and 

𝐵𝜆𝑒𝜆𝑡  =  −𝑝𝐵𝑒𝜆𝑡 +  
𝑎𝑞  −𝑐𝑝

𝑏
𝐴𝑒𝜆(𝑡  −𝜏 ) +  𝑝𝐵𝑒𝜆(𝑡  − 𝜏)                  (2.4.2.30) 

Dividing equation (2.4.2.29) by 𝑒𝜆𝑡  we get 

𝐴𝜆 =  −
𝑐𝑝

𝑞
𝐴 −  

𝑏𝑝

𝑞
𝐵                 (2.4.2.31) 

We shall also divide equation (2.4.2.30) by  𝑒𝜆𝑡  we get 

𝐵𝜆 =  −𝑝𝐵 +  
𝑎𝑞  −𝑐𝑝

𝑏
𝐴𝑒−𝜆𝜏 +  𝑝𝐵𝑒−𝜆𝜏                   (2.4.2.32) 

Multiplying equation (2.4.2.31) by 𝐵 

𝐴𝐵𝜆 =  −  
𝑐𝑝

𝑞
𝐴𝐵 −  

𝑏𝑝

𝑞
𝐵2                  (2.4.2.33) 

Multiplying equation (2.4.2.32) by 𝐴 

𝐴𝐵𝜆 =  −𝑝𝐴𝐵 +  
𝑎𝑞 − 𝑐𝑝

𝑏
𝐴2𝑒−𝜆𝜏 +  𝑝𝐴𝐵𝑒−𝜆𝜏  

or 

𝐴𝐵𝜆 =  −𝑝𝐴𝐵 +  
𝑎𝑞  −𝑐𝑝

𝑏
𝐴2 +  𝑝𝐴𝐵 𝑒−𝜆𝜏                                 (2.4.2.34) 

Subtracting equation (2.4.2.34) from equation (2.4.2.33) gives 

𝑝𝐵𝐴 −  
𝑐𝑝

𝑞
𝐴𝐵 −   

𝑏𝑝

𝑞
𝐵2  −   

𝑎𝑞 − 𝑐𝑝

𝑏
𝐴2 +  𝑝𝐴𝐵 𝑒−𝜆𝜏  =  0 

That is, 

 
 𝑎𝑞 − 𝑐𝑝 𝐴2 +  𝑏𝑝𝐴𝐵

𝑏
 𝑒−𝜆𝜏 =  

𝑝𝑞𝐴𝐵 – 𝑐𝑝𝐴𝐵 − 𝑏𝑝𝐵2

𝑞
 

This gives 

𝑒−𝜆𝜏 =  
𝑏𝑝(𝐴𝐵 𝑞 –  𝑐 −  𝑏𝐵2)

𝑞  𝑎𝑞 − 𝑐𝑝 𝐴2 +  𝑏𝑝𝐴𝐵 
   

Taking the natural logarithm of both sides we obtain 

−𝜆𝜏 = ln  
𝑏𝑝 𝐴𝐵 𝑞 –  𝑐 −  𝑏𝐵2 

𝑞  𝑎𝑞 − 𝑐𝑝 𝐴2 +  𝑏𝑝𝐴𝐵 
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This gives 

𝜆 =  
−1

𝜏
𝑙𝑛  

𝑏𝑝 𝐴𝐵 𝑞  – 𝑐 − 𝑏𝐵2 

𝑞  𝑎𝑞  −𝑐𝑝 𝐴2+ 𝑏𝑝𝐴𝐵  
                           (2.4.2.35)  

The solution (2.4.2.35) is undefined if  
𝑏𝑝  𝐴𝐵 𝑞  – 𝑐 − 𝑏𝐵2 

𝑞  𝑎𝑞  −𝑐𝑝 𝐴2+ 𝑏𝑝𝐴𝐵  
  < 0 

We shall discuss the solution (2.4.2.35) for various values of 𝐴 and 𝐵 as before. 

Case I (𝐴 < 0) and (𝐵 < 0) 

Let 

𝜇 = 𝑏𝑝 𝐴𝐵 𝑞 – 𝑐 − 𝑏𝐵2   

and 

𝛾 = 𝑞  𝑎𝑞 − 𝑐𝑝 𝐴2 +  𝑏𝑝𝐴𝐵  

This gives 

𝛾 > 0, since 𝐴 < 0 and 𝐵 < 0 

and 

𝜇 > 0, if 𝑞 > 𝑐 and 𝐴𝐵 𝑞 – 𝑐 > 𝑏𝐵2 

Thus 

𝜆 =  
−1

𝜏
ln  

𝜇

𝛾
 < 0 

Case II (𝐴 < 0 and 𝐵 > 0) 

Then 

𝛾 > 0, if  𝑎𝑞 − 𝑐𝑝 𝐴2 > 𝑏𝑝𝐴𝐵 

and 

𝜇 > 0, if 𝑞 < 𝑐 and 𝐴𝐵 𝑞 − 𝑐 > 𝑏𝐵2 

also 

𝛾 < 0, if  𝑎𝑞 − 𝑐𝑝 𝐴2 < 𝑏𝑝𝐴𝐵 

and 

𝜇 < 0, if 𝑞 > 𝑐 

With these conditions, 

𝜆 =  
−1

𝜏
ln  

𝜇

𝛾
 < 0 

Case III (𝐴 > 0 and 𝐵 < 0) 

We get similar conditions as in case II. 

Case IV (𝐴 >  0 and 𝐵 >  0) 

Then 

𝛾 > 0  

and 

𝜇 > 0, if 𝑞 > 𝑐 and 𝐴𝐵 𝑞 − 𝑐 > 𝑏𝐵2 

Thus 

𝜆 =  
−1

𝜏
ln  

𝜇

𝛾
 < 0 

Therefore, with the four cases discussed above, the equilibrium state  
𝑝

𝑞
,
𝑎𝑞−𝑐𝑝

𝑏𝑞
  is asymptotically stable. 

Again, we shall consider the situation where the equilibrium state  
𝑝

𝑞
,
𝑎𝑞−𝑐𝑝

𝑏𝑞
  gives complex eigenvalues. 

Substituting (2.4.16) into (2.4.2.33) and (2.4.2.34) gives 

𝐴𝐵 𝑟 +  𝑖𝑠 =  
−𝑐𝑝

𝑞
𝐴𝐵 −  

𝑏𝑝

𝑞
𝐵2                             (2.4.2.36) 

and 

𝐴𝐵 𝑟 + 𝑖𝑠 =  −𝑝𝐴𝐵 +  
𝑎𝑞−𝑐𝑝

𝑏
𝐴2 +  𝑝𝐴𝐵 𝑒−𝜏(𝑟+𝑖𝑠)                   (2.4.2.37) 

Substituting (2.4.2.36) into (2.4.2.37) 
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−𝑐𝑝

𝑞
𝐴𝐵 −  

𝑏𝑝

𝑞
𝐵2 =  −𝑝𝐴𝐵 +  

 𝑎𝑞 − 𝑐𝑝 𝐴2 + 𝑏𝑝𝐴𝐵

𝑏
 𝑒−𝜏𝑟  cos 𝜏𝑠 −  𝑖 sin 𝜏𝑠   

or 

𝑝𝐴𝐵 −  
𝑐𝑝𝐴𝐵

𝑞
−  

𝑏𝑝𝐵2

𝑞
=  

 𝑎𝑞 − 𝑐𝑝 𝐴2 +  𝑏𝑝𝐴𝐵

𝑏
 𝑒−𝜏𝑟 cos 𝜏𝑠 − 𝑖  

 𝑎𝑞 − 𝑐𝑝 𝐴2 + 𝑏𝑝𝐴𝐵

𝑏
 𝑒−𝜏𝑟 sin 𝜏𝑠  

Equating the real and imaginary parts of both sides we obtain 

 
 𝑎𝑞−𝑐𝑝 𝐴2+ 𝑏𝑝𝐴𝐵

𝑏
 𝑒−𝜏𝑟 cos 𝜏𝑠 =  𝑝𝐴𝐵 −  

𝑐𝑝𝐴𝐵

𝑞
−  

𝑏𝑝𝐵2

𝑞
           (2.4.2.38) 

and 

 
 𝑎𝑞−𝑐𝑝 𝐴2+ 𝑏𝑝𝐴𝐵

𝑏
 𝑒−𝜏𝑟 sin(𝜏𝑠) = 0       (2.4.2.39) 

In equation (2.4.2.39), 

sin 𝜏𝑠 = 0, since 𝑒−𝜏𝑟  ≠ 0 and  
 𝑎𝑞−𝑐𝑝 𝐴2+ 𝑏𝑝𝐴𝐵

𝑏
 ≠ 0 

This implies that 

𝜏𝑠 = 𝑛𝜋,    𝑛 = 0, 1, 2, . . . 

Take 𝑛 = 0, then 𝜏𝑠 = 0 

This implies that 

cos 𝜏𝑠 =  cos 0 = 1 

             Putting cos 𝜏𝑠 = 1 in equation (2.4.2.38) gives 

 
 𝑎𝑞 − 𝑐𝑝 𝐴2 +  𝑏𝑝𝐴𝐵

𝑏
 𝑒−𝜏𝑟 =  

𝑝𝑞𝐴𝐵 − 𝑐𝑝𝐴𝐵 − 𝑏𝑝𝐵2

𝑞
  

or 

𝑒−𝜏𝑟 =
𝑏𝑝(𝐴𝐵 𝑞 − 𝑐 −  𝑏𝐵2)

𝑞( 𝑎𝑞 −  𝑐𝑝 𝐴2 +  𝑏𝑝𝐴𝐵)
 

That is, 

 𝑟 =  
−1

𝜏
ln  

𝑏𝑝 𝐴𝐵 𝑞 − 𝑐 −  𝑏𝐵2  

𝑞  𝑎𝑞 –  𝑐𝑝 𝐴2 +  𝑏𝑝𝐴𝐵 
         

which is same as equation (2.4.2.35). 

Thus, we have proved the following result: 

Lemma 2.4.2 

Given that 𝐴 ≠ 0, 𝐵 ≠ 0 and  𝑎, 𝑏, 𝑐, 𝑝, 𝑞 > 0 

a. The equilibrium state (0, 0) is unstable. 

b. The state (
𝑎

𝑐
, 0) is asymptotically stable if 𝑐𝐴 𝑝 − 𝑎 − 𝑎𝑏𝐵 and 𝑎𝑞𝐴 have the same arithmetic    signs 

 c. The state  
𝑝

𝑞
,
𝑎𝑞−𝑐𝑝

𝑏𝑞
  is asymptotically stable if 𝑏𝑝 𝐴𝐵 𝑞 − 𝑐 −  𝑏𝐵2  and   𝑞   𝑎𝑞 –  𝑐𝑝 𝐴2 +  𝑏𝑝𝐴𝐵   have 

the same arithmetic signs. 

 

2.5. The Numerical Method. 

The fourth order Runge-Kutta method (or 𝑅𝐾4 method) for ordinary differential equation (2.1.1) and (2.1.2) 

with initial conditions (2.1.3) is given as follows 

𝑥𝑛+1 =  𝑥𝑛 +  


6
 𝑀1 + 2𝑀2 +  2𝑀3 + 𝑀4      (2.5.1) 

𝑦𝑛+1 =  𝑦𝑛 + 


6
 𝐾1 +  2𝐾2 +  2𝐾3 +  𝐾4       (2.5.2) 

where 

𝑀1 = 𝑓 𝑥𝑛 ,   𝑦𝑛  

𝑀2 = 𝑓  𝑥𝑛 + 
1

2
𝑀1 ,     𝑦𝑛 +  

1

2
𝐾1  

𝑀3 = 𝑓  𝑥𝑛 + 
1

2
𝑀2 ,     𝑦𝑛 +  

1

2
𝐾2  

𝑀4 = 𝑓 𝑥𝑛 + 𝑀3 ,      𝑦𝑛 +  𝐾3  
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and 

𝐾1 = 𝑔(𝑥𝑛 ,    𝑦𝑛 ) 

𝐾2 = 𝑔  𝑥𝑛 +  
1

2
𝑀1, 𝑦𝑛 +  

1

2
𝐾1  

𝐾3 = 𝑔  𝑥𝑛 +  
1

2
𝑀2, 𝑦𝑛 +  

1

2
𝐾2  

𝐾4 = 𝑔 𝑥𝑛 + 𝑀3,          𝑦𝑛 +  𝐾3  

h is the step size. We can use this method to solve the system of equation (2.2.1)- (2.2.2) and (2.2.3) - (2.2.4). 

From the data obtained, some graphs will be plotted to study the dynamics of the prey and predators in the two 

models. 

In order to carry out the above task, the parameters: 𝑎, 𝑏, 𝑐, 𝑝, 𝑞 and 𝜏 as defined in section (2.2) are assigned 

specific hypothetical values in table 1 below. The computer program written in Java to solve these equations, are 

presented as in Appendix B 

Table 1: Tables of Parameter Values for the Numerical Experiment 

Parameters 𝒂 𝒃 𝒄 𝒑 𝒒 𝝉 𝒙(𝟎) 𝒚(𝟎) 

Model A 4 0.5 0.02 4.25 0.6 0 20 10 
Model B 4 0.5 0.02 4.25 0.6 1 20 10 

As shown in table 1 above, the numerical experiments are meant to study the following cases. 

1. The dynamics of prey populations in model A and model B. 

2. The dynamics of predator populations in model A and model B. 

3. The dynamics of prey and predator populations in model A. 

4. The dynamics of prey and predator populations in model B. 

The tables generated from various parameters values in Table 1 are presented in Appendix A (Tables A1 – A4) 

and figures obtained from the corresponding table are given in section 4.2. 

 

3. Results 

3.1 The Analytical Results 

In the analysis of the two models, we have been able to obtain the following results: 

Lemma 2.3.1 

Given that 𝑎, 𝑏, 𝑐, 𝑝, 𝑞 > 0 

(a) Then there exists an equilibrium state  𝑥∗, 𝑦∗ = (
𝑎

𝑐
, 0). 

(b) If 𝑎𝑞 > 𝑐𝑝, then there exists another equilibrium state  𝑥∗, 𝑦∗ =  (
𝑝

𝑞
,

𝑎𝑞 −𝑐𝑝

𝑏𝑞
). 

(c) There exists a trivial equilibrium state,  𝑥∗, 𝑦∗ = (0, 0). 

In each model, we studied the stability of these equilibrium state and obtained the following results. 

Lemma 2.4.1 

Given 𝑎, 𝑏, 𝑐, 𝑝, 𝑞 > 0 in model A, 

(a)The equilibrium state (0, 0) is unstable. 

(b)The state (
𝑎

𝑐
, 0) is also unstable equilibrium state. 

(c)The equilibrium state  
𝑝

𝑞
,

𝑎𝑞−𝑐𝑝

𝑏𝑞
  is asymptotically stable, provided 𝑎𝑞 > 𝑐𝑝. 

Lemma 2.4.2 

Given that 𝐴 ≠ 0, 𝐵 ≠ 0 and  𝑎, 𝑏, 𝑐, 𝑝, 𝑞 > 0 in model B, 

(a)The equilibrium state (0, 0) is unstable. 

(b)The state (
𝑎

𝑐
, 0) is asymptotically stable if 𝑐𝐴 𝑝 − 𝑎 − 𝑎𝑏𝐵 and 𝑎𝑞𝐴 have the same arithmetic signs 

(c)The state  
𝑝

𝑞
,
𝑎𝑞−𝑐𝑝

𝑏𝑞
  is asymptotically stable if 𝑏𝑝 𝐴𝐵 𝑞 − 𝑐 −  𝑏𝐵2  and 𝑞   𝑎𝑞 –  𝑐𝑝 𝐴2 +  𝑏𝑝𝐴𝐵   have 

the same arithmetic signs. 

2.2   Numerical Results 

We used the data in section 2.5 to plot the following graphs in order to study the dynamics of the prey and 

predator in the two models.  
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Figure 1: Graph of prey population against time in model A where 𝜏 = 0 and model B where 𝜏 = 1 (Numerical 

solution is as shown on table A1) 

 
Figure 2: Graph of predator population against time, in model A where 𝜏 = 0 and model B where 𝜏 = 1 

(Numerical solution is as shown on table A2) 

 
Figure 3: Graph of predator population against prey population in Model A where 𝜏 = 0  

(Numerical solution is as shown on table A3) 
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Figure 4: Graph of predator population against prey population in Model B where 𝜏 = 1(Numerical solution is 

as shown on table A4). 

             

4. Discussion  

4.1. Introduction 

In this chapter, we discuss the analytical results and the results of our numerical experiments carried out with 

model A and model B presented in section 2.2. The parameter values for the experiments are shown in table 2.5. 

The graph plotted using these values are shown in figures 1 – 4 of section 3.2 above.  

 

4.2. Discussion of the Analytical Results in model A and model B. 

 Lemma 2.3.1 shows that the prey and predator populations may attain three states, in the absence of a delay. 

However, the endemic state appears to be stable, meaning that the two populations will co-exist ultimately. For 

the prey-predator interaction with delay, it is seen from lemma 2.3.2 that the populations will either co-exist or 

the predator population will die out ultimately, leaving prey population. In each case the co-existence of the two 

populations is possible if the density dependent effects in the prey are less than the prey consumption rate by the 

predator.  

 

4.3. Discussion of the Numerical Results in model A and model B. 

In our numerical experiments, the following results were obtained. 

4.3.1. Experiment One  

Here, we studied the population of prey in model A where there is no delay 𝑖. 𝑒 𝜏 = 0 , and the prey population 

in model B with delay 𝑖. 𝑒  𝜏 = 1 . Figure 1, shows that the prey populations in both models oscillate with time. 

However, the prey population in model B oscillates with higher amplitude than that in model A. 

4.3.2. Experiment Two 

In this experiment, we studied the predator populations in model A (i. e 𝜏 = 0) and model B where 𝜏 = 1. The 

result in figure 2 shows that the predator populations in each model oscillate. However, the population in model 

A oscillates with smaller amplitudes than that in model B. 

4.3.3. Experiment Three 

 In this experiment, we studied the dynamics of prey and predator populations in model A where 𝜏 = 0. The 

simulation in figure 3 shows that the two populations cycle round the endemic state (7.08, 7.72).  

4.3.4   Experiment Four 

Here, we studied the interaction between prey and predator populations in model B where 𝜏 = 1. The result in 

figure 4 shows that the population oscillates about the equilibrium state (7.08, 7.72). 
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5. Conclusion  

In this research work, we have been able to study and compare two nonlinear prey-predator models, one with 

delay and the other without delay. Predator is recognized as one of the organizing forces in community ecology, 

though ecologists continue to explore its various implications. Predators are very important in controlling pests 

in agriculture. Natural predators are an environmentally friendly and sustainable way of reducing damage to 

crops, and are one alternative to the use of chemical agents such as pesticides. The two models and their 

parameters are shown in section 2.2. We obtained all the equilibrium states of the two models and studied the 

stability of these equilibrium states using linearization approach. In the model without delay, we showed that the 

trivial state and the state where prey population exists with predator population being extinct are unstable while 

the endemic state is locally asymptotically stable. However, in the model with delay, we proved that the 

endemic state and the state where prey population exists with predator population being extinct are locally 

asymptotically stable while the trivial state is unstable. This confirms the role delay play as stabilizers in prey-

predator interactions. Numerical solutions of the two models using hypothetical data agree with the qualitative 

results.  

 

APPENDIX A 

List of Tables 

Table A 1: The Numerical Solution for Model A and Model B (Parameter Values are as in Experiment 1 of 

Section 2.5) 

Time Prey population (Model A) Prey population (Model B) 

0 20 20 

3 4 4 

6 2 1 

9 2 1 

12 

15 

18 

21 

24 

27 

30 

33 

36 

39 

42 

45 

48 

52 

54 

5 

13 

17 

3 

2 

3 

7 

15 

11 

3 

2 

4 

9 

16 

6 

3 

8 

20 

29 

2 

0 

0 

1 

3 

8 

24 

47 

3 

0 

0 

 

Table A2: The Numerical Solution for Model A and Model B (Parameter Values are as in Experiment 2 of 

Section 2.5) 

Time Predator populations 

(Model A) 

Predator populations 

(Model B) 

0 10 10 

3 20 23 

6 8 11 

9 3 4 

12 2 1 

15 2 1 
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18 13 2 

21 17 10 

24 7 32 

27 3 11 

30 2 3 

33 4 1 

36 17 0 

39 

42 

45 

48 

51 

54 

13 

6 

3 

3 

7 

17 

0 

0 

6 

48 

18 

5 

 

Table A3: The Numerical Solution for Model A (Parameter Values are as in Experiment 3 of Section 2.5) 

Time           Prey population      Predator population   

0 20 10 

3 4 20 

6 2 8 

9 2 3 

12 5 2 

15 13 2 

18 17 13 

21 3 17 

24 2 7 

27 3 3 

30 7 2 

33 15 4 

36 11 17 

39 3 13 

42 2 6 

45 4 3 

48 9 3 

51 16 7 

54 6 17 

 

Table A4: The Numerical Solution for Model B (Parameter Values are as in Experiment 4 of Section 2.5) 

Time Prey population Predator population 

0 20 10 

3 4 23 

6 1 11 

9 1 4 

12 3 1 

15 8 1 

18 20 2 

21 29 10 

24 2 32 

27 0 11 

30 0 3 
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33 1 1 

36 3 0 

39 8 0 

42 24 0 

45 47 6 

48 3 48 

51 

54 

0 

0 

18 

5 
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