
Available online www.jsaer.com

Journal of Scientific and Engineering Research

282

Journal of Scientific and Engineering Research, 2019, 6(2):282-286

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Solid Principles in Android Development with Kotlin

Naga Satya Praveen Kumar Yadati

Company: DBS Bank Ltd

Email: praveenyadati@gmail.com

Abstract In the realm of software engineering, adhering to SOLID principles can lead to the creation of robust,

maintainable, and scalable applications. These principles, formulated by Robert C. Martin, are particularly

pertinent in Android development where the complexity of applications continues to grow. This paper delves

into the application of SOLID principles in Android development using Kotlin, a modern and expressive

programming language. By examining practical examples and common scenarios in Android development, we

aim to demonstrate how the Single Responsibility Principle, Open/Closed Principle, Liskov Substitution

Principle, Interface Segregation Principle, and Dependency Inversion Principle can be effectively implemented

to improve code quality and maintainability.

Keywords SOLID Principles, Android Development, Kotlin, Single Responsibility Principle, Open/Closed

Principle, Liskov Substitution Principle, Interface Segregation Principle, Dependency Inversion Principle,

Software Engineering, Code Maintainability

1. Introduction

In the field of software engineering, SOLID principles are a set of guidelines that promote good design and

architecture. These principles, introduced by Robert C. Martin (also known as Uncle Bob), help developers

create software that is easier to manage, extend, and understand. Applying these principles in Android

development using Kotlin can significantly improve the quality of the codebase and enhance the maintainability

of the application. This paper explores how each of the SOLID principles can be implemented in Android

development with Kotlin.

SOLID Principles Overview

SOLID is an acronym that stands for:

1. Single Responsibility Principle (SRP)

2. Open/Closed Principle (OCP)

3. Liskov Substitution Principle (LSP)

4. Interface Segregation Principle (ISP)

5. Dependency Inversion Principle (DIP)

Definition: A class should have only one reason to change, meaning it should only have one job or

responsibility.

Importance: The Single Responsibility Principle is crucial in reducing the complexity of code. When a class is

focused on a single responsibility, it becomes easier to understand, test, and maintain. This leads to better-

organized code and reduces the risk of introducing bugs when changes are made.

Implementation in Kotlin: In Android development, activities and fragments often become too bloated by

handling UI logic, business logic, and data operations. By applying SRP, we can separate these concerns into

different classes.

mailto:praveenyadati@gmail.com

Yadati NSPK Journal of Scientific and Engineering Research, 2019, 6(2):282-286

Journal of Scientific and Engineering Research

283

2. Open/Closed Principle (OCP)

Definition: Software entities should be open for extension but closed for modification.

Importance: The Open/Closed Principle encourages a design that allows the behavior of a system to be

extended without altering its source code. This reduces the risk of introducing bugs in existing functionality and

makes the code more adaptable to new requirements.

Implementation in Kotlin: This principle encourages the use of polymorphism to extend the behavior of

classes without modifying their source code.

Yadati NSPK Journal of Scientific and Engineering Research, 2019, 6(2):282-286

Journal of Scientific and Engineering Research

284

3. Liskov Substitution Principle (LSP)

Definition: Objects of a superclass should be replaceable with objects of a subclass without affecting the

correctness of the program.

Importance: The Liskov Substitution Principle ensures that a subclass can stand in for its superclass without

affecting the correctness of the program. This principle is vital for ensuring that a derived class maintains the

behavior expected of its base class, promoting reliable and predictable code.

Implementation in Kotlin: LSP ensures that derived classes extend the base class without changing its

behavior. This principle is crucial when designing hierarchies in Android applications.

4. Interface Segregation Principle (ISP)

Definition: Clients should not be forced to depend upon interfaces that they do not use.

Importance: The Interface Segregation Principle helps to avoid "fat" interfaces, ensuring that classes depend

only on the methods they use. This leads to more modular and flexible code, as changes to one part of the

interface do not impact classes that do not use that part.

Implementation in Kotlin: This principle advocates for creating specific interfaces for different client needs

rather than a single, broad interface.

Yadati NSPK Journal of Scientific and Engineering Research, 2019, 6(2):282-286

Journal of Scientific and Engineering Research

285

5. Dependency Inversion Principle (DIP)

Definition: High-level modules should not depend on low-level modules. Both should depend on abstractions.

Abstractions should not depend on details. Details should depend on abstractions.

Implementation in Kotlin: DIP promotes the use of dependency injection to manage dependencies, which is a

common practice in Android development.

6. Conclusion

Applying SOLID principles in Android development with Kotlin leads to cleaner, more maintainable, and

scalable code. By adhering to these principles, developers can ensure that their applications are easier to

understand, extend, and modify, which is essential in a rapidly evolving technological landscape. This paper has

provided a detailed exploration of each SOLID principle with practical examples, demonstrating their

importance and applicability in real-world Android development scenarios.

References

[1]. E. Chebanyuk, "Algebra Describing Software Static Models," International Journal “Information

Technologies and Knowledge, vol. 7, no. 1, pp. 83-93, 2013, ISSN 1313-0455.

[2]. C. Alexander, “The origins of pattern theory: The future of the theory, and the generation of a living

world,” IEEE Software, vol. 16, no. 5, pp. 71–82, September/October 1999.

[3]. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design Patterns: Elements of Reusable Object-

Oriented Software," Addison-Wesley, 1995.

[4]. W. Haoyu and Z. Haili, "Basic Design Principles in Software Engineering," 2012 Fourth International

Conference on Computational and Information Sciences, 2012, pp. 1251-1254, doi:

10.1109/ICCIS.2012.91

Yadati NSPK Journal of Scientific and Engineering Research, 2019, 6(2):282-286

Journal of Scientific and Engineering Research

286

[5]. M. Oruc, F. Akal, and H. Sever, "Detecting Design Patterns in Object-Oriented Design Models by

Using a Graph Mining Approach," 2016 4th International Conference in Software Engineering

Research and Innovation (CONISOFT), 2016, pp. 115-121, doi: 10.1109/CONISOFT.2016.26.

[6]. J. Braeuer, "Measuring Object-Oriented Design Principles," 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE), 2015, pp. 882-885, doi:

10.1109/ASE.2015.17.

[7]. H. Mu and S. Jiang, "Design patterns in software development," 2011 IEEE 2nd International

Conference on Software Engineering and Service Science, 2011, pp. 322-325, doi:

10.1109/ICSESS.2011.5982228.

[8]. R. Subburaj, G. Jekese, and C. Hwata, "Impact of Object Oriented Design Patterns on Software

Development," International Journal of Scientific and Engineering Research, vol. 6, no. 2, March 2015,

ISSN 2229-5518.

[9]. J. Bräuer, R. Plösch, M. Saft, and C. Körner, "A Survey on the Importance of Object-Oriented Design

Best Practices," 2017 43rd Euromicro Conference on Software Engineering and Advanced

Applications (SEAA), Vienna, 2017, pp. 27-34, doi: 10.1109/SEAA.2017.14.

[10]. H. Singh and S. I. Hassan, "Effect of SOLID Design Principles on Quality of Software: An Empirical

Assessment," International Journal of Scientific & Engineering Research, vol. 6, no. 4, April 2015,

ISSN 2229-5518.

[11]. F. Khomh and Y. Guéhéneuc, "Design patterns impact on software quality: Where are the theories?,"

2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering

(SANER), 2018, pp. 15-25, doi: 10.1109/SANER.2018.8330193.

[12]. R. C. Martin, "Agile Software Development: Principles, Patterns, and Practices in C#," Prentice Hall

PTR, 2006.

[13]. R. C. Martin, "Design Principles and Design Patterns," 2000. [Online]. Available:

http://www.objectmentor.com.

http://www.objectmentor.com/

