
Available online www.jsaer.com

Journal of Scientific and Engineering Research

311

Journal of Scientific and Engineering Research, 2019, 6(12):311-314

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Key Solutions to Optimize Database SQL Queries

Vishnupriya S Devarajulu

Vishnupriyasupriya@gmail.com

Abstract: Optimizing SQL Queries is crucial for enhancing the performance and efficiency of database-driven

applications. This article explores key solutions to the performance issues in SQL queries, with code samples

and detailed explanations. Best practices such as using indexes, avoiding unnecessary columns in SELECT

statements, using schema names with object names, and optimizing joins and subqueries and other solutions are

discussed. By following these optimization techniques, developers can provide more efficient database with

improved application performance.

Keywords: Database Optimization, SQL Queries, Performance Tuning, Indexing, Query Optimization

Introduction

SQL queries are fundamental pillars to the database operations, such as data retrieval, manipulation, and storage.

However, weak, inefficient SQL queries can lead to significant performance bottlenecks, there by affecting the

overall performance of applications. This article provides best practical solutions for optimizing SQL queries,

addressing performance issues with explanations and code samples.

Key Solutions

1. Use Proper Indexes

Issue: Lack of necessary indexes can lead to slow query performance due to full table scans.

Solution: Create indexes on columns that are used in WHERE clauses, JOIN conditions, and ORDER BY

clauses.

CREATE INDEX idx_customer_lastname

ON Customers LastName;

Use Joins Instead of Subqueries

Issue: Subqueries are less efficient and harder for the query optimizer to optimize.

Solution: Use JOIN operations to improve query performance.

-- Subquery –- Inefficient way

SELECT FirstName, LastName

FROM Customers

WHERE CustomerID IN (SELECT CustomerID FROM Orders WHERE OrderDate > '2019-

01-01');

-- Join –- Efficient way

SELECT c.FirstName, c.LastName

FROM Customers c

JOIN Orders o ON c.CustomerID = o.CustomerID

Devarajulu VS Journal of Scientific and Engineering Research, 2019, 6(12):311-314

Journal of Scientific and Engineering Research

312

WHERE o.OrderDate > '2019-01-01';

Avoid Using SELECT*

Issue: Selecting all columns can lead to inefficient use of resources and slower performance.

Solution: Select only the columns that are needed.

SELECT FirstName, LastName

FROM Customers

WHERE OrderName = 'Apple';

Filter Early

Issue: Filtering data late in the query can lead to processing large data sets unnecessarily.

Solution: Apply filters as early as possible in the query.

SELECT FirstName, LastName

FROM Customers

WHERE CustomerDetail = 'Apple’

ORDER BY LastName;

Avoid Functions on Indexed Columns

Issue: Using functions on indexed columns can prevent the use of indexes.

Solution: Avoid functions on indexed columns in WHERE clauses.

-- Inefficient way

SELECT * FROM Customers

WHERE YEAR(BirthDate) = 1990;

-- Efficient way

SELECT * FROM Customers

WHERE BirthDate BETWEEN '1990-01-01' AND '1990-12-31';

Use EXISTS Instead of IN for Subqueries

Issue: The IN clause is inefficient when used with subqueries.

Solution: Use EXISTS for better performance.

-- Using IN – Inefficient way

SELECT FirstName, LastName

FROM Customers

WHERE CustomerID IN (SELECT CustomerID FROM Orders WHERE OrderDate > '2019-

01-01');

-- Using EXISTS – Efficient way

SELECT FirstName, LastName

FROM Customers c

WHERE EXISTS (SELECT 1 FROM Orders o WHERE o.CustomerID = c.CustomerID AND

o.OrderDate > '2019-01-01');

Avoid Wildcards at the Beginning of LIKE

Issue: Using wildcards at the beginning of LIKE patterns prevents the use of indexes.

Solution: Avoid leading wildcards in LIKE patterns.

-- Inefficient way

SELECT * FROM Customers

Devarajulu VS Journal of Scientific and Engineering Research, 2019, 6(12):311-314

Journal of Scientific and Engineering Research

313

WHERE LastName LIKE '%son';

-- Efficient way

SELECT * FROM Customers

WHERE LastName LIKE 'John%';

Optimize ORDER BY With Indexes

Issue: Sorting large data sets can lead to heavy resource utilization

Solution: Use indexes on columns used in ORDER BY clauses.

CREATE INDEX idx_customer_lastname

ON Customers (LastName);

SELECT FirstName, LastName

FROM Customers

ORDER BY LastName;

Use UNION ALL Instead Of UNION

Issue: UNION removes duplicates, which adds overhead.

Solution: Use UNION ALL if duplicates are not a concern.

-- Using UNION

SELECT FirstName FROM Customers

UNION

SELECT FirstName FROM Employees;

-- Using UNION ALL

SELECT FirstName FROM Customers

UNION ALL

SELECT FirstName FROM Employees;

Limit The Result Set

Issue: Retrieving more data than necessary leads to resource utilization

Solution: Use the LIMIT clause to restrict the number of rows returned.

SELECT FirstName, LastName

FROM Customers

ORDER BY LastName

LIMIT 10;

Conclusion

Optimizing SQL queries is crucial for providing and maintaining efficient and responsive Database. By

implementing the proposed best practices such as using proper indexes, avoiding SELECT *, using joins instead

of subqueries, avoiding functions on indexed columns, and limiting the result set, developers can significantly

improve the performance and reliability of their SQL queries. Thus, it contributes to better resource utilization

of Database and provides enhanced application performance.

References

[1]. Microsoft Docs. "Optimizing SQL Queries." Last modified June 6, 2017.

https://docs.microsoft.com/en-us/sql/relational-databases/performance/optimizing-sql-queries

[2]. SQL Server Performance. "Best Practices for Writing SQL Queries." Last accessed November 15,

2018. https://www.sql-server-performance.com/best-practices-writing-sql-queries/

Devarajulu VS Journal of Scientific and Engineering Research, 2019, 6(12):311-314

Journal of Scientific and Engineering Research

314

[3]. Redgate. "SQL Query Optimization Techniques." Last accessed October 10, 2019. https://www.red-

gate.com/simple-talk/sql/performance/sql-query-optimization-techniques/

[4]. Stack Overflow. "Optimizing SQL Queries." Last accessed March 25, 2018.

https://stackoverflow.com/questions/25278901/optimizing-sql-queries

