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Abstract The partial differential algebraic equations (PDAEs) occurs frequently in various applications in 

mathematical modeling, physical problems, multibody mechanics, spacecraft control and incompressible fluid 

dynamics. In recent years, PDAEs have received much attention, nevertheless the theory in this field is still 

young. 

In this paper, we introduce some results in the research of PDAEs. What is more, we propose a sinc-chebyshev 

collocation method for the time dependent linear PDAEs. 
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1. Introduction   

Considering the linear partial differential algebraic equations(PDAEs) of the form:  

 𝐴
𝜕𝑈 (𝑥 ,𝑡)

𝜕𝑡
+ 𝐵

𝜕2𝑈(𝑥 ,𝑡)

𝜕𝑥2 + 𝐶
𝜕𝑈(𝑥 ,𝑡)

𝜕𝑥
+ 𝐷𝑈(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), (1) 

 where 𝑡 ∈ [𝑡0,𝑇],𝐴,𝐵,𝐶,𝐷 ∈ ℝ𝑛×𝑛  and 𝑈, 𝑓: [𝑡0,𝑇] × (𝑎, 𝑏) → 𝑅𝑚 . The interest is in the case where the matrix 

A and B are singular. The singularity of A leads to the differential-algebraic aspect. The above differential 

equation is required to satisfy the following boundary and initial conditions:  

 𝐸𝑈(𝑥, 𝑡) + 𝐹
𝜕𝑈 (𝑥 ,𝑡)

𝜕𝑣
= 𝑔(𝑥, 𝑡), 𝑥 ∈ Γ, 𝑡 ∈ [𝑡0,𝑇], (2) 

 

 𝑈(𝑥, 𝑡0) = 𝑈0(𝑥), (3) 

 where E and F are known constant matrices and 𝑔(𝑥, 𝑡): [𝑡0,𝑇] × (𝑎, 𝑏) → 𝑅𝑚  and 𝑈0(𝑥)are known functions, 
𝜕

𝜕𝑣
 is the outward normal derivative such that 

𝜕

𝜕𝑣
= −

𝜕

𝜕𝑥
 at the left boundary 𝑥 = 𝑎 and 

𝜕

𝜕𝑣
=

𝜕

𝜕𝑥
 at the right 

boundary 𝑥 = 𝑏. When 𝐹 = 0 and 𝐸 ≠ 0, we call it Dirichlet type boundary condition, when 𝐸 = 0 and 𝐹 ≠ 0, 

we call it Neumann type boundary condition and when 𝐸 ≠ 0 and 𝐹 ≠ 0, we call it mixed type or Robin type 

boundary condition. Many important mathematical models can be expressed in terms of PDAEs. Such models 

arise in many areas of mathematics, engineering, physical sciences and population growth. In recent years, 

PDAEs have received much attention, nevertheless the theory in this field is still young. In paper [13], 

Debrabant and Strehmel applied Runge-Kutta methods to linear PDAEs and they proved that under certain 

conditions the temporal convergence order of the fully discrete scheme depends on the time index of the 

PDAEs. In paper [9], Bao and song proposed the meshless approach for the numerical solution of time 

dependent PDAEs in terms of finite differences scheme generated from radial basis functions (RBF-FD. In 

paper [7], they proposed two meshless collocation approaches for solving time dependent PDAEs in terms of the 

multi-quadric quasi-interpolation schemes. 

In [1], huang and zhang invited the spectral collocation methods for the DAEs. In [14] the collocation method 

for solving linear DAE boundary value problems was developed. In [15], the authors constructed Sinc-

collocation method for Fredholm integral equations. 
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In this paper, a sinc- chebyshev collocation scheme is explored for time dependent linear PDAEs. This approach 

is based on the collocation technique where the shifted chebyshev polynomials in time and the sinc function in 

space are utilized,respectively. The systems of PDAEs is reduced to a system of linear algebraic equations.To 

show the validity and efficiency of the present method, some examples are presented. 

 

2  Sinc-chebyshev collocation method for PDAEs 

In this section, we introduce some basic notations, definitions of the sinc function and the chebyshev polynomial 

and derive some known results and useful formulas for the new method.  

2.1. Sinc function 

The sinc collocation method,which was developed by F.Stenger more than twenty years ago [11], is based on 

the Whittaker-Shannon-Kotel’nikol sampling theorem for entire function as bases,has many advantages over 

classical methods that use polynomials as bases. The sinc function used is  

 𝑠𝑖𝑛𝑐(𝑡) =  
𝑠𝑖𝑛 (𝜋𝑡 )

𝜋𝑡
, 𝑡 ≠ 0

1, 𝑡 = 0
  

 and the set of basis function adopted are:  

 𝑆(𝑗, )(𝑡) = 𝑠𝑖𝑛𝑐(
𝑡−𝑗


) =  

𝑠𝑖𝑛 (
𝜋 (𝑡−𝑗 )


)

𝜋 (𝑡−𝑗 )



, 𝑡 ≠ 𝑗

1, 𝑡 = 𝑗, 𝑗 ∈ ℤ

  

 where h is the step-size and ℤ denotes the set of all integers[11]. The sinc functions form an interpolator set of 

functions, i.e.  

 𝑆(𝑗, )(𝑘) = 𝛿𝑗𝑘 =  
1, 𝑗 = 𝑘
0, 𝑗 ≠ 𝑘

  

 where 𝛿𝑗𝑘  is Kronecker delta function.If a function 𝑓(𝑡) is defined on the real line, then for any  > 0 the series  

 𝐶(𝑓, )(𝑡) =   ∞
𝑗=−∞ 𝑓(𝑗)𝑠𝑖𝑛𝑐(

𝑡−𝑗


) 

 is called the Whittaker cardinal expansion of 𝑓(𝑡) whenever the series converges. 

To construct an approximation on the interval [𝑎, 𝑏], we choose the conformal map  

 𝜙(𝑥) = 𝑙𝑛(
𝑥−𝑎

𝑏−𝑥
) 

 which maps the finite interval [𝑎, 𝑏] onto ℝ. The basis function on [𝑎, 𝑏] are taken to be the composite 

translated sinc functions:  

 𝑆𝜙 (𝑗, )(𝑥) = 𝑆(𝑗, )(𝜙(𝑥)) = 𝑠𝑖𝑛𝑐(
𝜙(𝑥)−𝑗


) 

 and these functions exhibit Kronecker delta behavior on the grid point 𝑥𝑘 ∈ (𝑎, 𝑏) defined by:  

 𝑥𝑘 = 𝜙−1(𝑘) =
𝑎+𝑏𝑒𝑘

1+𝑒𝑘
, 𝑗 = 0, ±1, ±2,… 

 For further explanation of the procedure,we consider the following definition and theorem in [11] and [12]:  

Definition 2.1  Let 𝐵(𝐷𝐸) be the class of function f which are analytic in 𝐷𝐸  and satisfy  

   
𝜙−1(𝑥+𝐿)

|𝑓(𝑧)𝑑𝑧| → 0, 𝑥 → ±∞, 

 where 𝐿 = 𝑖𝑣: |𝑣| < 𝑑 ≤
𝜋

2
, and  

   
𝜕𝐷𝐸

|𝑓(𝑧)𝑑𝑧| < ∞ 

 on the boundary of 𝐷𝐸 .  

 

 

Lemma 2.2  If 𝜙′𝑓 ∈ 𝐵(𝐷𝐸), then for all 𝑥 ∈ [𝑎, 𝑏] 

 |𝑓(𝑥) −   ∞
𝑘=−∞ 𝑓(𝑥𝑘)𝑆𝜙(𝑘, )(𝑥)| ≤

2𝑁(𝜙 ′𝑓)

𝜋𝑑
𝑒−

𝜋𝑑

  

 Further, one assumes that there are positive constant C and 𝛽 so that |𝑓(𝑥)| ≤ 𝐶𝑒𝑥𝑝(−𝛽|𝜙(𝑥)|). And if one 

selects  =  
𝜋𝑑

𝛽𝑁
≤

2𝜋𝑑

𝑙𝑛2
 , then  
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 |
𝑑𝑚 𝑓(𝑥)

𝑑𝑥𝑚
−  𝑁

𝑘=−𝑁 𝑓(𝑥𝑘)
𝑑𝑚

𝑑𝑥𝑚
𝑆𝜙 (𝑘, )(𝑥)| ≤ 𝐾𝑁(𝑚+1)/2𝑒𝑥𝑝(− 𝜋𝑑𝛽𝑁) 

 for all 𝑚 = 0,1,…𝑛.  

 We also require derivatives of composite sinc functions evaluated at the nodes:  

 𝛿𝑗𝑘
(𝑛)

=
𝑑𝑛

𝑑𝜙𝑛
[𝑆𝜙 (𝑗, )(𝑥)]|𝑥=𝑥𝑘

. 

 In particular  

 𝛿𝑗𝑘
(0)

= [𝑆𝜙 (𝑗, )(𝑥)]|𝑥=𝑥𝑘
=  

0, 𝑗 ≠ 𝑘
1, 𝑗 = 𝑘.  

 

 𝛿𝑗𝑘
(1)

= 
𝑑

𝑑𝜙
[𝑆𝜙(𝑗, )(𝑥)]|𝑥=𝑥𝑘

=  

(−1)𝑘−𝑗

(𝑘−𝑗 )
, 𝑗 ≠ 𝑘

0, 𝑗 = 𝑘.
  

 

 𝛿𝑗𝑘
(2)

= 2 𝑑2

𝑑𝜙2 [𝑆𝜙 (𝑗, )(𝑥)]|𝑥=𝑥𝑘
=

 
 
 

 
 −2(−1)𝑘−𝑗

(𝑘−𝑗 )2 , 𝑗 ≠ 𝑘

−𝜋2

3
, 𝑗 = 𝑘.

  

2.2. General orthogonal polynomials 

The general orthogonal polynomials plays a center role throughout the paper. It is well-known that Jacobi 

polynomial 𝑃𝑛
(𝛼 ,𝛽)

(𝑥) is a class of orthogonal polynomial. The associated inner product can be defined as  

 < 𝑢(𝑡), 𝑣(𝑡) >=   
1

−1
𝜔(𝑡)𝑢(𝑡)𝑣(𝑡)𝑑𝑡 

 with a weight function 𝜔(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽 ,𝛼,𝛽 > −1:  

 𝑃𝑘
(𝛼 ,𝛽)

(𝑥) =
1

2𝑘
  𝑘
𝑙=0  

𝑘 + 𝛼
𝑘 − 𝑙

 (𝑘 + 𝛽𝑙)(𝑥 − 1)𝑙(𝑥 + 1)𝑘−𝑙 , 

 Especially, Legendre polynomial is a class of Jacobi polynomial with 𝛼 = 𝛽 = 0 and Chebyshev polynomial of 

the first kind is another class with 𝛼 = 𝛽 = −
1

2
. 

 

2.3. The sinc-chebyshev collocation method 

This section is devoted to the sinc-chebyshev collocation method for the time dependent PDAEs and its 

convergence analysis. First of all, we approximate 𝑈(𝑥, 𝑡) by the sinc function in space and the chebyshev 

polynomials in time:  

 𝑈𝑀 ,𝑁(𝑥, 𝑡) =

 

 
 
𝑈𝑀 ,𝑁

1

𝑈𝑀 ,𝑁
2

⋮
𝑈𝑀 ,𝑁
𝑛

 

 
 

=

 

 
 

  𝑀
𝑖=−𝑀   𝑁

𝑗=0 𝑐𝑖 ,𝑗
1 𝑆𝜙 (𝑖, )(𝑥)𝑇𝜏 ,𝑗 (𝑡)

  𝑀
𝑖=−𝑀   𝑁

𝑗=0 𝑐𝑖 ,𝑗
2 𝑆𝜙 (𝑖, )(𝑥)𝑇𝜏 ,𝑗 (𝑡)

⋮
  𝑀
𝑖=−𝑀   𝑁

𝑗=0 𝑐𝑖 ,𝑗
𝑛 𝑆𝜙 (𝑖, )(𝑥)𝑇𝜏 ,𝑗 (𝑡)

 

 
 

 (4) 

In order to discretizing the PDAEs, the lemma is given as follows: 

 

Lemma 2.3  Let 𝑥𝑘  be the spatial collocation points, then  

 
𝜕𝑈𝑀 ,𝑁

𝜕𝑡
(𝑥𝑘 , 𝑡) =

 

 
 

  𝑁
𝑗=0 𝑐𝑘 ,𝑗

1 𝑇′𝜏 ,𝑗 (𝑡)

  𝑁
𝑗=0 𝑐𝑘 ,𝑗

2 𝑇′𝜏 ,𝑗 (𝑡)

⋮
  𝑁
𝑗=0 𝑐𝑘 ,𝑗

𝑛 𝑇′𝜏 ,𝑗 (𝑡)
 

 
 

 (5) 
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𝜕𝑈𝑀 ,𝑁

𝜕𝑥
(𝑥𝑘 , 𝑡) =

 

 
 

  𝑀
𝑖=−𝑀   𝑁

𝑗=0 𝑐𝑖 ,𝑗
1 𝜙′(𝑥𝑘)𝛿𝑖 ,𝑘

(1)
𝑇𝜏 ,𝑗 (𝑡)

  𝑀
𝑖=−𝑀   𝑁

𝑗=0 𝑐𝑖 ,𝑗
2 𝜙′(𝑥𝑘)𝛿𝑖 ,𝑘

(1)
𝑇𝜏 ,𝑗 (𝑡)

⋮

  𝑀
𝑖=−𝑀   𝑁

𝑗=0 𝑐𝑖 ,𝑗
𝑛 𝜙′(𝑥𝑘)𝛿𝑖 ,𝑘

(1)
𝑇𝜏 ,𝑗 (𝑡) 

 
 

 (6) 

 
𝜕2𝑈𝑀 ,𝑁

𝜕𝑥2 (𝑥𝑘 , 𝑡) =

 

 
 

  𝑀
𝑖=−𝑀   𝑁

𝑗=0 𝑐𝑖 ,𝑗
1 (𝜙′′(𝑥𝑘)𝛿𝑖 ,𝑘

(1)
) + 𝜙′

2(𝑥𝑘)𝛿𝑖 ,𝑘
(2)

)𝑇𝜏 ,𝑗 (𝑡)

  𝑀
𝑖=−𝑀   𝑁

𝑗=0 𝑐𝑖 ,𝑗
2 (𝜙′′(𝑥𝑘)𝛿𝑖 ,𝑘

(1)
) + 𝜙′

2(𝑥𝑘)𝛿𝑖 ,𝑘
(2)

)𝑇𝜏 ,𝑗 (𝑡)

⋮

  𝑀
𝑖=−𝑀   𝑁

𝑗=0 𝑐𝑖 ,𝑗
𝑛 (𝜙′′(𝑥𝑘)𝛿𝑖 ,𝑘

(1)
) + 𝜙′

2(𝑥𝑘)𝛿𝑖 ,𝑘
(2)

)𝑇𝜏 ,𝑗 (𝑡) 

 
 

 (7) 

Let coefficients  

 Λ𝑝 =

 

 
 

𝑐−𝑀 ,0
𝑝

𝑐−𝑀 ,1
𝑝

⋯ 𝑐−𝑀 ,𝑁
𝑝

𝑐−𝑀+1,0
𝑝

𝑐−𝑀+1,1
𝑝

⋯ 𝑐−𝑀+1,𝑁
𝑝

⋮ ⋮ ⋯ ⋮
𝑐𝑀 ,0
𝑝

𝑐𝑀 ,1
𝑝

⋯ 𝑐𝑀 ,𝑁
𝑝

 

 
 

, 𝑝 = 1,2⋯𝑛 

 In order to determine the coefficients, we use the roots 𝑡𝑙 , 𝑙 = 1,2,…𝑁 of the shifted Chebyshev polynomials 

𝑇𝜏 ,𝑁−1. 

The PDAES  

 𝐴
𝜕𝑈 (𝑥 ,𝑡)

𝜕𝑡
+ 𝐵

𝜕2𝑈(𝑥 ,𝑡)

𝜕𝑥2 + 𝐶
𝜕𝑈(𝑥 ,𝑡)

𝜕𝑥
+ 𝐷𝑈(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 

 can be written as:  

 𝐴Λ𝑘𝑇′𝑙 + 𝐵

 

 

𝑃𝑘Λ1𝑇𝑙
𝑃𝑘Λ2𝑇𝑙
⋮
𝑃𝑘Λ𝑁𝑇𝑙 

 + 𝐶

 

 

𝑄𝑘Λ1𝑇𝑙
𝑄𝑘Λ2𝑇𝑙
⋮
𝑄𝑘Λ𝑁𝑇𝑙 

 + 𝐷Λ𝑘𝑇𝑙 = 𝑓(𝑥𝑘 , 𝑡𝑙) (8) 

 where  

 Λ𝑘 =

 

 
 
𝑐𝑘 ,0

1 𝑐𝑘 ,1
1 ⋯ 𝑐𝑘 ,𝑁

1

𝑐𝑘 ,0
2 𝑐𝑘 ,1

2 ⋯ 𝑐𝑘 ,𝑁
2

⋮ ⋮ ⋯ ⋮
𝑐𝑘 ,0
𝑛 𝑐𝑘 ,1

𝑛 ⋯ 𝑐𝑘 ,𝑁
𝑛

 

 
 

,𝑇𝑙 =

 

 

𝑇𝜏 ,0(𝑡𝑙)

𝑇𝜏 ,1(𝑡𝑙)

⋮
𝑇𝜏 ,𝑁(𝑡𝑙) 

 , 

 𝑃𝑘 = (𝑝−𝑀,𝑘 , 𝑝−𝑀+1,𝑘 ,⋯ , 𝑝𝑀 ,𝑘),𝑤𝑒𝑟𝑒𝑝𝑖 ,𝑘 = 𝜙′(𝑥𝑘)𝛿𝑖𝑘
(1)

, 

 

 𝑄𝑘 = (𝑞−𝑀 ,𝑘 , 𝑞−𝑀+1,𝑘 ,⋯ , 𝑞𝑀 ,𝑘),𝑤𝑒𝑟𝑒𝑞𝑖 ,𝑘 = 𝜙′′(𝑥𝑘)𝛿𝑖𝑘
(1)

+ 𝜙′
2(𝑥𝑘)𝛿𝑖𝑘

(2)
, 

 The boundary condition and the initial condition in 2𝑀 + 1 points 𝑥𝑘  can be written as:  

  

𝑈1(𝑥𝑘 , 0)

𝑈2(𝑥𝑘 , 0)
⋮
𝑈𝑛(𝑥𝑘 , 0)

 =

 

 
 

  𝑁
𝑗=0 (−1)𝑗 𝑐𝑘 ,𝑗

1

  𝑁
𝑗=0 (−1)𝑗 𝑐𝑘 ,𝑗

2

⋮
  𝑁
𝑗=0 (−1)𝑗 𝑐𝑘 ,𝑗

𝑛

 

 
 

=  

𝑔1(𝑥𝑘)

𝑔2(𝑥𝑘)
⋮
𝑔𝑛(𝑥𝑘)

  (9) 

 

 

 
 
 

𝜕𝑈1

𝜕𝑡
(𝑥𝑘 , 0)

𝜕𝑈2

𝜕𝑡
(𝑥𝑘 , 0)

⋮
𝜕𝑈𝑛

𝜕𝑡
(𝑥𝑘 , 0) 

 
 
 

=

 

 
 
 

  𝑁
𝑗=0 (−1)𝑗−1 2𝑗 2

𝜏
𝑐𝑘 ,𝑗

1

  𝑁
𝑗=0 (−1)𝑗−1 2𝑗 2

𝜏
𝑐𝑘 ,𝑗

2

⋮

  𝑁
𝑗=0 (−1)𝑗−1 2𝑗 2

𝜏
𝑐𝑘 ,𝑗
𝑛
 

 
 
 

=  

1(𝑥𝑘)

2(𝑥𝑘)
⋮
𝑛(𝑥𝑘)

  (10) 

Applying vec operator to (3.5 3.7), we obtain  

 (𝑇𝑙 ′
𝑇 ⊗𝐴 + 𝑇𝑙

𝑇 ⊗𝐷)𝑣𝑒𝑐Λ𝑘 + (𝑇𝑙
𝑇 ⊗ (𝐵1𝑃𝑘 + 𝐶1𝑄𝑘),⋯ ,𝑇𝑙

𝑇 ⊗ (𝐵𝑛𝑃𝑘 +

𝐶𝑛𝑄𝑘)) 

𝑣𝑒𝑐Λ1

𝑣𝑒𝑐Λ2

⋮
𝑣𝑒𝑐Λ𝑛

 = 𝑓(𝑥𝑘 , 𝑡𝑙) (11) 
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 (𝑊1
𝑇 ⊗ 𝐼)𝑣𝑒𝑐Λ𝑘 =  

𝑔1(𝑥𝑘)

𝑔2(𝑥𝑘)
⋮
𝑔𝑛(𝑥𝑘)

 ,𝑤𝑒𝑟𝑒𝑊1 = (1,−1,1,… , (−1)𝑁) (12) 

 (𝑊2
𝑇 ⊗ 𝐼)𝑣𝑒𝑐Λ𝑘 =  

1(𝑥𝑘)

2(𝑥𝑘)
⋮
𝑛(𝑥𝑘)

 ,𝑤𝑒𝑟𝑒𝑊2 = (1,1,1,… , (1)𝑁) (13) 

Thus, from equations(3.8) − (3.10) we know that Λ𝑘  can be obtained by solving the linear equations:  

  

𝐴1

𝐴2

𝐴3

  

𝑣𝑒𝑐Λ1

𝑣𝑒𝑐Λ2

⋮
𝑣𝑒𝑐Λ𝑛

 =  
𝑓
𝑔


 , 

Here 𝑣𝑒𝑐 is the 𝑣𝑒𝑐 operator such that 𝑣𝑒𝑐(Λ𝑝) is the vector of columns of Λ𝑝  stacked one under the other and 

⊗ denotes the Kronecker product. Once 𝑣𝑒𝑐(Λ𝑝) is determined, we plug it back to equations(3.1) to obtain 

𝑈𝑀 ,𝑁(𝑥, 𝑡) . 

3.  Conclusions and future work  

By discretizing a class of initial problem of PDAEs with the sinc-collocation method, we have obtained a new 

numerical method for PDAEs and analyzed the structure of the method. In the process of getting the numerical 

solution by the above method, we need to solve the system of linear equations with special structures. Our future 

work will focus on extending the application scopes of these theorems. 
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