
Available online www.jsaer.com

Journal of Scientific and Engineering Research

247

Journal of Scientific and Engineering Research, 2019, 6(1):247-251

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Continuous Integration/Continuous Deployment (CI/CD) for Cloud Native

Infrastructure and Applications: Embracing GitOps

Savitha Raghunathan

saveetha13@gmail.com

Abstract This whitepaper delves into integrating Continuous Integration and Continuous Deployment (CI/CD)

methodologies with GitOps principles for cloud-native applications. As organizations accelerate their adoption

of cloud-native technologies, the need for more efficient, reliable, and scalable software delivery methods

becomes paramount. GitOps offers a paradigm shift in managing infrastructure and applications using Git as the

single source of truth. This paper explores the fundamentals of GitOps, its integration into CI/CD pipelines, the

architectural considerations, advantages, challenges, and future directions of adopting GitOps practices.

Keywords GitOps, Continuous Integration (CI), Continuous deployment (CD), Cloud Native, Kubernetes,

Application deployment

1. Introduction

The evolution of cloud native technologies has warranted a transformation in how software is developed,

deployed, and managed at scale. The CI/CD pipeline, a cornerstone of modern DevOps practices, automates the

steps from code integration to deployment. GitOps extends these practices by leveraging Git as the central

mechanism for version control, collaboration, declarative infrastructure, and application management [5]. This

method boosts both the efficiency and reliability of delivering software, conforming to the principles of

Infrastructure as Code (IaC) and immutable infrastructure.

 2. What is GitOps?

GitOps is a term that emerged in the cloud native ecosystem as a novel approach to software deployment and

operations, drawing heavily on the principles and practices of DevOps but with a specific emphasis on using Git

as the core tool for managing infrastructure and applications. This methodology adopts DevOps principles such

as version control, collaboration, compliance, and continuous integration/deployment from application

development to automate infrastructure. By leveraging Git as the central repository for declarative infrastructure

and applications, GitOps empowers teams to handle their infrastructure using the identical tools and

methodologies employed in code development [6]. It includes everything from provisioning new infrastructure,

deploying applications, and updating configurations.

2.1 Definition and key concepts

GitOps is defined as using Git as a single source of truth for declarative infrastructure and applications. With Git

at the center of the CI/CD pipeline, every change to the system is codified and versioncontrolled, allowing for

automated management, monitoring, and rollback of systems based on the Git repository's state [6].

GitOps is based on several key ideas, including declarative system configuration [5][8], where every aspect

needed to operate a system is precisely defined and stored in Git, allowing for exact system replication from the

repository. It leverages version control for a detailed and immutable record of all modifications, supporting

audits, rollbacks, and traceability. Automation plays a critical role, with CI/CD pipelines ensuring that updates

Raghunathan S Journal of Scientific and Engineering Research, 2019, 6(1):247-251

Journal of Scientific and Engineering Research

248

are seamlessly applied to match the intended state in Git, extending to system recovery and self-healing.

Additionally, GitOps utilizes software agents within environments like Kubernetes clusters to continuously

verify and align the system state with the specified configurations in Git [9].

2.2 GitOps and Kubernetes

Figure 1: Flux integration with Kubernetes [1]

 GitOps practices have been particularly effective in Kubernetes environments. Kubernetes' declarative nature

and configuration through YAML files align perfectly with GitOps principles. Tools developed to facilitate

GitOps workflows, such as Weaveworks' Flux [2] as shown in Fig 1, provide mechanisms to automatically

apply updates to Kubernetes clusters based on changes in a Git repository. This allows for seamless

synchronization between the source code repository and the running state of applications in Kubernetes,

facilitating features like automated deployments, rollbacks, and configuration changes.

3. Benefits of GitOps

The adoption of GitOps offers several benefits, including:

● Improved Developer Productivity: Developers can manage infrastructure and deploy applications

using familiar Git operations, reducing the learning curve and speeding up development cycles.

● Enhanced Visibility and Control: The entire state of the system is visible in Git, and changes can

only be made through Git commits, providing a clear audit trail and simplifying compliance and

governance.

● Increased Operational Efficiency: Automating deployment and management tasks reduces manual

errors and frees up operational teams to focus on value-adding activities.

● Enhanced Security: Using Git as the control mechanism allows for the integration of security

practices into the deployment process [9].

4. How to Architect a GitOps Pipeline

Architecting a GitOps pipeline requires a strategic integration of tools and practices designed to automate and

manage the deployment and operation of cloud-native applications efficiently. The key components of a GitOps

pipeline form an ecosystem that supports the principles of immutability, automation, and declarative

configurations. Expanding on each of these components:

Raghunathan S Journal of Scientific and Engineering Research, 2019, 6(1):247-251

Journal of Scientific and Engineering Research

249

Figure 2: Example Gitops pipeline using Flux [4]

4.1 Source Code Repository

The repository is the heart of the GitOps workflow, storing not just application code but also the entire desired

state of the infrastructure and configurations in a declarative manner [4]. This includes Kubernetes manifests,

Helm charts, and any other infrastructure as code (IaC) templates.

● Best Practices: To manage deployments across various stages, use separate branches for different

environments (e.g., development, staging, production). Implementing pull request reviews and

integrating automated testing within the Git workflow enhances reliability and collaboration.

4.2 Continuous Integration (CI) Tools

Continuous Integration (CI) tools are responsible for automatically building, testing, and validating the code in

response to changes committed to the repository [4]. This tooling and process ensures that only high-quality

code that passes all tests is considered for deployment.

● Integration with GitOps: CI tools can be configured to automatically trigger builds based on Git events,

such as a merge into the main branch. Successful builds can trigger the CI tool to update the Docker

image in the container registry and push the new image version to the source code repository as part of

the deployment specification.

4.3 Continuous Deployment (CD) Tools with GitOps Capabilities

Continuous Deployment (CD) tools designed explicitly for GitOps, like Argo CD or Flux, monitor the source

code repository for changes to the deployment specifications. These tools automatically apply changes to the

Kubernetes environment, ensuring that the actual state matches the desired state declared in Git [4].

● Key Features: These tools provide automated rollbacks, detailed auditing, and synchronization checks.

They can also manage complex deployments across multiple environments and support canary or blue-

green deployment strategies to minimize risks.

4.4 Container Orchestration Platforms

Kubernetes serves as the operational backbone, orchestrating containerized applications' deployment, scaling,

and management. It interprets and enforces the desired state defined in the Git repository.

● Integration with GitOps: Kubernetes' declarative API and its ability to self-heal align perfectly with

GitOps principles. Tools like Argo CD or Flux extend Kubernetes' capabilities by adding a layer of

automation and monitoring to ensure the desired state of the application/Infrastructure in Git is

accurately reflected in the Kubernetes environment.

Raghunathan S Journal of Scientific and Engineering Research, 2019, 6(1):247-251

Journal of Scientific and Engineering Research

250

Figure 3: Operating model for Kubernetes [3]

4.5 Monitoring and Alerting

Monitoring and alerting are crucial for maintaining application reliability and performance. Tools like

Prometheus for monitoring and Grafana for visualization provide insights into application and infrastructure

health, performance metrics, and operational status

● Integration with GitOps: These tools can be configured to automatically alert teams about

discrepancies between the declared state in Git and the actual state of the environment [8]. They

support the GitOps principle of correcting divergence, enabling teams to respond quickly to issues.

5. Challenges

• Learning Curve: Teams may face challenges in adopting new tools and shifting to a GitOps mindset

[7].

• Complexity in Large Environments: Managing numerous Git repositories and ensuring consistency

across large, distributed systems can be complex.

• Security Concerns: The central role of Git necessitates implementing strict security practices to

prevent unauthorized access and changes.

6. Future Direction

The future of GitOps is likely to evolve towards greater automation, with AI and machine learning playing roles

in predictive modeling and anomaly detection. Integration with serverless architectures and adopting GitOps

across multi-cloud environments will further expand its applicability and efficiency.

7. Conclusion

Embracing GitOps within CI/CD pipelines for cloud native applications represents a significant leap toward a

more efficient, reliable, and scalable software delivery system. By leveraging Git as the single source of truth

and automating the deployment and management of infrastructure and applications, organizations can achieve

unprecedented levels of operational excellence. The future of GitOps is bright, with ongoing innovations

expected to unlock new capabilities in cloud native application delivery.

References

[1]. M. Nguyen, “Continuous Deployment to Kubernetes with GitOps (Weave Flux),” Medium, Jul. 25,

2018. https://medium.com/@m.k.joerg/gitops-weave-flux-in-detail-77ce36945646

[2]. “Weave Flux,” GitHub, Aug. 01, 2018. https://github.com/fluxcd/flux priority_high Webpage author

[3]. A. Richardson and Weaveworks, “What Is GitOps Really?,” Medium, Oct. 02, 2018.

https://medium.com/weaveworks/what-is-gitops-really-e77329f23416

Raghunathan S Journal of Scientific and Engineering Research, 2019, 6(1):247-251

Journal of Scientific and Engineering Research

251

[4]. A. Richardson and Weaveworks, “The GitOps Pipeline — Part 2,” Weaveworks Blog, Sep. 28, 2018.

https://medium.com/weaveworks/the-gitops-pipeline-part-2-c53fbc79960d

[5]. A. Williams, “GitOps for Kubernetes: A DevOps Iteration Focused on Declarative Infrastructure,” The

New Stack, Feb. 27, 2018. https://thenewstack.io/gitops-kubernetesdevops-iteration-focused-

declarative-infrastructure/

[6]. D. Bryant, “‘GitOps’: Weaveworks Explain Their Model for Using Developer Tooling to Implement

CI/CD,” InfoQ, Sep. 06, 2018. https://www.infoq.com/news/2018/09/gitopsweaveworks/

[7]. T. A. Limoncelli, “GitOps: A Path to More Self-service IT,” ACM Queue, vol. 16, no. 3, pp. 13– 26,

Jun. 2018, doi: https://doi.org/10.1145/3236386.3237207.

[8]. A. Richardson and Weaveworks, “GitOps Part 3 — Observability,” Medium, Sep. 28, 2018.

https://medium.com/weaveworks/gitops-part-3-observability-b6b2825e29f

[9]. Weaveworks, “Hands-On Gitops,” Fractal Lambda, Dec. 2018.

https://fractallambda.com/assets/2018-12-11-kubecon-gitops-tutorial.pdf

