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Abstract This paper deals with the non-local boundary and initial value problems for two-dimensional two-

sided partial differential equation model by using the semi analytic method. Tested examples and the obtained 
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Introduction 

Adomian decomposition method can solve large classes of linear and nonlinear differential equations and it is 

much simpler in computation and quicker in convergence than any other method available in the open literature 

[1,2].  

There are many literatures developed concerning Adomian decomposition method [3-6] and the related 

modification to investigate various scientific model [7- 10]. E. Babolian et al. introduced the restart method to 

solve the equation f (x) = 0 [11], and the integral equations [12]. H. Jafari et.al used a correction of 

decomposition method for ordinary and nonlinear systems of equations and show that the correction accelerates 

the convergence [131, 14] 

In this paper, we present computationally efficient numerical method for solving the partial differential equation 

with boundary integral conditions:  
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Where ,,, 21 ggf  and h are known functions. T is given constant.  In the present work, we apply  the 

modified Adomian’s decomposition method  for  solving  eq.(1)  and  compare  the  results with  exact  solution. 

The paper is organized as follows:  In section 2 the two-dimensional partial differential equations with boundary 

integral conditions and its solution by modified decomposition method is presented. In section 3 an example is 

solved numerically using the modified decomposition method. Finally, we present conclusion about solution of 

the two-dimensional partial differential equation. 
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Numerical Method 

In this section, we present modified decomposition method for solving two-dimensional two-sided partial 

differential equations with boundary integral given in eq.(1). In this method we assume that: 
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 eq.(1) can be rewritten:  
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Take 
1L   on both sides of eq (2) we have 
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Then, we can write,  

Ψ(x, y, t) = Ψ(x, y, 0) + 𝐿𝑡
−1 𝐿+𝑥𝑥   Ψ𝑛
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The modified decomposition method was introduced by Wazwaz [6]. This method is based on the assumption 

that the function ),( yx  can be divided into two parts, namely ),(1 yx  and ),(2 yx . Under this 

assumption we set   

                                ),(),(),( 21 yxyxyx     

Then the modification            

10 u   

         0

1

0

1

0

1

0

1

0

1

21  

















tyytyytxxtxxt LLLLLLLLL  

































































 



































0

1

00

1

00

1

1

n

nt

n

nyy

n

nyyt

n

nxx

n

nxxtn LLLLLLL , 

n<1 

 

Numerical Example 

Consider two-dimensional two-sided partial differential equation with non-local boundary condition for the 

equation (1):            

 yxttDDDDD yyyyxxxxt  

22   

subject to the initial condition   

Ψ(x, y, 0) = 𝑥2 + 𝑦2                                                 ),1,0(, yx     Tt 0    

and the non-local boundary conditions                                                                                        
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We apply the above proposed method; we obtain: 

Ψ0 𝑥, 𝑦, 𝑡 = 𝑥2 + 𝑦2 + 𝑡2        

Ψ1 𝑥, 𝑦, 𝑡 = 0  

Ψ2 𝑥, 𝑦, 𝑡 = 0 

Ψ3 𝑥, 𝑦, 𝑡 = 0 

Then the series form is given by: 

),,(),,(),,(),,(),,( 3210 tyxtyxtyxtyxtyx           

                = 𝑥2 + 𝑦2 + 𝑡2 

This is the exact solution:   

 Ψ(𝑥, 𝑦, 𝑡) = 𝑥2 + 𝑦2 + 𝑡2  

Table 1 shows the analytical solutions for partial differential equation with boundary integral condition obtained 

for different values and comparison between exact solution and analytical solution. 

 

Table 1: Comparison between exact solution and analytical solution for example  

x = y t Exact Solution Modified Adomian Decomposition 

Method 

|   ex-   MADM| 

0 2 4.0 4.0 0.0000 

0.1 2 4.02 4.02 0.0000 

0.2 2 4.08 4.08 0.0000 

0.3 2 4.18 4.18 0.0000 

0.4 2 4.32 4.32 0.0000 

0.5 2 4.50 4.50 0.0000 

0.6 2 4.72 4.72 0.0000 

0.7 2 4.98 4.98 0.0000 

0.8 2 5.28 5.28 0.0000 

0.9 2 5.62 5.62 0.0000 

1 2 6.0 6.0 0.0000 

 

Conclusion 

In this paper, we have applied the modified decomposition method for the solution of the two-dimensional two-

sided the partial differential equation with ono-local boundary condition. This algorithm is simple and easy to 

implement. The obtained results confirmed a good accuracy of the method.  
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