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Abstract In the current article, a stability of double interfaces between three incompressible, viscous, and 

incompressible finite layers is investigated. The fluids are saturated through media. The system is influenced by 

a uniform tangential electric field. The analysis is based on the viscous potential theory, which considered that 

the influence of the viscous forces is affected only at the interfaces. Meanwhile, away from the interfaces, the 

fluids behave like inviscid ones. On using the normal modes analysis, the boundary-value problem resulted in a 

second-order coupled differential equations with damping and complex coefficients. The Routh-Hurwitz criteria 

are adapted to govern the stability analysis. Several special cases are recovered in accordance with appropriate 

data choices. The stability criteria are analyzed theoretically and illustrated graphically. Regions of stability and 

instability are identified at which the electric field intensity is plotted versus the wave number of the surface 

waves. The influences of various parameters, of the problem at hand, on the stability of the wave train of the 

disturbance are graphed. It is found that the Darcy’s coefficients, the dynamic viscosity and streaming flow play 

a destabilizing effect. In contrast, the thickness of the sheet and the porosity has a dual role in the stability 

picture. 
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Introduction 

Rayleigh-Taylor instability (RTI) occurs when a heavy fluid is supported by a lighter one. Because of the wide 

applications of RTI, in planetary and stellar atmospheres etc., several studied have been addressed. Kelvin-

Helmholtz instability (KHI) arises when two fluids are in a relative motion. The phenomenon of KHI is an 

important concept in understanding a variety of space, astrophysical and geophysical aspects. A good amount of 

the hydrodynamic stability for RIT, KHI and other has been reported through the pioneer book of 

Chandrasekhar [1]. The stability conditions of an electrified viscous fluid sheet are investigated by Moatimid 

[2]. Because of the complexity of the mathematical analysis, he considered a weak viscous effects, so that their 

contributions are incorporated only at the boundary conditions. He found that the sheet thickness has a dual role 

in the stability picture. The electrohydrodynamic stability of a fluid sheet is early studied by Elshehawey et al. 

[3]. In their analysis, the dielectric liquid sheet is stressed by gravitational force and a tangential periodic electric 

field. They showed that the two interfaces are governed by two simultaneous second-order differential 

equations. They do not apply the symmetric and anti-symmetric perturbations. Eltayeb and Loper [4] 

investigated the stability of two parallel interfaces. In their work, the stability of the interfaces is analyzed,first, 

in the limit that they are closed together, then for general spacing. They found that the interfaces are unstable for 

some wave number for all values of the Prandtle number and the interface spacing. An excellent book on the 

stability theory is given by Drazin and Reid [5]. They reported the analysis of RHI, KHI and capillary instability 

of perfect fluids. 
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The flow through porous media is of considerable interest in petroleum extracting and geophysical fluid 

dynamists. The linear KHI of parallel flow in porous media is analyzed by Bau [6]. He derived the instability 

conditions in KHI for Darcian and non-Darcian flows. Also, in both cases, the velocities should exceed some 

critical values in order to the instability to manifest it. The temporal stability of superposed magnetic fluids in 

porous media is investigated by Zakaria et al. [7]. Their system is composed of a middle fluid sheet of finite 

thickness and embedded between two other bounded layers. They found that the fluid sheet thickness plays a 

destabilizing role in case of uniform fields. In contrast of their analysis, the present work considers the influence 

of the porosity of the media. Alkharashi [8] studied the electrohydrodynamic instability of three dielectric fluids 

through porous media. In his article, he considered the basic streaming on the three layers is periodic. Therefore, 

he used the multiple time scale technique to achieve the stability analysis. At the same time, he ignored the 

influence of uniform streaming. Through the current paper, the same model is considered but in case of a 

uniform streaming. The following analysis reveals several special cases and studied the stability analysis in 

detail. In a subsequent paper, we will consider the periodicity of the streaming velocities to treat the different 

mistakes in his previous work [7]. The electrohydrodynamic KHI of two miscible ferrofluids in porous media is 

investigated by Moatimid [9]. He analyzed the linear as well as nonlinear aspects of stability theory of the 

interface between two superposed magnetic fluids. His stability criterion is obtained in terms of the competing 

parameter of the problem. Moatimid and Hassan [10] studied the instability of an electrohydrodynamic viscous 

liquid micro-cylinder buried in a porous media. Their analysis resulted in a transcendental dispersion relation. 

They found that the existence of the porous structure restricts the flow, and hence has a stabilizing influence. 

The concept ofthe viscous potential flow is a fundamental topic in the theory of fluid mechanics. Joseph [11] 

attempted to identify the main events in the history throughout irrotational flow of viscous fluids. He showed 

that every theorem about potential flow of perfect fluids, with conservative body forces, applies equally in 

viscous fluids through regions of irrotational flow. The potential flow theory are not more difficult but have a 

much richer content when the viscous forces are incorporated only through the normal stress tensor condition. 

The irrotationalflows of viscous fluids are not good approximations for flows with distributed vorticity. In case 

of an incompressible flow, the velocity potential satisfies the Laplace's equation and potential theory is 

applicable. However, potential flows also have been used to describe compressible flows. The potential flow 

approach occurs in modeling of both stationary as well as non-stationary flows. Moatimid and Hassan [12] 

applied the viscous potential theory in the problem of electrohydrodynamic KHI through two porous media. 

They found that the Darcy's coefficients of the porous layers play a stabilizing role in the stability picture. Also, 

the existences of the injection velocities at both boundaries have stabilizing effect and vice-versa for the suction. 

Moatimid et al. [13] considered the viscous potential theory in a problem of nonlinear KHI through porous 

media. Their analysis may be considered as a generalization of the previous work of Moatimid and Hassan [12]. 

They found new stable and unstable regions in accordance to the influence of the nonlinear approach. Tiwari et 

al. [14] used the viscous potential flow theory to investigate a linear analysis of capillary instability of a 

cylindrical interface in the presence of an axial magnetic field with mass and heat transfer. They showed that 

axial magnetic field, as well as mass and heat transfer, hasa stabilizing effect on the system.Recently, Moatimid 

et al. [15] studied the stability of two cylindrical interfaces, where the fluids are saturated in porous media. Their 

analysis is carried out through a viscous potential flow theory. They showed that the porosity has a stabilizing 

picture and Darcy’s coefficient has a destabilizing influence. 

Because of the great applications of electrohydrodynamic in various divers’ fields, the aim of this work is to 

study the electrohydrodynamic instability of double interfaces of a dielectric liquid sheet. Because of the 

instability in porous media may be of wide interest in geophysics and biomechanics, the current study is done 

through porous media. In accordance with the mathematical simplification of the viscous potential flow theory, 

the following analysis admits this concept. Therefore, we have extend previous work [2] to include all these 

aspects, i.e. to study the effect of porosity, Darcy's coefficient as well as kinematic viscosity on the stability of 

the problem at hand. General dispersion relation is obtained on using the normal modes analysis. The stability of 

the system is discussed both analytically and numerically. As we stated before, the periodic streaming of the 

same model will be considered in a subsequent paper. To clarify the problem, the plan of this work is outlined as 

follows: Section 2 is devoted to introduce the mathematical formulation of the problem and the corresponding 
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perturbation equations. The appropriate boundary-conditions are presented in Section 3. The formulation of the 

general dispersion equations is given in Section 4. From the point of view of the symmetric and anti-symmetric 

modes,a mathematical simplification of these equations is done. Also, differentspecial cases are reported in 

Section 5 and its subsections. Section 6 is devoted to introduce a numerical illustration of the general case. The 

concluding remarks are presented in Section 7. 

 

2. Mathematical Formulation of the Problem and Perturbation Equations 

An electrified liquid infinitely long horizontal liquid sheet of finite thickness 2a and embedded between two 

rigid boundaries of thicknesses ah   is considered. Both fluids are uniform streaming, dielectric, viscous and 

incompressible. It is assumed that there are no volume charges through the three layers. In addition, no surface 

charges present at the interfaces. Without any less of generality, two-dimensional disturbances are only 

considered. For convenience, the Cartesian coordinates are used. 

Figure 1 sketched the system under consideration, in the undisturbed state, where the y axis is taken 

vertically upward and the x axis is taken horizontally to be located at the center of the middle sheet. 

Generally, the subscripts j = 1, 2 and 3 refer to quantities in the upper, sheet and lower fluids, respectively. The 

system is influenced by the gravitational force )(g  which acts in the negative y-direction. There are two 

undisturbed interfaces among the three fluids. They are assumed to be well defined and initially flat and form 

the planes ay  and ay  . All liquids are assumed to be of uniform nature, homogeneous and are all 

saturated in porous media. The structure of the liquids are defined from the following parameters; density  , 

dynamic viscosity  , Darcy’s coefficient , porosity , uniform tangential electric field 
0E (which is constant 

along the three layers) and uniform stream V .  

 
Figure 1: The system in the undisturbed state 

The two interfaces are parallel and the flow in each phase is everywhere parallel to each other. After a small 

departure from the stationary state, the surface deflections may be expressed as follows: 

In the light of the standard normal modes analysis [1], the surface deflections );( txj may be given by a 

sinusoidal wave of finite amplitude where, after disturbance, the interface is represented by
 

)2,1();()();( 1   jtxatxy j
j  ,                (2.1) 

and 

,..)();( ccettx ikx
jj  

       
(2.2) 



Moatimid GM et al                                   Journal of Scientific and Engineering Research, 2018, 5(7):119-135 

 

Journal of Scientific and Engineering Research 

122 

 

where )(tj is an arbitrary time-dependent function, which determines the behavior of the amplitude of the 

disturbance at the interface, k  is the wave number which is assumed to be real and positive and c.c. represents 

the complex conjugate of the proceeding term. 

It is convenient to determine aunit outward normal vector to the interfaces. This is may be obtaining from the 

relation jjj SSn  / , where );,( tyxS j  is the surface's geometry which is defined by

).;()( 1 txayS j

j

j  
 

Therefore, 

  ,/ yxjj eexn  


            (2.3) 

where xe and ye  are the unit vectors along the x and y directions, respectively. 

As a result of a perturbation, the initial fluid velocity increases and permits to introduce a scalar potential

);,( tyx , such that  

)3,2,1(,  jeVv jxjj             (2.4) 

Since the three fluids layers are incompressible, the scalar potential );,( tyx is being a harmonic function, i.e. 

)3,2,1(,02  jj         
(2.5) 

The equation that governs the behavior of the fluid through porous media according to the Brinkman-Darcy 

equation is given by 

,).(
1

yjjjjjj

j

j

j

j
egvPvv

t

v


























    

(2.6) 

where j represents the porosity of the medium. The frictional forces resulted from the interactive force between 

the fluid and the porous medium. Itis proportional to the flow velocity which represents by the term jj v , 

where  jjj q/  is the Darcy’s coefficient, j is the fluid viscosity and jq  is the permeability of the 

porous medium. 

    In accordance with the viscous potential flow theory, the viscous fluid may be considered as an irrotational 

liquid and then obeys the Laplace equation. 

 A number of simplifications of the Maxwell's equations [16] are appropriate to the description of 

electrodynamics' phenomena for the fluid system. The electrical Maxwell’s equations are reduced to:
 

)3,2,1(,0).(  jE jj          (2.7) 

and 

.0 jE
         

(2.8) 

Therefore, the electric field may be written as: 

,0 jxj eEE             (2.9)                            

where );,( tyxj  is an electrostatic potential. The amplitude of the surface waves, formed on the fluid sheet, is 

assumed to be small. Combining equations (2.7) and (2.9), one gets 

)3,2,1(,02  jj           (2.10) 

For a small disturbance from the equilibrium state, the electrostatic potential and the velocity potential can be 

written in the form 

)3,2,1(,.);();,(  jccetytyx ikx
jj 


     

(2.11) 

and 
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,.);(ˆ);,( ccetytyx ikx
jj 

       
(2.12) 

The solutions of the linearized equations (2.5) and (2.10) give 

  ,.)sinh()()cosh()();,( ccekytBkytAtyx ikx
jjj 

    
(2.13) 

and 

  ,.)sinh()()cosh()();,( ccekytDkytCtyx ikx
jjj 

    
(2.14) 

where )(),(),( tCtBtA jjj and )(tD j are arbitrary functions of time which are to be determined by making 

use of the appropriate boundary conditions. 

 

3. Boundary Conditions 

To complete the formulation of the problem at hand, the general solutions of the potentials j  and j  as given 

in equations (2.13) and (2.14) must be completely determined. This requires evaluating the arbitrary time 

dependent functions that appearing in these equations. Therefore, for the purpose of specifying these unknown 

functions, it convenient to identify two types of boundaries. The first is that at the surface between a fluid and a 

rigid surface. The second is at the fluid / fluid interfaces. Therefore, the boundary conditions may be formulated 

as follows: 

 

3.1. At the Rigid Boundaries 

 (I) The normal fluid velocities must be vanished at the bottom and top boundaries, this requires 

,at01 hy
y






       

(3.1) 

and 

,at03 hy
y





                             (3.2) 

     (II) The tangential components of the electric field must be vanished at these boundaries, these yields 

,at01 hy
x





                                    (3.3) 

and 

,at03 hy
x





                  (3.4) 

 

3.2. At the Fluid/Fluid Interfaces 

(I) The kinematic relation follows from the assumption that the normal component of the velocity vector in each 

phases of the system is continuous at the dividing surfaces. This implies that 

01 
dt

dS
v

jn for ,)2,1(,1  jay 
     

(3.5) 

and 

02 
dt

dS
v

jn for ,)3,2(,2  jay 
     

(3.6) 

where the material derivative is defined as:  )..( 



 v

tdt

d
 

Maxwell's conditions for the electric potential: 

The Maxwell’s conditions for an electric potential, where there are no surface charges presenting at the 

interfaces. Also, there are no volume charges are assumed to present in the bulk of the three fluid layers. 

(II) The jump, in the tangential component of the electric field is equal zero across the interfaces: 
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,0 jj En at ),2,1(),;()();( 1   jtxatxy j

j 
   

(3.7) 

where  represents the difference (jump) in a quantity as we cross the interface, i.e, 21 fff  , where the 

subscripts refer to two different media. 

In other words: 

,at 1
21 












ay

xx
            (3.8) 

and 

,at 2
32 












ay

xx
          (3.9) 

(III) The continuity of normal component of the electric displacement at the surface of separation, requires                                

  )2,1(,0. 22111  jEEn  for 1 ay ,      (3.10) 

and 

  )3,2(,0. 33222  jEEn  for 2 ay ,       (3.11) 

Applying the forgoing boundary conditions on the general solution (2.13), (2.14), one gets the following: 

For the hydrodynamic part: 

  ,)()(
)](sinh[

)](cosh[
);,( 1111

ikxetkVit
ahkk

yhk
tyx  






   

(3.12)

  ,))()()]((cosh[))()()]((cosh[
]2sinh[

1
);,( 1212222

ikxetkVityaktkVityak
akk

tyx  

          

(3.13) 

and 

  .)()(
)](sinh[

)](cosh[
);,( 2323

ikxetkVit
ahkk

yhk
tyx  






   

(3.14) 

For the electric part: 

),)()()])(sinh[)()]3(sinh[)((

)()](sinh[)(2()](sinh[);,(

1213232

23220*1

thakhak

thakEyhke
i

tyx ikx












 

(3.15) 

 

)),()()])(sinh[)(

)]2(sinh[)(()()()])(sinh[)(

)]2(sinh[)((()](sinh[);,(

23221

2112132

320*2

tyhk

yhaktyhk

yhakEhake
i

tyx ikx
















 

(3.16) 

And 

),)()()])(sinh[)()]3(sinh[)((

)()](sinh[)(2()](sinh[);,(

1322131

12120*3

thakhak

thakEyhke
i

tyx ikx












 

(3.17) 

where
*  is given by 

).2sinh()](2cosh[)(

)2sinh()()](2sinh[)2cosh()(

31

2

2

31

2

2312

*

akhak

akhakak









 

(3.18)  

As a result of perturbation, the pressure may be written as: 
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,)(

1

)(

0

jj

j PPP 
         

(3.19) 

where 

,)(
0 jjjj

j ygxVP  
       

(3.20) 

where j  is an arbitrary time-dependent function. 

From the continuity of the normal stresses in the zero-order at the interface, one gets

).2,1(,)(
2

1
)()()( 2

01111
1

1  


 jExVVag jjjjjjjj
j

jj 
 
(3.21) 

The pressure in the first-order of may be evaluated from the Bernoulli’s equation. In other words, the integration  

of the equation of motion (2.6) yields 

)3,2,1(,);,(
2

)(

1 








 j

x

V

t
tyxP jj

j

j

jjj

j

jj 









           (3.22) 

Substituting from equations (3.12), (3.13) and (3.14) into Eq. (3.22), one find

  ],)()1()()()(()([
)](sinh[

)](cosh[
1111

2

11111111111

2

1

2

2

1

)1(

1 ttikVtttVke
hakk

yhk
P ikx 









          

(3.23) 

 

 

))],()1(

)(()()()()]((cosh[)))()1(

)(()()()()](([cosh[
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tikVtttVkyake
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P ikx
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(3.24) 

and 

   ],)()1()()()()([
)](sinh[

)](cosh[
2332

2
33323233323

2
3

2

2
3

)1(
3 ttikVtttVke

hakk

yhk
P ikx 







  

(3.25) 

The remaining boundary condition may be formulated as follows: 

In accordance with the viscous potential flow, the viscous terms will enter only through the normal stress 

balance. As stated before, it is ignored throughout the linear conservation of momentum. Therefore, the 

influence of the electric field and viscosity are considered only, in the normal stress tensor balance at the 

interface, at which the viscosity forces are neglected elsewhere. In order to complete the linear stability analysis, 

the remaining boundary condition arises from the normal component of the total stress tensor. This component 

is discontinuous at the interface by the amount of the surface tension. 

The total stress tensor of the system under investigation is defined as, 

mag

ij

vis

ijij   ,        (3.26) 

where,
vis

ij  is the viscous stress tensor and 
mag

ij  is the Maxwell magnetic stress. 

These stresses may be formulated as follows:  

 

(i) The Viscous Stress Tensor 

A large number of practically important fluids (e.g. water and oil) are incompressible and exhibit a linear 

relation between the shear rate and strain. These fluids are well-known as the Newtonian fluids and their 

constitutive equation is given by 

),(
i

j

j

i

ij

vis

ij
x

v

x

v
P









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(3.27) 
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where P is the pressure in the fluid and ij  is the Kronecker’s delta. 

It is worthwhile to note that, there are also many fluids which do not behave as the Newtonian fluids and have 

different constitutive equations e.g. toothpaste. Not imaginatively, these one of ten called non-Newtonian fluids.  

 

(ii) Maxwell Electric Stress 

The electrostatics and hydrodynamics are coupled together through the Maxwell stress tensor. In vacuum, the 

Coulomb force density exerted on free charges may be rearranged noting the solenoid nature of the electrostatic 

field. The derivation of the Maxwell stress tensor for a dielectric medium is given in details by Melcher [16], 

Panofsky and Phillips [17], to obtain

 
.

2

1 2

ijiji

ele

ij EEE  
       

(3.28) 

 

4. Derivation of the Dispersion Equation 

The components of the total force per unit area, exerted on the fluid interface are related to components of the 

stress tensor, via the following relation: 

.

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
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




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











y

x

yyyx

xyxx

n

n
F





       

(4.1) 

At the fluid interfaces, the normal component of the stress tensor is discontinuous by the amount of the surface 

tension. This requires 

)2,1(,2
)1(   jSTFn

jjj        
(4.2) 

where )1( jjT is the surface tension coefficient of the surfaces separating fluid (j) from fluid (j + 1). Substituting 

from the solutions of
)(

1

)(

1 , jj   and 
)(

1
jP into the normal stress condition (4.2), after lengthy 

butstraightforward calculations, one obtains the following coupled equations:
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(4.3) 

and
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(4.4) 

where the coefficients ,,,,, ijijijijij baglf and ijc  are given in the Appendix. 

Similar equations, in case of immiscible fluids, are early obtained by Moatimid [2].  

Now, the boundary-value problem has been completed. The elevation amplitudes 1 and 2 , as functions of 

time, determine the eigen-value functions. The nature of these functions governs the stability behavior of the 

fluid sheet. For simplicity, the present study is done through the symmetric and anti-symmetric modes as given 

in the following subsection. 

 

4.1.The Symmetric and Anti-symmetric Analysis 

The coupled differential equations (4.3) and (4.4) can be simplified by considering the symmetric and anti-

symmetric deformations of the surface deflections 1 and 2 . Therefore, the variables 1  and 2 may be 

described by 

,12   J
         

(4.5)                                      

where 1J defines to the anti-symmetric deformation, while 1J  refers to the symmetric one. 

Considering the transformation (4.5) in the characteristic equations (4.3) and (4.4), one gets 
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(4.7) 

The coupled differential equations (4.6) and (4.7) may be combined by adding them to give a single dispersion 

equation as  

    ,0)()()( 2211  tGiLtiGLt 
     

(4.8) 

where the coefficients in Eq. (4.8) are well-known from the context. To avoid the lengthy of the paper, they will 

be omitted. 

Equation (4.8) is a linear homogeneous differential equation with constant complex coefficients. Therefore, the 

exponential solution is valid. Therefore, the solution of the dispersion equation (4.9), may be written as 

,)( tiet  
         

(4.9) 

where is a real constant parameter, and  is a complex constant which determines the natural frequency of 

the surface wave. From equations (4.8) and (4.9), one finds 

,021

2  QQ
        

(4.10) 

where 111 LiGQ  and ).( 222 GiLQ  . 

Equation (4.10) represents a linear dispersion relation with complex coefficients for the double surface waves 

that propagate through the magnified streaming sheet in porous media. This dispersion relation is satisfied by 

the values of  and k . Therefore, if the imaginary part of   is positive, the disturbance will temporally grow 

with time and the flow will unstable. On the other words, if the imaginary part of   is negative, the 

disturbances will decay with time and the flow becomes stable. 

It is well-known from the Routh-Hurwitz criterion [18], that the necessary and sufficient stability conditions for 

(4.10) are 

,0)Re( 1 Q
         

(4.11) 

and 

.0)(Im)Re()Re( 2
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(4.12) 

At this stage, the linear stability analysis has been theoretically completed. To complete the stability picture, 

numerical discussions are needed. Before going to the general case, some special cases are reported upon 

appropriate data choices. 

 

5. Special Cases 

It is more convenient to discuss the stability analysis for some special case in detail. These cases may be 

formulated as follows: 

 

5.1 For an Inviscid, non-Porous, and non-Streaming Fluid 

At this case, considering the limits, where 0,0,0  jjj V   and 1j for ( 3,2,1j ). In this case 

the dispersion relation (4.10) is reduced to the following simplest form 

,01

2  R                              (5.1) 

where 1R is well-known from the context. To avoid the lengthy of the paper, they will be omitted. 

Therefore, the interfaces between the fluids are stable or unstable according whether  is real or complex. 

Since our aim is to study amplitude modulation of the progressive waves, we assume that 02   . 
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Therefore, the system is linearly stable if 

,01

2

01   E
        

(5.2) 

where
1 and 

1  arewell-known from the context. To avoid the lengthy of the paper, they will be omitted. 

The influence of the electric field on the stability depends mainly on the sign of the parameter
1 . If 01  it 

follows that 
2

0E  has a stabilizing influence and vice-verse when 01  . 

Before dealing with a numerical calculation, it is convenient to write the stability criterion in an appropriate 

dimensionless form. This can be done in a number of ways depending primarily on the choice of the 

characteristic length. Consider the dimensionless forms depending on the characteristic length h , the 

characteristic time gh / and the characteristic mass ghT /23 , the other dimensionless quantities are given 

by 
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From now on, for simplicity, the '' * '' mark may be dropped. 

Generally, our interest is focused on the relation between the electric field intensity )( 2

0ELog  and the wave 

number of the surface waves k . Therefore, the stability diagram is plotted for )( 2

0ELog versus k . In the 

following figures, the stable region is characterized by the latter S . Meanwhile, the latter U stands for the 

unstable one. 

 

In what follows, a numerical calculation is performed for a given special case. These figures considered, only, 

the symmetric case. Through Fig.2, the influence of sheet thickness )(a is depicted. Therefore, )( 2

0ELog is 

plotted versus the wave number k according to different values of )(a . The calculations show that the 

parameter 1 is always positive during the given domain of the dependent function.  This means a stabilizing 

influence of the tangential electric field. Actually, it is an early sense. This figure shows that the stability of the 

system is enhanced with the increasing of the parameter )(a , especially, at large values of the wave number k . 

Therefore, the layer thickness )(a  plays a stabilizing influence in the stability picture. Fig.3 is plotted to 

indicate the influence of the dielectric parameter 2 in the stability picture. It is shown that 2 has a stabilizing 

influence especially at large value of the wave number k . 

 

5.2. For Viscous, non-Porous, and non-Streaming Fluid 

Now, considering alimiting case, where 0,0  jjV   and 1j for ( 3,2,1j ). In this case the 

dispersion relation (4.8) is reduced to the following simplest form: 

.0)()()( 12  tRtRt                           (5.3) 

Let 
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assuming that 
tieftf 

0)(  where 0f  is real constant, one gets 
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It follows that the stability requires 
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or 

,02

2

01   E                              (5.7) 

where 2R and 2 are well-known from the context. To avoid the lengthy of the paper, they will be omitted. 

It is clear that 2R is independent on the electric field intensity
2

0E , but the condition of positive 2R is necessary 

for the stability requirements. Therefore, the domain in the figure kELog )( 2

0 must be consistent with the 

positivity of 2R . 

At this end, consider the following dimensionless forms: the characteristic length h , the characteristic time

gh / and the characteristic mass ./2 ghh

 The theoretical analysis includes two modes of surface deformations. Therefore, Fig.4 and Fig.5 are plotted to 

indicate the influence of the dynamic viscosity 1 , through the symmetric and anti-symmetric. It is shown in 

Fig.4 (J = 1) that the parameter 1  has a destabilizing influence. This influence is enhanced at large values of k

. In contrast with the previous mode, Fig.5 is graphed with the case of a symmetric mode (J = −1) for the 

variation of the same parameter 1 . In this sense, the parameter 1  plays a dual role in the stability criterion 

according to the different modes. Through Fig.6, the influence of the sheet thickness ( a ) is depicted. It is 

shown that the sheet thickness has a stabilizing influence. 

 

5.3. For Viscous, Porous, and non-Streaming Fluid 

In this case, the streaming velocities are ignored. It follows that the general dispersion equation (4.8), may be 

written as: 

.0)()()( 43  tRtRt                                   (5.8) 

The normal form of Eq. (5.8) may be obtained according to the transformation
2/3)()(
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 . 

Therefore, the arbitrary function )(tf should satisfy the following equation: 
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assuming that 
tieftf 

0)(  where 0f  is real constant, one finds 
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The system is linear stable if 
2 is positive, )

4

1
( 2

34 RR  can be written in the form 

,03

2

02   E
        

(5.11) 

where 243 ,, RR  and 3 are well-known from the context. To avoid the lengthy of the paper, they will be 

omitted. 

The calculations showed that 3R is independent on the electric field intensity
2

0E , but the condition on 3R is 

necessary for the stability requirements. Therefore, the domain in the figure kELog )( 2

0 must be consistent 

with the positivity of 3R . 

The following figures are deal with the symmetric mode only. The influence of the parameter 1  is depicted in 

Fig. 7. It is shown that variation of this parameter has a stabilizing role, especially, at large values of the wave 

number k . The effect of the dynamic viscosity 1 is depicted in Fig.8. It is shown the increasing of this 

parameter has a destabilizing role in the stability picture. 
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6.  Numerical Discussion for the General Case 

Eq. (4.10) is an algebraic quadratic equation with complex coefficient. As stated above, the stability criteria 

depend mainly in the nature of the frequency . According to the Routh-Hurwitz criteria [18], the necessary 

and sufficient stability conditions for (4.11), (4.12) may be formulated as 

,01 G             (6.1) 

and 02

0   E ,                                 (6.2) 

where and  are well-known from the context. To avoid the lengthy of the paper, they will be omitted. 

We used the same dimensionless quantities as given in Section (5.2). 

In what follows, a numerical calculation, for the anti-symmetric case, is performed for the general case. As 

stated before, the implication of the condition (6.1) must be taken into account. The following figures are plotted 

for a domain of the wave number such that this condition (6.1) is automatically satisfied. In addition, all the 

present calculations indicate that the parameter  is always has a negative sign. This shows again that the 

electric field intensity has a stabilizing influence, which is an early fact, proved by many researches. 

Through Fig.9, the influence of Darcy’s coefficient of fluid ( 2 ) is depicted. It is shown that the Darcy’s 

coefficient has a destabilizing influence.  Fig. 10 shows an important influence of the dynamic fluid viscosity 

and its effect on stability of system. The dynamic fluid viscosity has a destabilizing effect, especially, at large 

values of wave number k. In Fig. 11, the influence of the uniform streaming ( 2V ) is depicted. The uniform 

streaming has a destabilizing influence. This role is enhanced as the relative motion between the two fluid layers 

is increased. This result is in agreements with different studies in the linear stability theory, for example 

(Chandrasekhar [1]). Fig.12 displays the natural stability curve for various values of the sheet thickness ( a ). As 

shown in this figure, the stability is increased at small values of the wave number. Meanwhile, at large values of 

the wave number, the instability in enhanced. This shows the dual role of the sheet thickness in the stability 

picture. Through Fig.13, it is shown that the influence of fluid porosity ( 2 ) is depicted. The porosity has also a 

dual role effect. 

 
Figure 2: Plots a stability diagram, according to the condition (5.2) for a system having the particulars:

10,5,3,1,6,4,2 321321   J and 1512 T . 

 
Figure 3: Plots a stability diagram, according to the condition (5.2) for a system having the particulars:

3,10,30,1,1,01.0,001.0 31321  aJ  and 2512 T . 
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Figure 4: Plots a stability diagram, according to the condition (5.7) for a system having the particulars:

2,15,100,10,5,25,1,1,01.0,001.0 233321321  aTJ  and 2512 T . 

 

Figure 5: Stability diagram for the same system as consider Fig.4 except 50,5,1 21  J and for 

various values of .1  

 
Figure 6: Stability diagram for the same system as consider Fig.4 except

50,10,20,35 3121   and for the various value of a . 
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Figure 7: Plots a stability diagram, according to the condition (5.11) for a system having the particulars:

,8.0,3.0,3,6,6.4,1,1.0,01.0,001.0,5.0 32321321   Ja

50,60,80,100,20,50 2332131  T and 3012 T . 

 
Figure 8: Plots a stability diagram, according to the condition (5.11) for a system having the particulars:

,03.0,15.0,5.1,10.5,3.0,1,75.5,25.3,25.1,2 21321321   Ja

15,8,10,5,50,50,10,500,3.0 2332132133  TVVV and 4512 T . 

 
Figure 9: Plots a stability diagram, according to the condition (6.2) for the system as consider Fig.8 except

2,100 21  V and for various values of .2  
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Figure 10: Plots a stability diagram, according to the condition (6.2) for the system as consider Fig.8except

,300,200,100 321   ,5,5.0,2,5 23321  TVVV 1512 T and for various values of 1

. 

 

Figure 11: Stability diagram for the same system as consider Fig.10 except 40,20,5 213   and for 

various values of 2V . 

 
Figure 12: Plots a stability diagram, according to the condition (6.2) for the system as consider Fig.8 except

,5,30,25,10 2131   ,153  and for the various value of .a  
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Figure 13: Stability diagram for the same system as consider Fig.12 except 2a and for various values of 2  

 

7. Concluding Remarks 

In the present paper, we have formulated a problem of electrohydrodynamic KHI of a horizontal liquid dielectric 

sheet of finite thickness and embedded between two finite layers. The liquids are saturated in porous media, 

where the porosity of the media is taken into account. In accordance with the wide applications of the viscous 

fluids, the viscosity is, also, considered. To relax the manipulation of the analysis, the viscous potential flow 

theory is adapted. Therefore, the viscous effects are demonstrated only, through the normal stress tensor 

condition. The analysis is based on the normal modes technique to achieve the linear stability analysis. The 

boundary value problem leads to coupled simultaneous ordinary differential equations with damped and 

complex coefficients. The analysis includes only the symmetric as well as anti-symmetric modes. Several 

special cases are recovered upon appropriate data choices. The influence of the periodic streaming will be 

investigated in a subsequent paper. The general case considered only the anti-symmetric mode. The stability and 

instability of the system are addressed through a set of diagrams. 
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Appendix 

The coefficients that appearing in equations (4.3) and (4.4) are listed as follows: 
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