
Available online www.jsaer.com 
 

Journal of Scientific and Engineering Research 

195 

 

Journal of Scientific and Engineering Research, 2018, 5(6):195-198 

 

    

 
Research Article 

ISSN: 2394-2630 

CODEN(USA): JSERBR  

    

 

Stability Analysis of a Vaccination Model of Tuberculosis Transmission 

Egbetade SA
1
, Rafiu AA

2
 

1
Department of Mathematics & Statistics, The Polytechnic, Ibadan, Nigeria

 

2
Department of Mathematics & Statistics, The Ibarapa Polytechnic, Eruwa, Nigeria 

Abstract We present a mathematical model of tuberculosis (TB) disease incorporating vaccination. The 

equilibrium points are obtained while we derive basic reproduction number (Ro) by next generation matrix 

method using reliable Jacobian matrices. It is shown that the disease-free equilibrium is locally asymptotically 

stable when Ro < 1 while the endemic equilibrium is unstable if Ro > 1. The instability of endemic equilibrium 

suggests a wiping out of the susceptible population. Hence, vaccination coverage must be large enough to 

promote treatment and reduce the number of infected individuals. This would in turn decrease the basic 

reproduction number of TB disease so that a stable disease-free equilibrium would always be achieved in the 

host population. 
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1. Introduction 

Infectious diseases like tuberculosis (TB), human immunodeficiency virus (HIV), measles and chicken pox are 

important public health problem [1]. Since vaccination is considered to be an efficient strategy against TB, the 

development of a mathematical framework that could predict optimal vaccination coverage level is necessary. 

As a first step, the World Health Organization (WHO) through Directly Observed Strategy, Short course 

(DOTS) have developed BCG vaccines and other new vaccines which aim at preventing infection and 

improving TB treatment [2]. At the population level, deterministic TB mathematical models incorporating 

vaccination have been proposed and analyzed to evaluate the overall effect of vaccination on the dynamics of 

TB disease [3-9]. 

In the present study, we formulate a mathematical model in which the population is split into four 

compartments: a susceptible group(S), a vaccinated group (V), an infected group (I) and a removed recovered 

group (R).  The model assumes that the natural death rate is not equal to birth rate so that we have a varying 

population size. Furthermore, a susceptible individual will move into the infected group upon contact with an 

infected individual. The removed group also contains people who are vaccinated. With all these considerations, 

the differential equations for the SVIR model are: 

 SISS          (1)  

   VqIVfSV   1       (2) 

 IISI T          (3) 

RqVR           (4) 

 

The description of parameters of the model is given in Table 1. 
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Table 1: Description of Parameters of the model 

Parameters  Definitions   

π recruitment rate 

β transmission rate 

µ natural rate  

µT death rate due to TB 

θ vaccination rate 

f efficacy rate of vaccine 

q waning rate of vaccine 

 

2. Mathematical Analysis  

2.1. Equilibrium points  

If a population is free of TB (DFE), I = 0, then the system reduces to  

 SS           (5)  

 VqSV           (6) 

RqVR           (7) 

 Recalling that 0 RVS  is necessary for an equilibrium, we have the disease-free equilibrium (DFE) 

Ao given by  
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At the endemic equilibrium, the disease persists in the population and consequently I ≠ 0. Hence, there exists an 

endemic equilibrium  ***** ,,, RIVSA   where  
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The threshold parameter, Ro, that determines the stability of TB model equilibria is calculated using next 

generation matrix method formulated by van den Driessche and Watmough [10] and is obtained as 

  T
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         (13)

 

2.2. Stability analysis of DFE 

We shall need the following theorem in the stability analysis of the DFE of model (1) - (4). 

Theorem 1 [14] 
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X be a critical point of the plane autonomous system. 
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X1= g(x) = 
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Where  yxp , ,   yxQ ,  have continuous first partial derivatives in a neighbourhood of X1 

(a) If all the eigenvalues of )( 1

1 XgA  have negative real parts, then X1 is locally asymptotically stable 

critical point 

(b) If = )( 1

1 XgA   has at least one eigenvalue with positive real part, then X1 is an unstable critical 

point. 

The Jacobian matrix of DFE is 
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The eigenvalues of the DFE is obtained by solving  

0 IJ 
          (15)

 

Solving (15), the eigenvalues are 

  1  

 q 2  

 T 3  

 4  

Clearly, all the eigenvalues 4)1(1,1 i are negative. Hence, by Theorem 1, the DFE is locally asymptotically 

stable. Furthermore, the local stability of DFE with respect to basic reproduction number (Ro) is demonstrated in 

Theorem 2 below. 

Theorem 2: If ,1oR then the DFE of model system (1) - (4) is locally asymptotically stable. 

Proof  

Using realistic parameter values of the model, let 01.0,1.0,7.0,1.0,5.0  T . Then, 

Ro = 0.5681 < 1. Hence, the DFE A0 is asymptotically stable. This suggests that infection is temporal and the 

disease will eventually die out. 

 

2.3. Stability analysis of endemic equilibrium  

By using a reliable Jacobian matrix of the endemic equilibrium point, the eigenvalues of the matrix can be 

analyzed to find its local stability. If at least one eigenvalue has a positive real part, then the endemic 

equilibrium is unstable. However, using the Theorem below, we can demonstrate the instability of endemic 

equilibrium for Ro > 1. Under this scenario, the infection is persistent in the population and may lead to eventual 

wiping out of the entire susceptible population. Hence, appropriate intervention strategy for controlling the 

spread of the disease must be taken.  

Theorem 3: If Ro > 1, the endemic equilibrium is unstable.  

Proof: Let 02.0,04.0,1.0,6.0,3.1   T . We obtain Ro = 46.9286 > 1. This shows that 

A
*
 is unstable. Hence, the proof.  

 

3. Discussion of results and conclusion 

A vaccination model for the dynamics of TB has been analyzed for stability. The results show that if Ro < 1, the 

DFE is locally stable while the endemic equilibrium is unstable when  
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Ro >1. These results provide useful insights about the critical vaccination level necessary to ensure a locally 

stable DFE for eradication of disease or prevention of TB infection. The vaccination coverage must lie below a 

critical level (Ro < 1) to reduce the number of infectious individuals. Therefore, an efficient vaccination 

campaign is required to decrease the proportion of contacts of susceptible population with infected individuals.  
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