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1. Introduction
To characterize the regularity of solutions to some partial differential equations(PDEs), Morrey [9] first

introduced classical Morrey spaces M DA which naturally are generalizations of Lebesgue spaces.

We will say that a function f e M, =M p]A( ”) if

1/p

sup |r™* I [f(y)Pdy| <o (1.1)

XERn,I’>0 B(x,r)
Here, 1< p <oo and 0 <A <n and the quantity of (1.1) is the (p,/l)—Morrey norm, denoted by || f ||M .
p,A
We also refer to [1, 4] for the latest research on the theory of Morrey spaces associated with harmonic analysis.
On the other hand, the study of the operators of harmonic analysis in vanishing Morrey space, in fact has been

almost not touched. A version of the classical Morrey space M oA (Rn) where it is possible to approximate by

"nice” functions is the so called vanishing Morrey space VM , , (R") has been introduced by Vitanza in [13]
and has been applied there to obtain a regularity result for elliptic PDEs. This is a subspace of functions in

M, (R"), which satisfies the condition

1/p
lim sup|t™ I|f(y)|pdy =0,
r—0 gfinr B(x.t)

where 1< p <oo and 0 <A <n for brevity, so that

r_:‘*‘]\\}#
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W, ,R)=1feM  (R"): lim supt p||f||L e =ol.
XeR
o<t<r

Later in [14] Vitanza has proved an existence theorem for a Dirichlet problem, under weaker assumptions than

in [7] and a w32 regularity result assuming that the partial derivatives of the coefficients of the highest and
lower order terms belong to vanishing Morrey spaces depending on the dimension. For the properties and
applications of vanishing Morrey spaces, see also [2]. It is known that, there is no research regarding
boundedness of the sublinear operators with rough kernel on vanishing Morrey spaces.

Let Qe L (S"™") with 1< s <00 be homogeneous of degree zero and satisfies the cancellation condition

j Q(x)do(x) =0, (1.2)

Sn—l

. X ! S
where X = ﬁ forany X # 0. We define s = —1 for any S >1. Suppose that T,, represents a linear or
X

a sublinear operator, which satisfies that for any f € L;(R") with compact support and X ¢ suppf

Taf (I, J' o) ey 13

where C; is independent of f and x. Similarly, we assume that T, ae (0, n) represents a linear or a

sublinear operator, which satisfies that for any f € L (R") with compact support and X ¢ suppf

T 00 [ DN f oy @
Rn

for some o e(O,n), where C, is independent of f and X.

We point out that the condition (1.3) in the case Q=1 was first introduced by Soria and Weiss in [12]. The
conditions (1.3) and (1.4) are satisfied by many interesting operators in harmonic analysis, such as the Calderdn-
Zygmund (C-Z) operators, Carleson’s maximal operator, Hardy-Littlewood (H-L) maximal operator, C.
Fefferman’s singular multipliers, R. Fefferman’s singular integrals, Ricci-Stein’s oscillatory singular integrals,
the Bochner-Riesz means, fractional Marcinkiewicz operator, fractional maximal operator, fractional integral
operator (Riesz potential) and so on (see [12] for details).

Let f e L'fc( ”). The C-Z singular integral operator T and H-L maximal operator M, by with rough
kernels are defined by

Taof(x)= p.v._[ Q(X—_{) f (y)dy,
Rnlx_yl
MQf()_tl;l(E) B(x,t) -“ Fly)dy

satisfy condition (1.3), where a homogeneous of degree zero function Q(X ) satisfies (1.2) on the unit sphere
and belongsto Qe L (S"™) with 1< s <00,

It is obvious that when Q =1, -FQ =T and M, =M are the standard C-Z singular intagral operator,
briefly a C-Z operator and the H-L maximal operator, respectively.

(yﬁ
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On the other hand, in 1971, Muckenhoupt and Wheeden [10] defined the fractional integral operator with rough

kernel fQ,a by
Q(x—y)

fg,af(x)=j| - In_af(y)dy 0O<a<n

Rn

and a related fractional maximal operator with rough kernel M Q. 1S given by

1%
Mo, f0)=sup| B " [ [Qlx-y)I f(ldy 0<a<n,

B(x,t)
where Qe L (S"™") with 1< s<oo is homogeneous of degree zero on R" and also Taw and Mg,
satisfy condition (1.4).

If =0, then M, =M, and Tao=Ta, respectively. It is obvious that when 2=1, M, , =M, and
fl,a E-Fa are the fractional maximal operator and the fractional integral operator (Riesz potential),
respectively.

For a locally integrable function b on R", suppose that the commutator operator Tva represents a linear or a

sublinear operator, which satisfies that for any f € L, (R") with compact support and X & suppf

o f [, [ 1600 —b(y) |%| f(y)ldy, (5)

Rn
where C; is independent of f and x. Similarly, for a locally integrable function b on R", suppose that the

commutator operator T, ,, & € (0, n) represents a linear or a sublinear operator, which satisfies that for any

f e L,(R") with compact support and X ¢ suppf

Tons OIS, [ 1609 -b(y) |$| f(y)ldy, 19)

RI"I

Q(x—
X

where C, is independent of f and X.

On the other hand, for b € L'fc( n), denote by B the multiplication operator defined by Bf (x)=b(x)f (x)
for any measurable function f . If 'Fg is a linear operator on some measurable function space, then the

commutator formed by B and -FQ is defined by
Taof(x)=[0,Talf (x):= (BT —TaB)f (x) = b(X)Ta f (x)—Ta(bf )(X).
In 1976, Coifman et al. [3] introduced the commutator generated by 'I_'Q and a locally integrable function b as

follows:

[0, Talf(X) =b(X)Taf(x)=Ta(bf)(X) = pVv. j [b(x)—b(y)]% f (y)dy. (L.7)

4 |
Sometimes, the commutator defined by (1.7) is also called the commutator in Coifman-Rocherberg-Weiss’s
sense, which has its root in the complex analysis and harmonic analysis (see [3]) and corresponding the

sublinear commutator of operator M, is defined as follows

Mas(F)00 = supl B,DI™ [ [o(x)-b(y)J]alx—y) I f ()l dy.

B(x,t)
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And also, the operators [b,fg] and MQ]b satisfy condition (1.5). Let b be a locally integrable function on

R", then for 0<a <n and f is a suitable function, we define the commutators generated by fractional

integral and maximal operators with rough kernel and b as follows, respectively:

[b,Ta.]f (X) =b(X)T au f (X) - TQa(bf)(X)—J[b(X) b(y)]

=l

Mo (1) =sup BxD1 ™ ] o(x)-bly)ic—y) f )y

B(x,t)

Q(x

QXY) ¢ (y)ay,
| X—y]|

satisfy condition (1.6).

Remark 1 Suppose that Ta.«, o € (O, n) represents a linear or a sublinear operator, when € satisfies the

specified size conditions, the kernel of the operator T o, has no regularity, so the operator T o« is called a

rough fractional integral operator. These include the commutator operator [D,T a.«]. This also applies to

o =0. In recent years, a variety of operators related to the fractional integrals, C-Z operators but lacking the
smoothness required in the classical theory, have been studied (for example, see [5, 6]).

It is worth noting that for a constant C , if 1_'9 is linear we have,
[b+C,Talf =(b+C)JTaf ~Ta((b+C)f)
=bTaf +CTaf —Ta(bf )-CTaf
=[b,Ta]f.
This leads one to intuitively look to spaces for which we identify functions which differ by constants, and so it

is no surprise that b € BMO  (bounded mean oscillation space) has had the most historical significance.
Now, let us definition of BMO :

Definition 1 (BMO function) Denote the bounded mean oscillation function space by

BMO(R“)={fel_'1°c(R“):||f||BMO = sup Mf]B<oo},

Ball:B<R"
here and in the sequel

1 1
M g :=?j f(x)— fg | dX, ?jf(y)dy
B B

Here and henceforth, F ~G means F = G = F; while F = Gmeans F >CG for a constant C >0;and p
1 1 1

. 1
and S always denote the conjugate index of any P >1 and S>1, thatis, —:=1—— and —:=1-= and
p p S S

also C stands for a positive constant that can change its value in each statement without explicit mention.

Throughout the paper we assume that X € R" and r >0 and also let B(X,r) denotes X -centred Euclidean
ball with radius r, B®(X,r) denotes its complement and | B(X,r)| is the Lebesgue measure of the ball
B(x,r) and | B(x,r)|=v.r", where v, =| B(0,1)|.

A
N
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2. Background about vanishing generalized Morrey spaces
After studying Morrey spaces in detail, researchers have passed to the concept of generalized Morrey spaces.

Firstly, motivated by the work of [9], Mizuhara [8] introduced generalized Morrey spaces M b 8S follows:
Definition 2 (Generalized Morrey space; see [8]) Let (X, ') be a positive measurable function on

R"x(0,00) . If 0 < p < oo, then the generalized Morrey space M, , =M _(R") is defined by

xeR",r>0

{f sy ®N:f], = sup o], g <O°}'

A
Obviously, the above definition recover the definition of M ; (R") if we choose @(X,r) =r", thatis

Mpyﬂ(Rn):Mp,w(Rn)l A
p(x,r)=rP

Everywhere in the sequel we assume that  inf (p(X, r) > 0 which makes the above spaces non-trivial, since
xeR" r>0

the spaces of bounded functions are contained in these spaces. We point out that ¢(X, I') is a measurable non-

negative function and no monotonicity type condition is imposed on these spaces.
Recently, Gurbiuz [5, 6] has proved the boundedness of the sublinear operators and their commutators by

withrough kernels denoted by T,, T, ,, To ;. Ty, On generalized Morrey spaces M 0o FESpectively.

Throughout the paper we assume that X € R" and r >0 and also let B(X, ) denotes the open ball centered
at X of radius r, BC(X,r) denotes its complement and | B(X,r)| is the Lebesgue measure of the ball
B(x,r) and | B(x,r)|=v.r", where v, =| B(0,1)|.

Now, recall that the concept of the vanishing generalized Morrey spaces VM p#,(R”) has been introduced in
[11].

Definition 3 (Vanishing generalized Morrey space; see [11])Let @(X,I) be a positive measurable function

on R"x(0,00) and 1< p <co. The vanishing generalized Morrey space VM | (R") s defined as the
spaces of functions f e L';C(Rn) such that
. 1 _
Irlgg SUE P(xT) ”f”Lp(B(x,r)) =0. (2.1)
xeR

Naturally, it is suitable to impose on go(X,t) with the following condition:

n

tP 0
im su =0, 2.2
W S okt @2
and
tE
inf sup > 0. (2.3)

=1 xeR" ¢(X,t)
From (2.2) and (2.3), we easily know that the bounded functions with compact support belong to VM | | R").
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The space VM 0o (R”) is Banach space with respect to the norm (see, for example [11])
— -1
£ 1l op . SUP @(x,1) ” f ”Lp(B(x,r)) :

xeR" r>0

The spaces VM M(R") is closed subspaces of the Banach spaces M p’(/)(R”), which may be shown by

standard means.
Furthermore, we have the following embeddings:

M P,WCMP,W ”f”Mp’{p S”f”VMp’(p'

The purpose of this paper is to consider the mapping properties for the operators T, , T, ,, Ty, Tgyp,, both

on vanishing generalized Morrey spaces and vanishing Morrey spaces, respectively. Similar results still hold for

a’

the operators Ta, T, [0, Tal, [0,Tadl. Mg, and Mg, . respectively. These operators T, T, ,,

Top» Tape have not also been studied so far both on vanishing generalized Morrey spaces and vanishing

Morrey spaces and this paper seems to be the first in this direction.

3. Main Results
Theorem 1 Let Qe L (S"™), 1< s <00, be homogeneous of degree zero,and 1< p <oo. Let T, bea

sublinear operator satisfying condition (1.3). Let for s < P, the pair (gol, goz) satisfies conditions (2.2)-(2.3)
and

C, = jsup gol(x,t)t_?ldt <o

S xeR"
forevery 0 >0, and

and for 1< p <'s the pair (¢, @,) satisfies conditions (2.2)-(2.3) and also
[e's] n n

i _B+§_l

c. = [supp(xth P * dt<oo

5’ xeR"

forevery 8 >0, and

1(xt) @,(X,1)
o dt<Co
rgps rPs
where C, does not depend on X e R" and r >0.

Then the operator T, is bounded from VM poy 10 VM, for p>1.Moreover, we have for p >1

P2
<
ITafllvn,,, < Ifllum,, -

Proof. Let 1< p <o and s < P . The estimation of the norm of the operator, that is, the boundedness in the
vanishing generalized Morrey space follows from Lemma 2.1. in [5] and condition (3.2)

”Ts)f”VMW2 = Sup o, (X’ r)_l”TQ f ”Lp(B(x,r))

xeR" r>0

TN
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ssup @,(x,r) _[||f||

xeR",r>0 tp
dt
sUsup @,(x,r) I(pl X, t){(pl(x t)* ||f|| } .
xeR",r>0 tEJrl
dt
<Ifl,  sup e,(x.r) j¢1 X,t)—
P xeR",r>0 tp+1
b,
So it is sufficient to prove that
lim sup o (X, 1) f || =0= I|m sup @, (X, 1) [T, f || = 0. (3.5)
0 xeRN 0 yeRD
To show that sup @, (X, ) l||T f|| ) < & for small r, we split the right hand side of (2.1) in Lemma
xeR"
2.1.in[5]:
2, (%, 1) [T, f ||Lp (exr) S cl oy (6 T)+ 3,5 (%, r)) (3.6)

where 0, >0 (we may take 0, <1), and

n

Igpl X, t)t ((ﬂl(x’t)l”f”l_p(B(x,t)))dt !

5 (X
50()( ' (02( 1)

and

3, (x,r):

_[(01 X t)t ((ol(x’t)_l” f |||_p(|3(><,t))jdt

¢’2 (X N\ s

and I' < J,. Now we choose any fixed 0, >0 such that

&
2CC,

SUP‘/’l(X t)" ”f” B(x)

xeR"

where C and CO are constants from (3.2) and (3.6). This allows to estimate the first term uniformly in

re(0,6,):

supCl, (x,r)< % 0<r<d,
xeR"

The estimation of the second term may be obtained by choosing r sufficiently small. Indeed, by (2.2) we have
n

N L oot

where 050 is the constant from (3.1). Then, by (2.2) it suffices to choose I small enough such that

A
N
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n

rP &

T otn) " 2,1l

which completes the proof of (3.5).

For the case of 1< p <'S, we can also use the same method, so we omit the details, which completes the proof.
Remark 2 Conditions (3.1) and (3.3) are not needed in the case when ¢@(X,r) does not depend on X, since
(3.1) follows from (3.2) and similarly, (3.3) follows from (3.4) in this case.

Corollary 1 Under the conditions of Theorem 1, the operators M, and 'Fg are bounded from VM o 1O

VM

p.py
Corollary 2 Let Qe L (S "), 1<s< o0, be homogeneous of degree zero satisfying condition (1.2). Let

0<A<n, 1<p<oo. Let T, be a sublinear operator satisfying condition (1.3). Then for s < p or
p <s, we have

WTaflvm,, = lIfllvm,,-
4
Proof. Let 1< p<oo and s < P . By using (ol(x,r): (pz(x,r): r? in the proof of Theorem 1 and
condition (3.2), we get

/1nOO

ITof lym,, = Isup 1 PrP _[% X t)t [%(X’t)l”f”Lp(B(x,t)))dt

xeR",r>0
A
" I
r

‘O‘N

<[l s T

xeR" r>0

S,
VMp,i

for the case of P < S, we can also use the same method, so we omit the details.

Corollary 3 Under the conditions of Corollary 2, the operators M, and 'I_'Q are bounded on VM M( ”).

n
Theorem 2 Let Qe L (S"™"), 1<s<o0, be homogeneous of degree zero. Let 0<a<n, 1< p<—
a

and —=———. Let TQ,a be a sublinear operator satisfying condition (1.4). Let for s < P the pair

(@, @,) satisfies conditions (2.2)-(2.3) and

Isupgp1 X, t)£<oo

5X€R tq

forevery 0 >0, and

and for q <'S the pair (¢, @,) satisfies conditions (2.2)-(2.3) and also

(yﬁ

b
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c. Isnip POt 55— <o (3.9)
S Xel tq s
forevery & >0, and
X, T
I%(X DG —%(n : ), (3.10)
tOI s ro s

where C, does not depend on X e R" and r > 0.
Then the operator T, , is bounded from VM by 1O VM a0, fOr P> 1. Moreover, we have for p>1

”Tﬂ,af”VMWZ S 1 llvm

Py

Proof. Similar to the proof of Theorem 1, let s < P . The estimation of the norm of the operator follows from
Lemma 3 in [6] and condition (3.8)

||Tﬂ'af||VMq,(p2: SUp @, (X, 1) H Qa HLq(B(x,r))

xeR",r>0

<Dsup @,(x,r) ﬂ|f||

xeR" ,r>0
o F dt
<sup g, (0r)r fo(x t)[@(x 01l | 5
xeR"™,r>0 r taﬂ
dt
<Ifl,  sup @(xr) j(pl X,t)—
P21 xeRM r>0 r tq
S 1l
P
Thus we only have to prove that
im sup g, (x, 7L epery = 0= lim Sp; (x 17T, fHLq oary =0 (3.11)
o Pl ey
To show that sup—q < ¢ for small r, we split the right-hand side of (2.1) in Lemma 3

erh  Pp(%T)
in [6]:

ria”TQv“ f HLq(B(x r)

@,(%,1)
where 0, >0 (we may take 0, <1), and

<cli, (or)+3, (1))

J.(pl t)[ ((01(X’t)_1” f ”Lp(B(X,t))jdt'

1, (x,
pbur): (pz( Nl

and
=
(3_; RNy
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3, (xr):

J.gol X, t)[ ((”1()('1:)1” f ”Lp(B(x,t))jdt’

and I < 50 and the rest of the proof is the same as the proof of Theorem 1. Thus, we can prove that (3.11).

q’z( I’)

For the case of ( < S, we can also use the same method, so we omit the details, which completes the proof.

Remark 3 Conditions (3.7) and (3.9) are not needed in the case when @(X,r) does not depend on X, since
(3.7) follows from (3.8) and similarly, (3.9) follows from (3.10) in this case.

Corollary 4 Under the conditions of Theorem 2, the operators M, , and T a.« are bounded from VM by 1O

n-4 1 1 « A _u . L .
, ———=—and —=—. Let TQ,a be a sublinear operator satisfying condition (1.4). Then

a p q n P q
forS'Sporq<S,wehave

”TQ'“f”VMW = ”f”VMIM'

H
Proof. Let S < p. By using gpl(x, r) P and (pz(x r)— r in the proof of Theorem 2 and condition

(3.8), it follows that

) Ny
||Tﬂaf||VM slisup r qr I¢1(X’t)t ! (%(X’t)l”f”Lp(B(x,t))jdt

xeR",r>0
o0

S

Npo 4
q p

<[l s T

xeR",r>0

LAY
VMp,l

for the case of ( <S, we can also use the same method, so we omit the details, which completes the proof.

Corollary 6 Under the conditions of Corollary 5, the operators M, , and T o« are bounded from VM pa tO

VM

quu*

Now below, we obtain the boundedness of operators both T, and T, , on the vanishing generalized Morrey
spaces VM |
Theorem 3 Let Qe L (S"™),1< s <00, be homogeneous of degree zero. Let 1< p < oo and

be BMO( n). Let T, , is a sublinear operator satisfying condition (1.5). Let for S <P the pair (¢, ,)
satisfies conditions (2.2)-(2.3) and

c, = j[1+ In ;j supe, (Xt * dt <o (3.12)

S xeR"
forevery 0 >0, and

(yﬁ

b
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j(1+|n l)wdtscow, (3.13)
r —+1 —
r p

[P
and for P <'S the pair (¢, ¢,) satisfies conditions (2.2)-(2.3) and also

c, = j[1+ In %)sup gpl(x,t)tiﬁ?ldt <o (3.14)

! xeR"

forevery & >0, and

j(1+ln %)Mdt SCOM, (3.15)

LN AN
S

r rps

where C, does not depend on X e R" and r > 0.

Then the operator T, , is bounded from VM | to VM .0, - Moreover,

41
I7asflly,, = WellswollFllvm,,,
Proof. The proof follows more or less the same lines as for Theorem 1, but now the arguments are different due

to the necessity to introduce the logarithmic factor into the assumptions. Let s < P . The estimation of the
norm of the operator, that is, the boundedness in the vanishing generalized Morrey space follows from Lemma
2.2.in [5] and condition (3.13)

||TQ'bf||VMp,¢2 = Sup 2 (Xa r)_luTQ,b f HLP(B(x,r))

xeR" r>0
4 TR t dt
Pl st 0, 0r) v (1o 1] S
xeR" r>0 r P tBJrl
G T t 4 dt
<[bl,,. sup @ (xr)’r jl+InF o, (x,t) @, (x,1) ||f||Lp(B(X]t)) ™
xeR™,r>0 r P
, (p
a4 T t dt
S Blaol Flwe sUp @ () PP f[ 1410 |y (1)
P21 xR r>0 r r tEJrl
S Blaolfhu,
So we only have to prove that
im sup ¢, (% 0L ey = 0= lim Sup e, (¥ 1) Tas fHLp(B(“)) =0. (3.16)

To show that Sup e, (X, r)_leQ’beL (B(cr) <& for small r, we split the right-hand side of the first
o(B(x,

xeR"

inequality in Lemma 2.2. in [5]:
2, (%, 1) [T, 1 ||Lp(B(”)) < C[I 5y (6 T)+ 3,5 (%, r)J (3.17)

where 0, >0 (we may take 0, <1), and

TN
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L, (6 1):= ol ——— qoz(x 5 j(1+ln jgol (x,t) P ((01 X,t) ||f|| j

and

o0

j(1+ int jgol(x S PR LI

%

35, (61):= [

BMO @, (X r)

and I < &,. Now we choose any fixed 0, >0 such that

&
2CC,

where C and C0 are constants from (3.13) and (3.17). This allows to estimate the first term uniformly in

re(0,6,):

sup %(X’t)_l” f ”Lp(B(x,t)) <

xeR

o]

BMO

supCIgo(x,r)<§, 0<r<d,.
xeR"

The estimation of the second term may be obtained by choosing r sufficiently small. Indeed, by (2.2) we have

n

(e
BMO 50” ||VM (D(X I’)

where 050 is the constant from (3.12). Then, by (2.2) it suffices to choose I small enough such that

3, (xr)<p]

n
rP £

sup
xern P(X, 1) 2||b||BMO 050 ” f ||VM 0o

which completes the proof of (3.16).
For the case of P <S, we can also use the same method, so we omit the details.

Remark 4 Conditions (3.12) and (3.14) are not needed in the case when (p(X, r) does not depend on X, since
(3.12) follows from (3.13) and similarly, (3.14) follows from (3.15) in this case.

Corollary 7 Under the conditions of Theorem 3, the operators M, ; and [b,fg] are bounded from VM by
to VM 0,

Corollary 8 Let Q e L (S "), 1< s <00, be homogeneous of degree zero satisfying condition (1.2). Let
0<A<n,l<p<ow.Letl<p<owandbe BMO(R”). Let T, , be a sublinear operator satisfying

condition (1.5). Then for s < p or p<S,wehave
”TQ,bf”w\,,p'/1 s ||b||BM0||f||VMp_A-

B

Proof. Let 1< p<oo, be BMO( n) and S < p. By using (ol(x,r): qoz(x,r)Z r® in the proof of
Theorem 3 and condition (3.13), we get

(yﬁ
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AP
”TQ.bf”w\/[p,/1 S”b”BMO sup rer pj( le X t)t (gol(x’t)1||f||Lp(B(x,t))jdt

xeR",r>0

n A
I dt
<blylrl,,, s o Lot

xeR",r>0 r B*l

s HD”BMO ” f ||VM !
p.A

for the case of P < S, we can also use the same method, so we omit the details.

Corollary 9 Under the conditions of Corollary 8, the operators Mva and [b,fQ] are bounded on

W, ([R").

_ n
Theorem 4 Let Qe L (S"™), 1< s <00, be homogeneous of degree zero. Let 1< p<oo, 0<a <—,

Y

s < < P the pair (¢, p,) satisfies conditions (2.2)-(2.3) and

T t dt
053:£(1+|” rjsupgpl(x t)— A<

XERn tq

forevery 6 >0, and

T(1+In J (x,1)- dt <c, (/’z(X N
tq

r

r q
and for g <'S the pair (¢, @,) satisfies conditions (2.2)-(2.3) and also

xeR" tq s

T t dt
.= _[(1+In r]supgol(x t)—— " < oo
o

forevery & >0, and

o0

j(1+|n ij(pl(x,t)nd—:scow,
r ———+1

r tq S ra_g

where C, does not depend on X e R" and r > 0.

Then the operator T, , is bounded from VM by 1O VM 4.0, - Moreover,
I7asafll,, = Nollswollfluw,,,

Proof. Similar to the proof of Theorem 3, let s < P . The estimation of the norm of the operator follows from
Lemma 4 in [6] and condition (3.19)

||TQ,b,cf”VMW2 = sup @, (xr) H QbafHLq(B(x,r))

xeR",r>0

PN
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(3.18)

(3.19)

(3.20)

(3.21)
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(1l =

t . dt
[1+ In Fj¢l(xlt{¢l (X’ t) || f ||Lp(B(X,t)):| n.

SIbllavo sup_ @2(,)7r?

xeR" ,r>0

I — X}

~HD”BMO SUP (OZ(X r) ra

xeR" ,r>0

= C— 8

tq
2” dt
S Blawol flan— sup @, (6r) I L4t e (t)
P21 xeRM r>0 tq+l
S [Pl [l
Thus we only have to prove that
I',ILT(]) fie (Dl(x’ r)_ln f ||Lp(B(x,r)) = O = IerO fie ¢2 (Xi r)_leQ,b,a f HLq (B(X,r)) = 0 (322)

HTvava f HL (8(xr))
To show that sup 4 < ¢ for small r, we split the right-hand side of the first inequality in
xeR" @, (%,T)

Lemma 4 in [6]:

n

r E HTva'a f H L, (

(X, r; SaLE C[I50 (%, )+ 3, (%, r)l

where &, >0 (we may take &, <1), and

n
pa %

1, ()=o) [1+In j(pl(xt)t a1, o

BMO @, (X, 1) 1 '[

and
n
a o0

35, (1) = [l —— I(1+In )%(x o (gol(x,t)1||f||Lp(B(X‘t)))dt

O 0 (X,1)

and I < 50 and and the rest of the proof is the same as the proof of Theorem 3. Thus, we can prove that (3.22).

For the case of ( < S, we can also use the same method, so we omit the details, which completes the
proof.
Remark 5 Conditions (3.18) and (3.20) are not needed in the case when (D(X, I') does not depend on X, since
(3.18) follows from (3.19) and similarly, (3.20) follows from (3.21) in this case.

Corollary 10 Under the conditions of Theorem 4, the operators M, , , and [b,-FQ,a] are bounded from

WM, oM,

Corollary 11 Let Q e L (S"™), 1< s <00, be homogeneous of degree zero. Let 0 < &, A <N,

, ———== and i = andbe BI\/IO( ") Let T, be asublinear operator
a p q n' p q

satisfying condition (1.6). Then for s < P or g <S,wehave

(yﬁ

\
l\’ Journal of Scientific and Engineering Research

99



Gurbuz F Journal of Scientific and Engineering Research, 2018, 5(5):86-101

Proof. Similar to the proof of Corollary 8, Let s < P . By using (ol(x, r): r

”TQ,b,af”VMW s ||b||BMO”f||VMp_,1'

H
and @,(x,r)=r? in the

o N

proof of Theorem 4 and condition (3.19), it follows that

7

. T t ot §
“Tbbﬂf”VMw[S”MEMO sup r qrqj[1+ln?)¢a0gt) q (¢H(Xi)l”f”LMBw¢»)dt

xeRn,r>0

o t) 5 dt
SHD”BMo”f"vr\AM sup r * I(l-’_lnFjrp n

xeR" r>0 r —+

t

for the case of ( <S, we can also use the same method, so we omit the details, which completes the proof.

Corollary 12 Under the conditions of Corollary 11, the operators MQ]b]a and [b,-FQ,a] are bounded from

VM,

toVquﬂ.
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