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1. Introduction 

To characterize the regularity of solutions to some partial differential equations(PDEs), Morrey [9] first 

introduced classical Morrey spaces ,pM  which naturally are generalizations of Lebesgue spaces. 

We will say that a function  n

pp MMf R ,, =  if 
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Here, <<1 p  and n<<0   and the quantity of (1.1) is the  ,p -Morrey norm, denoted by 
,p

M
f . 

We also refer to [1, 4] for the latest research on the theory of Morrey spaces associated with harmonic analysis. 

On the other hand, the study of the operators of harmonic analysis in vanishing Morrey space, in fact has been 

almost not touched. A version of the classical Morrey space )(,

n

pM R  where it is possible to approximate by 

"nice" functions is the so called vanishing Morrey space )(,

n

pVM R  has been introduced by Vitanza in [13] 

and has been applied there to obtain a regularity result for elliptic PDEs. This is a subspace of functions in 

)(,

n

pM R , which satisfies the condition 
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where <<1 p  and n<<0   for brevity, so that 
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Later in [14] Vitanza has proved an existence theorem for a Dirichlet problem, under weaker assumptions than 

in [7] and a 
3,2W  regularity result assuming that the partial derivatives of the coefficients of the highest and 

lower order terms belong to vanishing Morrey spaces depending on the dimension. For the properties and 

applications of vanishing Morrey spaces, see also [2]. It is known that, there is no research regarding 

boundedness of the sublinear operators with rough kernel on vanishing Morrey spaces. 

Let )( 1 n

s SL  with s<1  be homogeneous of degree zero and satisfies the cancellation condition  

 0,=)()(
1

''

nS

xdx 


 (1.2) 

where 
||

=
x

x
x'

 for any 0x . We define 
1

=
s

s
s'

 for any 1>s . Suppose that 
T  represents a linear or 

a sublinear operator, which satisfies that for any )(1

nLf R  with compact support and suppfx  
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 (1.3) 

where 0c  is independent of f  and x . Similarly, we assume that ,T ,  n0,  represents a linear or a 

sublinear operator, which satisfies that for any )(1

nLf R  with compact support and suppfx  
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 (1.4) 

for some  n0, , where 0c  is independent of f  and x . 

We point out that the condition (1.3) in the case 1  was first introduced by Soria and Weiss in [12]. The 

conditions (1.3) and (1.4) are satisfied by many interesting operators in harmonic analysis, such as the Calderón-

Zygmund (C-Z) operators, Carleson’s maximal operator, Hardy-Littlewood (H-L) maximal operator, C. 

Fefferman’s singular multipliers, R. Fefferman’s singular integrals, Ricci-Stein’s oscillatory singular integrals, 

the Bochner-Riesz means, fractional Marcinkiewicz operator, fractional maximal operator, fractional integral 

operator (Riesz potential) and so on (see [12] for details). 

Let  nlocLf R1 . The C-Z singular integral operator T  and H-L maximal operator 
M  by with rough 

kernels are defined by  
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,0> ,

1
sup=  

satisfy condition (1.3), where a homogeneous of degree zero function  'x  satisfies (1.2) on the unit sphere 

and belongs to )( 1 n

s SL  with s<1 . 

It is obvious that when 1 , TT   and MM   are the standard C-Z singular intagral operator, 

briefly a C-Z operator and the H-L maximal operator, respectively. 
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On the other hand, in 1971, Muckenhoupt and Wheeden [10] defined the fractional integral operator with rough 

kernel ,T  by  
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and a related fractional maximal operator with rough kernel ,M  is given by  

   ,<<0|)(||),(|sup=)(
),(

1

0>
, ndyyfyxtxBxfM

txB

n

t




 


  

where )( 1 n

s SL  with s<1  is homogeneous of degree zero on 
nR  and also ,T  and ,M  

satisfy condition (1.4). 

If 0= , then   MM ,0  and  TT ,0 , respectively. It is obvious that when 1 ,  MM 1,  and 

 TT 1,  are the fractional maximal operator and the fractional integral operator (Riesz potential), 

respectively. 

For a locally integrable function b  on 
nR , suppose that the commutator operator bT ,  represents a linear or a 

sublinear operator, which satisfies that for any )(1

nLf R  with compact support and suppfx  
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 (1.5) 

where 0c  is independent of f  and x . Similarly, for a locally integrable function b  on 
nR , suppose that the 

commutator operator ,,bT ,  n0,  represents a linear or a sublinear operator, which satisfies that for any 

)(1

nLf R  with compact support and suppfx  
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 (1.6) 

where 0c  is independent of f  and x . 

On the other hand, for  nlocLb R1 , denote by B  the multiplication operator defined by      xfxbxf =B  

for any measurable function f . If T  is a linear operator on some measurable function space, then the 

commutator formed by B  and T  is defined by  

       ).)(()()(=BB:=)(],[=, xbfTxfTxbxfTTxfTbxfT b    

In 1976, Coifman et al. [3] introduced the commutator generated by T  and a locally integrable function b  as 

follows:  
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 (1.7) 

Sometimes, the commutator defined by (1.7) is also called the commutator in Coifman-Rocherberg-Weiss’s 

sense, which has its root in the complex analysis and harmonic analysis (see [3]) and corresponding the 

sublinear commutator of operator M  is defined as follows  

         .|)(||),(|sup=)(
),(

1

0>
, dyyfyxybxbtxBxfM

txBt
b 



  



Gürbüz F                                                     Journal of Scientific and Engineering Research, 2018, 5(5):86-101 

 

Journal of Scientific and Engineering Research 

89 

 

And also, the operators ],[ Tb  and bM ,  satisfy condition (1.5). Let b  be a locally integrable function on 

nR , then for n<<0   and f  is a suitable function, we define the commutators generated by fractional 

integral and maximal operators with rough kernel and b  as follows, respectively: 
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satisfy condition (1.6). 

 

Remark 1 Suppose that ,T ,  n0,  represents a linear or a sublinear operator, when   satisfies the 

specified size conditions, the kernel of the operator ,T  has no regularity, so the operator ,T  is called a 

rough fractional integral operator. These include the commutator operator ],[ ,Tb . This also applies to 

0= . In recent years, a variety of operators related to the fractional integrals, C-Z operators but lacking the 

smoothness required in the classical theory, have been studied (for example, see [5, 6]).  

 

It is worth noting that for a constant C , if T  is linear we have, 

     )(=],[ fCbTfTCbfTCb    
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 .],[= fTb   

This leads one to intuitively look to spaces for which we identify functions which differ by constants, and so it 

is no surprise that BMOb  (bounded mean oscillation space) has had the most historical significance. 

Now, let us definition of BMO : 

 

Definition 1 (BMO function) Denote the bounded mean oscillation function space by 
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here and in the sequel  
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Here and henceforth, GF   means      ; while    means CGF   for a constant 0>C ; and 
'p  

and 
's  always denote the conjugate index of any 1>p  and 1>s , that is, 

pp'

1
1:=

1
  and 

ss'

1
1:=

1
  and 

also C  stands for a positive constant that can change its value in each statement without explicit mention. 

Throughout the paper we assume that 
nx R  and 0>r  and also let ),( rxB  denotes x -centred Euclidean 

ball with radius r , ),( rxBC
 denotes its complement and |),(| rxB  is the Lebesgue measure of the ball 

),( rxB  and 
n

nrvrxB |=),(| , where |(0,1)=| Bvn . 
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2. Background about vanishing generalized Morrey spaces 

After studying Morrey spaces in detail, researchers have passed to the concept of generalized Morrey spaces. 

Firstly, motivated by the work of [9], Mizuhara [8] introduced generalized Morrey spaces ,pM  as follows: 

Definition 2 (Generalized Morrey space; see [8]) Let ),( rx  be a positive measurable function on 

)(0,nR . If <<0 p , then the generalized Morrey space )(,,

n

pp MM R   is defined by 
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Obviously, the above definition recover the definition of )(,

n

pM R  if we choose 
prrx



 =),( , that is  
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Everywhere in the sequel we assume that 0>),(inf
0>,

rx
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
R

 which makes the above spaces non-trivial, since 

the spaces of bounded functions are contained in these spaces. We point out that ),( rx  is a measurable non-

negative function and no monotonicity type condition is imposed on these spaces. 

Recently, Gürbüz [5, 6] has proved the boundedness of the sublinear operators and their commutators by 

withrough kernels denoted by 
T , ,T , bT , , ,,bT  on generalized Morrey spaces ,pM , respectively. 

Throughout the paper we assume that 
nx R  and 0>r  and also let ),( rxB  denotes the open ball centered 

at x  of radius r , ),( rxBC
 denotes its complement and |),(| rxB  is the Lebesgue measure of the ball 

),( rxB  and 
n

nrvrxB |=),(| , where |(0,1)=| Bvn . 

Now, recall that the concept of the vanishing generalized Morrey spaces )(,

n

pVM R  has been introduced in 

[11]. 

 

Definition 3 (Vanishing generalized Morrey space; see [11])Let ),( rx  be a positive measurable function 

on )(0,nR  and  <1 p . The vanishing generalized Morrey space )(,

n

pVM R  is defined as the 

spaces of functions )( nloc

pLf R  such that 
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Naturally, it is suitable to impose on ),( tx  with the following condition: 
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and 
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From (2.2) and (2.3), we easily know that the bounded functions with compact support belong to )(,

n

pVM R . 
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The space )(,

n

pVM R  is Banach space with respect to the norm (see, for example [11]) 
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The spaces )(,

n

pVM R  is closed subspaces of the Banach spaces )(,
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pM R , which may be shown by 

standard means. 

Furthermore, we have the following embeddings: 
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The purpose of this paper is to consider the mapping properties for the operators 
T , ,T , bT , , ,,bT  both 

on vanishing generalized Morrey spaces and vanishing Morrey spaces, respectively. Similar results still hold for 

the operators T , ,T , ],[ Tb , ],[ ,Tb , bM ,  and ,,bM , respectively. These operators 
T , ,T , 

bT , , ,,bT  have not also been studied so far both on vanishing generalized Morrey spaces and vanishing 

Morrey spaces and this paper seems to be the first in this direction. 

3. Main Results 

Theorem 1 Let )( 1 n

s SL , s<1 , be homogeneous of degree zero, and <<1 p . Let 
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 where 0C  does not depend on 
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Then the operator T  is bounded from 
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Proof. Let <<1 p  and ps'  . The estimation of the norm of the operator, that is, the boundedness in the 

vanishing generalized Morrey space follows from Lemma 2.1. in [5] and condition (3.2)  
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So it is sufficient to prove that 
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where C  and 0C  are constants from (3.2) and (3.6). This allows to estimate the first term uniformly in 
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The estimation of the second term may be obtained by choosing r  sufficiently small. Indeed, by (2.2) we have 
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c  is the constant from (3.1). Then, by (2.2) it suffices to choose r  small enough such that  



Gürbüz F                                                     Journal of Scientific and Engineering Research, 2018, 5(5):86-101 

 

Journal of Scientific and Engineering Research 

93 

 

 ,
2),(

sup

,0 





p

VM

p

n

nx fcrx

r


R

 

which completes the proof of (3.5). 

For the case of sp <<1 , we can also use the same method, so we omit the details, which completes the proof.  

Remark 2 Conditions (3.1) and (3.3) are not needed in the case when ),( rx  does not depend on x , since 

(3.1) follows from (3.2) and similarly, (3.3) follows from (3.4) in this case.  

Corollary 1 Under the conditions of Theorem 1, the operators 
M  and T  are bounded from 

1
,pVM  to 

2
,pVM .  

Corollary 2 Let )( 1 n

s SL , s<1 , be homogeneous of degree zero satisfying condition (1.2). Let 

n<<0  , <<1 p . Let 
T  be a sublinear operator satisfying condition (1.3). Then for ps'   or 

sp < , we have 

          
         

  

Proof. Let <<1 p  and ps'  . By using     prrxrx



 =,=, 21  in the proof of Theorem 1 and 

condition (3.2), we get 

           
    

  
dtftxttxrr

txB
p

L

p

n

r

p

n

p

rnx








 



 ,

1

1

1

1

0>,

,,sup 



R

�  

  
1

0>,
,

sup







p

n

p

r

p

n

rnx
p

VM

t

dt
rrf




R

�  

  ,
,p

VM
f�  

 for the case of sp < , we can also use the same method, so we omit the details.  

Corollary 3 Under the conditions of Corollary 2, the operators 
M  and T  are bounded on  n

pVM R, .  

Theorem 2  Let )( 1 n

s SL , s<1 , be homogeneous of degree zero. Let n<<0  , 


n
p <<1  

and 
npq




1
=

1
. Let ,T  be a sublinear operator satisfying condition (1.4). Let for ps'   the pair 

),( 21   satisfies conditions (2.2)-(2.3) and  

   






 <,sup:=
1

1

q

n
nx

t

dt
txc 





R

 (3.7) 

 for every 0> , and  

   ,
),(

, 2
0

1
1

q

n

q

n

r
r

rx
C

t

dt
tx


 





  (3.8) 

 and for sq <  the pair ),( 21   satisfies conditions (2.2)-(2.3) and also 
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 






 <),(sup:=
1

1

s

n

q

n
nx'

'

t

dt
txc 




R

 (3.9) 

 for every 0>' , and 

 ,
),(

),( 2
0

1
1

s

n

q

n

s

n

q

n

r
r

rx
C

t

dt
tx








  (3.10) 

 where 0C  does not depend on 
nx R  and 0>r . 

Then the operator ,T  is bounded from 
1

,pVM  to 
2

,qVM  for 1>p . Moreover, we have for 1>p
 

             

          
  

Proof. Similar to the proof of Theorem 1, let ps'  . The estimation of the norm of the operator follows from 

Lemma 3 in [6] and condition (3.8)  

              
)),((

1

2

0>,

),(sup=
rxB

q
L

rnx

frx  ,

R

T





 

   
  

1
,

1
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0>,
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







q

ntxB
p

L

r

q

n

rnx
t

dt
frrx

R

�  

       
  

1
,

1

11

1

2

0>,

,,,sup
















q

ntxB
p

L

r

q

n

rnx
t

dt
ftxtxrrx 

R

�  

     
1

1

1

2

0>,1
,

,,sup








q

n

r

q

n

rnx
p

VM

t

dt
txrrxf 


R

�  

  .
1

,p
VM

f�  

 Thus we only have to prove that 

 
     

0.=),(suplim 0=),(suplim
,,

1

2
0

,

1

1
0 rxB

q
L

nx
r

rxB
p

L
nx

r

fTrxfrx  












RR

 (3.11) 

 

To show that 
  






<
),(

sup
2

,,

rx

fT
rxB

q
L

nx



R

 for small r , we split the right-hand side of (2.1) in Lemma 3 

in [6]: 

 
  

    ,,,
),( 00

2

,,

rxJrxIC
rx

fTr
rxB

q
L

q

n












 

where 0>0  (we may take 1<0 ), and  

      
  

,,,
),(

:=,
,

1

1

1

1

0

2
0

dtftxttx
rx

r
rxI

txB
p

L

q

n

r

q

n








 


 




  

and 
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      
  

,,,
),(

:=,
,

1

1

1

1

0
2

0
dtftxttx

rx

r
rxJ

txB
p

L

q

nq

n








 


 




  

and 0< r  and the rest of the proof is the same as the proof of Theorem 1. Thus, we can prove that (3.11). 

For the case of sq < , we can also use the same method, so we omit the details, which completes the proof.  

Remark 3 Conditions (3.7) and (3.9) are not needed in the case when ),( rx  does not depend on x , since 

(3.7) follows from (3.8) and similarly, (3.9) follows from (3.10) in this case.  

Corollary 4 Under the conditions of Theorem 2, the operators ,M  and ,T  are bounded from 
1

,pVM  to 

2
,qVM .  

Corollary 5 Let )( 1 n

s SL , s<1 , be homogeneous of degree zero. Let n<,<0  , 



n
p <<1 , 

nqp


=

11
  and 

qp


= . Let ,T  be a sublinear operator satisfying condition (1.4). Then 

for ps'   or sq < , we have 

            
         

  

Proof. Let ps'  . By using   prrx



 =,1  and   qrrx



 =,2  in the proof of Theorem 2 and condition 

(3.8), it follows that 

             
    

  
dtftxttxrr

txB
p

L

q

n

r

q
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q
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



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 

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 ,

1

1

1

1

0>,

,,sup 



R

�  

  
1

0>,
,

sup







q

n

p

r

q

n

rnx
p

VM

t

dt
rrf




R

�  

  ,
,p

VM
f�  

for the case of sq < , we can also use the same method, so we omit the details, which completes the proof.  

Corollary 6 Under the conditions of Corollary 5, the operators ,M  and ,T  are bounded from ,pVM  to 

,qVM .  

Now below, we obtain the boundedness of operators both bT ,  and ,,bT  on the vanishing generalized Morrey 

spaces ,pVM . 

Theorem 3 Let )( 1 n

s SL , s<1 , be homogeneous of degree zero. Let <<1 p  and 

 nBMOb R . Let bT ,  is a sublinear operator satisfying condition (1.5). Let for ps'   the pair ),( 21   

satisfies conditions (2.2)-(2.3) and  

   















 <,supln1:=
1

1 dtttx
r

t
c p

n

nx






R

 (3.12) 

 for every 0> , and  
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),(),(

ln1 2
0

1

1

p

n

p

n

r
r
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Cdt

t
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r

t 















  (3.13) 

 and for sp <  the pair ),( 21   satisfies conditions (2.2)-(2.3) and also 

   















 <,supln1:=
1

1 dtttx
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t
c s
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n

nx'

' 




R

 (3.14) 

 for every 0>' , and 
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),(),(

ln1 2
0

1

1
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p
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n
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r

rx
Cdt

t

tx

r

t
















 (3.15) 

 where 0C  does not depend on 
nx R  and 0>r . 

Then the operator bT ,  is bounded from 
1

,pVM  to 
2

,pVM . Moreover, 

             

                
  

Proof. The proof follows more or less the same lines as for Theorem 1, but now the arguments are different due 

to the necessity to introduce the logarithmic factor into the assumptions. Let ps'  . The estimation of the 

norm of the operator, that is, the boundedness in the vanishing generalized Morrey space follows from Lemma 

2.2. in [5] and condition (3.13)  
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t
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r
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So we only have to prove that 

 
     
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L
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fTrxfrx 
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 (3.16) 

 

To show that 
  

 <),(sup
,,

1

2 rxB
p

Lb
nx

fTrx 



R

 for small r , we split the right-hand side of the first 

inequality in Lemma 2.2. in [5]: 

 
  

    ,,,),(
00,

1

2 rxJrxICfTrx
rxB

p
L  


 (3.17) 

where 0>0  (we may take 1<0 ), and  
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
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and 
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

  

and 0< r . Now we choose any fixed 0>0  such that 
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1
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ftx
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p
L
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
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
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where C  and 0C  are constants from (3.13) and (3.17). This allows to estimate the first term uniformly in 

 00,r : 

   .<<0,
2

<,sup 0
0




 rrxCIb
nx

BMO
R

 

The estimation of the second term may be obtained by choosing r  sufficiently small. Indeed, by (2.2) we have 

  
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,
,

,
,00 rx

r
fcbrxJ

p

n

p
VMBMO 

   

where 
0

c  is the constant from (3.12). Then, by (2.2) it suffices to choose r  small enough such that  

 ,
2),(

sup

,0 





p

VMBMO

p

n

nx fcbrx

r


R

 

which completes the proof of (3.16). 

For the case of sp < , we can also use the same method, so we omit the details.  

Remark 4 Conditions (3.12) and (3.14) are not needed in the case when ),( rx  does not depend on x , since 

(3.12) follows from (3.13) and similarly, (3.14) follows from (3.15) in this case.  

Corollary 7 Under the conditions of Theorem 3, the operators bM ,  and ],[ Tb  are bounded from 
1

,pVM  

to 
2

,pVM .  

Corollary 8 Let )( 1 n

s SL , s<1 , be homogeneous of degree zero satisfying condition (1.2). Let 

n<<0  , <<1 p . Let <<1 p  and  nBMOb R . Let bT ,  be a sublinear operator satisfying 

condition (1.5). Then for ps'   or sp < , we have 

            
               

  

Proof. Let <<1 p ,  nBMOb R  and ps'  . By using     prrxrx



 =,=, 21  in the proof of 

Theorem 3 and condition (3.13), we get 

 

 



Gürbüz F                                                     Journal of Scientific and Engineering Research, 2018, 5(5):86-101 

 

Journal of Scientific and Engineering Research 

98 

 

            
    

  
dtftxttx

r

t
rrb

txB
p

L

p

n

r

p

n

p

rnx
BMO 






















 ,

1

1

1

1

0>,

,,ln1sup 



R

 

  
1

0>,
,

ln1sup
















p

n

p

r

p

n

rnx
p

VMBMO

t

dt
r

r

t
rfb




R

�  

  ,
,p

VMBMO
fb�  

for the case of sp < , we can also use the same method, so we omit the details.  

Corollary 9 Under the conditions of Corollary 8, the operators bM ,  and ],[ Tb  are bounded on 

 n

pVM R, .  

Theorem 4 Let )( 1 n

s SL , s<1 , be homogeneous of degree zero. Let <<1 p , 
p

n
<<0  , 

npq




1
=

1
 and  nBMOb R . Let ,,bT  be a sublinear operator satisfying condition (1.6). Let for 

ps'   the pair ),( 21   satisfies conditions (2.2)-(2.3) and  
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 and for sq <  the pair ),( 21   satisfies conditions (2.2)-(2.3) and also 
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 where 0C  does not depend on 
nx R  and 0>r . 

Then the operator ,,bT  is bounded from 
1

,pVM  to 
2

,qVM . Moreover, 

               

                
  

Proof. Similar to the proof of Theorem 3, let ps'  . The estimation of the norm of the operator follows from 

Lemma 4 in [6] and condition (3.19)  
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
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t
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t
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Thus we only have to prove that 

 
     

0.=),(suplim 0=),(suplim
,,,

1

2
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1
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L
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 (3.22) 

To show that 
  






<
),(

sup
2

,,,

rx

fT
rxB

q
Lb

nx



R

 for small r , we split the right-hand side of the first inequality in 

Lemma 4 in [6]: 

 
  

    ,,,
),( 00

2

,,,

rxJrxIC
rx

fTr
rxB

q
Lb

q

n












 

where 0>0  (we may take 1<0 ), and  

      
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2
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



  

and 

      
  

,,,ln1
),(

:=,
,

1

1

1

1

0
2

0
dtftxttx
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t
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r
brxJ

txB
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L

q

nq

n

BMO 




















 




  

and 0< r  and and the rest of the proof is the same as the proof of Theorem 3. Thus, we can prove that (3.22). 

For the case of sq < , we can also use the same method, so we omit the details, which completes the 

proof.  

Remark 5 Conditions (3.18) and (3.20) are not needed in the case when ),( rx  does not depend on x , since 

(3.18) follows from (3.19) and similarly, (3.20) follows from (3.21) in this case.  

Corollary 10 Under the conditions of Theorem 4, the operators ,,bM  and ],[ ,Tb  are bounded from 

1
,pVM  to 

2
,qVM .  

Corollary 11 Let )( 1 n

s SL , s<1 , be homogeneous of degree zero. Let n<,<0  , 



n
p <<1 , 

nqp


=

11
 , and 

qp


=  and  nBMOb R . Let ,,bT  be a sublinear operator 

satisfying condition (1.6). Then for ps'   or sq < , we have 
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Proof. Similar to the proof of Corollary 8, Let ps'  . By using   prrx



 =,1  and   qrrx



 =,2  in the 

proof of Theorem 4 and condition (3.19), it follows that 
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for the case of sq < , we can also use the same method, so we omit the details, which completes the proof.  

Corollary 12 Under the conditions of Corollary 11, the operators ,,bM  and ],[ ,Tb  are bounded from 

,pVM  to ,qVM .  
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