Journal of Scientific and Engineering Research, 2018, 5(3):318-325

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

The Investigation of Novel 3-(p-chlorobenzyl)-4-(2-benzoxy-3-
ethoxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-one With Gaussian
09W Program

Gül Kotan¹*, Faruk Kardaş², Haydar Yüksek³

¹Kafkas University, Kars Vocational School, Kars, Turkey
 ²Erzincan University, Education Faculty, Erzincan, Turkey
 ³Department of Chemistry, Kafkas University, Kars, Turkey

Abstract In this study, 3-(*p*-chlorobenzyl)-4-(2-benzoxy-3-ethoxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazole-5-one(**1**) has been optimized using B3LYP/631G(d) and HF/631G(d) basis set. ¹H-NMR and ¹³C-NMR isotropic shift values, IR absorption frequencies, UV-Vis values, bond lengths, dipole moments, mulliken charges, HOMO-LUMO energies and total energy of the molecule with both methods were calculated theoretically by using the program package Gaussian G09W. In addition, IR, ¹H-NMR, ¹³C-NMR, UV-Vis theoretical spectral data were compared with specific experimental data.

Keywords 1,2,4-Triazol-5-one, B3LYP/631G(d), HF/631G(d), HOMO LUMO energy, Gaussian G09W **Introduction**

Quantum chemical calculation methods have widely been used to theoretically predict the structural, spectroscopic, electronic and thermodynamic properties of molecular systems. The quantum chemical calculation methods ensure support for experimental structural and spectroscopic studies [1-6]. Many theoretical methods are available like *ab*-initio, semi-imperical, DFT, HF method etc, to predict such drug activity without synthesis. Amongst these, the DFT method has commonly used to determined molecular effect of halogen group on pharmacological activity [7]. In this study, having a large number of theory and basic set options, including molecular mechanics, semi-empirical and ab-initio methods, Gaussian 09W [8] package is used. Hartree-Fock (HF) and Density Functional Theory (DFT/B3LYP) methods are used for the determination of the structure of molecules and the investigated of spectroscopy, electronics, nonlinear optical properties. Experimental data obtained from the literature [9]. The compound was analyzed with IR, ¹H-NMR and ¹³C-NMR, UV-vis spectral datas and experimental spectrums were drawn. 3-(p-chlorobenzly)-4-(2-benzoxy-3-ethoxybenzylidenamino)-4,5dihydro-1H-1,2,4-triazol-5-one (1) has been optimized using B3LYP/631G(d) and HF/631G(d) basis set [8,10]. ¹H-NMR and ¹³C-NMR isotropic shift values were calculated by the method of Gauge-Including Atomic Orbital (GIAO) using the program package Gaussian G09 [8]. Experimental [9] and theoretical values were inserted into the grafic according to equatation of $\delta \exp_a + b$. δ calc. The standard error values were found via SigmaPlot program with regression coefficient of a and b constants. IR absorption frequencies of analysed molecule were calculated by two methods. The veda4f program, was used in defining IR data, which were calculated theoretically [11]. Furthermore, molecule's experimental [9] and theoretical UV-Vis values, theoretical bond lengths, dipole moments, mulliken charges, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and total energy of the molecule for both methods were calculated.

Figure 1: Molecule 1

Materials and Methods

Experimental

of 3-(p-chlorobenzyl)-4-(2-benzoxy-3-ethoxybenzylidenamino)-4,5-dihydro-1H-1,2,4-Experimental data triazole-5-one (1) was obtained from the literature [9]. Melting points were check on WRS-2A Microprocessor Melting-Point Apparatus. The IR spectra were measured on Alpha-P Bruker FT-IR Spectrometer. ¹H- and ¹³C-NMR spectra were recorded in deuterated dimethyl sulfoxide with TMS as internal standard on a Bruker 400 MHz spectrometer, respectively. UV absorption spectra were measured in 10-mm quartz cells between 200 and 400 nm using a PG Instruments Ltd T80 UV-vis Spectrometer. Extinction coefficients (ɛ) are expressed in L·mol⁻¹·cm⁻¹. Yield 89%; m.p: 183 ⁰C; IR (KBr, cm⁻¹): 3170(NH), 1750 and 1707(C=O), 1593(C=N), 1258(COO), 822(1,4-disubstituted benzenoid ring), 776 and 699(monosubstitued benzenoid ring) cm⁻¹. ¹H-NMR (400 MHz, DMSO) δ (ppm): 1.28 (t, 3H, CH₃; J=6.92 Hz), 3.75 (s, 1H, CH₃), 3.85 (s, 1H, CH₂), 4.06 (q, 3H, OCH₂; J= 6.96 Hz), 6.82 (d, 2H, ArH; J= 8.60 Hz), 7.08 (d, 1H, ArH, J=8,12 Hz), 7.18 (d, 2H, ArH, J=8,56 Hz), 7.24-7.29 (m, 1H, ArH), 7.45-7.58 (m, 4H, ArH), 8.20-8.23 (m, 2H, ArH), 9.93 (s, 1H, N=CH), 10.13 (s, 1H, N=CH). ¹³C-NMR: δ 64.84(OCH₂CH₃), 55.28(OCH₃), 30.84(CH₂Ph), 14.70(OCH₂CH₃), 158.70; 151.30; 140.52; 133.70; 130.37(2C); 130.16(2C); 129.02; 128.70(2C); 127.69; 126.90; 126.65; 118.59; 116.03; 114.08(2C)(Ar-C), 147.80 (Triazole C₃), 150.23 (N=CH), 151.97(Triazole C₅), 164.57(C=O).

Methods

The quantum chemical calculations were carried out with density functional theory (DFT) and Hartree-Fock (HF) methods using 6-31G (d) basis set at the Gaussian 09W program package on a computing system [8]. Firstly, the compound **1** was optimized by using the B3LYP/6-31G (d) and HF/6-31G (d) basis sets [8,10]. Thus, the most stable geometrical comformer of compound **1** was obtained. Then, ¹H-NMR and ¹³C-NMR isotropic shift values were calculated with method of GIAO [8]. The veda4f program was used in defining IR data [11]. Theoretically calculated IR data are multiplied with appropriate adjustment factors [12]. Scale dft and hf values obtained according to HF and DFT method are formed using theoretical infrared spectrum. Otherwise, bond lengths, the HOMO-LUMO energy, electronegativity and mulliken charges of compound were calculated theoretically on the computer.

Theoretical Calculations

Figure 2: The optimized molecular structure of the molecule (1) with DFT/B3LYP/6-31G(d) level

Journal of Scientific and Engineering Research

sinits of the molecule (0/ppm)							
No	DFT	HF	No	DFT	HF		
C1	152.47	147.26	C24	132.82	125.87		
C2	151.91	145.60	C25	134.14	127.40		
C3	153.50	146.72	H26	7.53	6.54		
C4	130.39	123.34	H27	10.32	9.56		
C5	126.40	117.03	H28	8.50	8.21		
C6	129.66	123.99	H29	7.61	7.64		
C7	132.70	119.89	H30	7.47	7.47		
C8	153.49	145.69	H31	4.63	3.92		
C9	154.96	137.27	H32	4.13	3.23		
C10	79.53	57.72	H33	1.47	1.05		
C11	25.65	14.58	H34	1.84	0.72		
C12	171.54	157.30	H35	2.01	0.85		
C13	134.17	122.09	H36	8.39	8.51		
C14	137.06	130.97	H37	7.91	7.62		
C15	132.78	123.22	H38	7.94	7.93		
C16	137.36	133.75	H39	7.63	7.54		
C17	131.75	123.04	H40	7.81	8.39		
C18	133.77	129.98	H41	4.41	3.70		
C19	42.84	27.55	H42	4.17	3.46		
C20	139.64	131.46	H43	7.80	7.64		
C21	135.23	127.84	H44	7.43	7.18		
C22	132.44	125.49	H45	7.56	7.31		
C23	144.39	131.42	H46	7.86	7.61		

Table 1: Data calculated ¹³ C and ¹ H-NMR DMSO(B3LYP/ HF 6-31G(d))	isotropic chemical
shifts of the molecule (δ/nnm)	

Theoretically IR values were calculation veda4f programme and scala values were obtain. Theoretically calculated IR data are multiplied with appropriate adjustment factors respectively 0.9613, 0.8929 for DFT/631G(d) and HF/631G(d) basis sets. The negative frequency in the data was not found. This result, structure of compound were shown stable. IR spectrums were drawn with obtained values according to HF and DFT method. Theoretically IR values were compare with experimentally IR values. The result of this compare were found corresponding with each other of values. Experimentally carbonyl peak (C=O) in 1707, 1750 cm⁻¹ and theoretically (C=O) peak in 1768 cm⁻¹ were observed.

Tal	ble 2:	The cal	culated	frequ	iencies v	/alues	of	the mo	olecul	e	1	
												_

Vibration Types	Experimental	Skalalı dft	Skalalı hf
τ HCCC(16)	699	685	718
$\tau \text{ONNC}(12)$	776	790	804
τ HCCC(97)	822	807	830
τ HCOC(10)	1258	1261	1257
v NC(45)	1593	1607	1711
v OC(47)	1707, 1750	1768	1802
v NH(100)	3170	3541	3543

Figure 3: IR spectra experimental and simulated with DFT/B3LYP/6-31G(d) and HF/B3LYP/6-31G(d) levels of the molecule 1

 E_{HOMO} (HF): -0.31919 Hatree E_{LUMO} (HF): 0.08127 HatreeFigure 4: HOMO-LUMO energy calculated with DFT/B3LYP/6-31G(d) and HF/B3LYP/6-31G(d)
levels of the molecule 1

Table 3: The calculated total energy values of the molecule 1								
Enerji (a.u.)	B3LYP	HF	_					
	-1945.3736	-1935.6520	_					

Table 4. The calculated dipole moments values of the molecule

	μ_{x}	μ_{y}	μ_z	μ_{Toplam}
Dft	0.2742	4.1161	1.8357	4.5152
Hf	0.2706	0.6582	5.7821	5.8257

Figure 3: UV-Visible spectra simulated with DFT/B3LYP/6-31G(d) and HF/B3LYP/6-31G(d) levels of the molecule 1

Table 5: The experimental and calculated absorption wavelength (λ) excitation energies of the molecule 1

λ (nm)B3LYP/HF	Uyarma Enerjisi (eV) B3LYP/HF
329.37/230.99	3.7642/5.3675
305.70/220.42	4.0557/5.6248
274.91/212.45	4.5100/5.8359

No	Bond Lengths	B3LYP	HF		Bond Lengths	B3LYP	HF			
1	C(1)-N(47)	1.301	1.269	29	O(53)-C(12)	1.400	1.343			
2	C(1)-N(49)	1.386	1.377	30	C(12)-O(54)	1.203	1.186			
3	C(1)-H(19)	1.495	1.496	31	C(12)-C(13)	1.487	1.486			
4	N(47)-N(48)	1.380	1.369	32	C(13)-C(14)	1.402	1.390			
5	N(48)-H(26)	1.008	0.992	33	C(14)-H(36)	1.084	1.073			
6	N(48)-C(2)	1.371	1.347	34	C(14)-C(15)	1.391	1.382			
7	C(2)-O(51)	1.222	1.200	35	C(15)-H(37)	1.086	1.074			
8	C(2)-N(49)	1.419	1.388	36	C(15)-C(16)	1.397	1.387			
9	N(49)-N(50)	1.375	1.366	37	C(16)-H(38)	1.086	1.075			
10	N(50)-C(3)	1.290	1.260	38	C(16)-C(17)	1.395	1.385			
11	C(3)-H(27)	1.085	1.071	39	C(17)-H(39)	1.086	1.074			
12	C(3)-C(4)	1.463	1.477	40	C(17)-C(18)	1.394	1.384			
13	C(4)-C(5)	1.407	1.395	41	C(18)-H(40)	1.084	1.072			
14	C(4)-C(9)	1.406	1.384	42	C(13)-C(18)	1.401	1.389			
15	C(5)-H(28)	1.084	1.072	43	C(19)-H(41)	1.094	1.081			
16	C(5)-C(6)	1.388	1.375	44	C(19)-H(42)	1.094	1.082			
17	C(6)-H(29)	1.085	1.074	45	C(19)-C(20)	1.523	1.520			
18	C(6)-C(7)	1.398	1.389	46	C(20)-C(21)	1.397	1.386			
19	C(7)-H(30)	1.085	1.073	47	C(21)-H(43)	1.086	1.074			
20	C(7)-C(8)	1.392	1.380	48	C(21)-C(22)	1.395	1.386			
21	C(8)-O(52)	1.373	1.349	49	C(22)-H(44)	1.084	1.073			
22	O(52)-C(10)	1.448	1.418	50	C(22)-C(23)	1.392	1.380			
23	C(10)-H(31)	1.096	1.082	51	C(23)-CI(55)	1.759	1.744			
24	C(10)-H(32)	1.098	1.084	52	C(23)-C(24)	1.394	1.384			
25	C(10)-C(11)	1.516	1.514	53	C(24)-H(45)	1.084	1.073			
26	C(11)-H(33)	1.095	1.084	54	C(24)-C(25)	1.393	1.382			
27	C(11)-H(34)	1.094	1.085	55	C(25)-H(46)	1.087	1.075			
28	C(11)-H(35)	1.093	1.083	56	C(25)-C(20)	1.400	1.390			

 Table 6: The calculated bond lengths of the molecule 1

	DFT	HF		DFT	HF		DFT	HF
C1	0.566	0.641	C20	0.168	0.018	H38	0.139	0.211
C2	0.813	1.053	C21	-0.177	-0.207	H39	0.142	0.211
C3	0.056	0.121	C22	-0.129	-0.180	H40	0.163	0.244
C4	0.076	-0.066	C23	-0.066	-0.137	H41	0.180	0.222
C5	-0.177	-0.206	C24	-0.127	-0.178	H42	0.186	0.229
C6	-0.137	-0.195	C25	-0.172	-0.202	H43	0.144	0.219
C7	-0.169	-0.249	H26	0.358	0.419	H44	0.156	0.232
C8	0.347	0.431	H27	0.219	0.297	H45	0.157	0.232
C9	0.261	0.345	H28	0.153	0.230	H46	0.152	0.228
C10	-0.036	-0.000	H29	0.139	0.212	N47	-0.327	-0.339
C11	-0.463	-0.496	H30	0.147	0.221	N48	-0.514	-0.660
C12	0.558	0.870	H31	0.165	0.186	N49	-0.420	-0.630
C13	0.074	-0.162	H32	0.135	0.148	N50	-0.313	-0.315
C14	-0.136	-0.170	H33	0.151	0.176	051	-0.536	-0.648
C15	-0.139	-0.214	H34	0.155	0.162	052	-0.549	-0.687
C16	-0.117	-0.177	H35	0.180	0.185	053	-0.548	-0.719
C17	-0.138	-0.214	H36	0.159	0.247	054	-0.442	-0.572
C18	-0.157	-0.164	H37	0.140	0.210	C55	-0.025	-0.005
C19	-0.425	-0.407						

Results and Discussion

In this work, geometric properties such as bond lengths and dihedral angles, electronic properties such as total energy, dipole moment, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular

orbital (LUMO), Mulliken atomic charges and spectroscopic parameters such as IR, UV-vis, ¹H-NMR and ¹³C-NMR spectra of 3-(*p*-chlorobenzyl)-4-(2-benzoxy-3-ethoxybenzylidenamino)-4,5-dihydro-1*H*-1,2,4-triazole-5one (**1**) are calculated by density functional theory (DFT) and Hartree-Fock (HF) methods with the 631G(d) basis set. Obtained spectroscopic parameters are compared with experimental data. The data obtained from density functional theory calculations are more efficient than hartree fock data. The chemical shifts in the calculations ¹H-NMR and ¹³C-NMR and IR vibrational frequencies are found to be compatible with the experimental data. Theoretical and experimental carbon and proton chemical shifts ratios between acording to a, b ve R² values, lineer a correlation were observed. Furthermore, IR vibrational frequencies experimentally carbonyl peak (C=O) in 1707, 1750 cm⁻¹ and theoretically (C=O) peak in 1768 cm⁻¹ were observed. The negative frequency in the IR data was not found. This result, structure of compound were shown stable.

References

- [1]. Yüksek, H., Gürsoy, Ö., Çakmak İ., and Alkan, M. 2005. Synthesis and GIAO NMR Calculation for Some New 4,5- Dihydro-1*H*-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental ¹H and ¹³C Chemical Shifts *Magn*. Reson. Chem 43 585-587.
- [2]. Yüksek, H., Çakmak, İ., Sadi, S., Alkan, M. and Baykara, H. 2005. Synthesis and GIAO NMR Calculations for Some Novel 4-Heteroarylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-one Derivatives: Comparison of Theoretical and Experimental ¹H and ¹³C Chemical Shifts Int.J. Mol. Sci 6 219-229.
- [3]. Yüksek, H., Alkan, M., Bahçeci, Ş., Çakmak, İ., Ocak, Z., Baykara, H., Aktaş, Ö. and Ağyel, E. 2008. Synthesis, Determination of pKa Values and GIAO NMR Calculations of Some New 3-Alkyl-4-(pmethoxybenzoylamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-ones J. Mol. Struc 873 142-148.
- [4]. Yüksek, H., Alkan, M., Çakmak, İ., Ocak, Z., Bahçeci, Ş., Calapoğlu, M., Elmastaş, M., Kolomuç, A. and Aksu, H. 2008. Preparation, GIAO NMR calculations and acidic properties of some novel 4,5-dihydro-1*H*-1,2,4-triazol-5-one derivatives with their antioxidant activities Int. J. Mol. Sci 9 12-32.
- [5]. Gökçe, H., Bahçeli, S., Akyıldırım, O., Yüksek, H. and Gürsoy-Kol, Ö. 2013. The Syntheses, Molecular Structures, Spectroscopic Properties (IR, Micro–Raman, NMR and UV–vis) and DFT Calculations of Antioxidant 3-alkyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1H-1,2,4-triazol-5-one Molecules Letters in Organic Chemistry 10 (6): 395-441.
- [6]. Gökçe, H., Akyıldırım, O., Bahçeli, S., Yüksek, H. and Gürsoy-Kol, Ö. 2014. The 1-acetyl-3-methyl-4-[3-methoxy-4-(4-methylbenzoxy)benzylidenamino]-4,5-dihydro-1*H*-1,2,4-triazol-5-one Molecule Investigated by a Joint Spectroscopic and Quantum Chemical Calculations Journal of Molecular Structure DOI:http://dx.doi.org/10.1016/j.molstruc.2013.10.044, 1056-1057: 273-284.
- [7]. Jadhao, N.U and Naik A.B. 2017. Effect of electronegativity on structural, spectrophotometric and thermo-chemical properties of fluorine and chlorine substituted isoxazoles by DFT method. Cogent Chemistry; 3(1):1296342.
- [8]. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M.; Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr.Vreven, T., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin; L.R., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S. Daniels A.D., Farkas, O. Foresman, J.B., Ortiz, J.V., Cioslowski, J., & Fox, D.J. 2009. Gaussian Inc., Wallingford, CT.
- [9]. Kardaş, F., Gürsoy-Kol, Ö., Beytur, M., Alkan, M., Yüksek, H. 2017. "Synthesis and *In vitro* Antimicrobial Properties of Some New 4-(2-Benzoxy-3-ethoxy)-benzylidenamino-4,5-dihydro-1*H*-1,2,4-triazol-5-one Derivatives", International Research Journal of Pure & Applied Chemistry, DOI: 10.9734/IRJPAC/2017/37845, 15(2), 1-9.

- [10]. Wolinski, K., Hilton, J.F and Pulay, P. 1990. J. Am. Chem. Soc., 112, 512.
- [11]. Jamróz, M.H. 2004. Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw.
- [12]. Merrick, J.P., Moran, D., Radom, L. 2007. An Evaluation of Harmonic Vibrational Frequency Scale Factors. Journal of Physical Chemistry, 111 (45), 11683-11700.