Graphs of Pregroups

Faisal H Nesayef

Department of Mathematics, Faculty of Science, University of Kirkuk, Kirkuk, Iraq

Abstract

Pregroups was constructed by Stallings in 1971. Subsequently the concept of Pregroups was developed by many other researchers. Stallings originally defined a set with a binary operation satisfying five axioms, namely, P1, P2, P3, P4, and P5. Later it was proved that P3 is a consequence of the other axioms. Stallings has also linked this construction of a Pregroup to Free Product of Groups. This construction is developed to include a new axiom called P6, which enabled to define a length function on the universal group of Pregroups. Applications of Pregroups with length functions led to direct proofs of many other concepts in combinatorial group theory. On the other hand the concept of length functions on groups was first introduced by Lyndon [1]. This was used to give direct proofs of many other results in combinatorial group theory. Further work was done by many other researchers such as, Cheswell [2], [3], [4], Hoare [5], Wilkins [6], etc.

Keywords Pregroup, Length Function, Graphs of Groups, Maximal Tree and HNN extension

1. Introduction

1.1. Length functions

Definition 1.1: A length function | on a group G , is a function giving each element x of G a real number $|x|$, such that for all $x, y, z \in G$, the following axioms are satisfied.
$A 1^{\prime}|e|=0, e$ is the identity elements of G.
A2 $\left|x^{-1}\right|=|x|$
A4 $d(x, y)<d(y, z) \Rightarrow d(x, y)=d(x, z)$, where $d(x, y)=\frac{1}{2}\left(|x|+|y|-\left|x y^{-1}\right|\right.$
Lyndon [8] showed that $A 4$ is equivalent to $d(x, y) \geq \min \{d(y, z), d(x, z)\}$ and to $d(y, z), d(x, z) \geq m \Rightarrow d(x, z) \geq m$.
$A 1^{\prime}, A 2$ and $A 4$ imply $|x| \geq d(x, y)=d(y, x) \geq 0$.
Assuming, $A 2$ and $A 4$ only, it is easy to show that:
i. $d(x, y) \geq|e|$
ii. $|x| \geq|e|$
iii. $d(x, y) \leq|x|-\frac{1}{2}|e|$,

The Axiom $A 3$ states that $d(x, y) \geq 0$ is deductible from $A 1^{\prime}, A 2$ and $A 1^{\prime}$ is a weaker version of the axiom: $A 1|x|=0$ if and only if $x=1$ in G.

1.2. Pregroups

Definition 1.2. A Pregroup is a set P containing an element called the identity element of P, denoted by 1 , a subset D of PXP and a mapping $\mathrm{D} \rightarrow \mathrm{P}$, where $(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{x} y$, together with a map i : $\mathrm{P} \rightarrow \mathrm{P}$ where $\mathrm{i}(\mathrm{x})=\mathrm{x}^{-1}$, satisfying the following axioms:
We say that $\mathrm{x} y$ is defined if $(\mathrm{x}, \mathrm{y}) \in \mathrm{D}$, i.e. $\mathrm{x} y \in P$.
$P 1$. For all $x \in P, 1 x$ and $x 1$ are defined and $1 x=x 1=x$.
$P 2$. For all $x \in P, x^{-1} x=x x^{-1}=1$.

P3. For all $x, y \in P$, if $x y$ is defined, then $y^{-1} x$ is defined and $(x y)^{-1}=y x$.
P4. Suppose that $x, y, z \in P$. If $x y$ and $y z$ are defined, then $x(y z)$ is defined, is which case $\mathrm{x}(\mathrm{y} \mathrm{z})=(\mathrm{xy}) \mathrm{z}$.
P5. If $w, x, y, z \in P$, and if $w x, x y, y z$, are all defined the either $w(x y)$ or $(x y) z$ is defined.

2. Bass-Serre Theory

Definition 2.1: A graph X is a pair $(V(X), E(X))$ of two disjoint sets of elements; a non-empty set $V(X)$, called vertices and a set $E(X)$, called edges, with a function $t: E(X) \rightarrow V(X)$ and a function $E(X) \rightarrow E(X)$ denoted by $e \rightarrow \bar{e}$ such that $e=\overline{\bar{e}}$ for all e in $E(X), \bar{e}$ is called the inverse of e, e is not necessarily different from \bar{e}.
We define, $o(e)=t(\bar{e})$, so that $o(\bar{e})=t(e) . o(e)$ and $t(e)$ are called the endpoints of the edge e $o(e)$ is the origin of e , and $\mathrm{t}(\mathrm{e})$ is the terminal of e . An edge e with $o(e)=t(e)$ is called a loop. A loop e, for which $\{e=\bar{e}\}$ is called an "inversion loop"
Definition 2.2: A pair of edges $\{e, \bar{e}\}$ is called an unoriented edge.
Definition 2.3: An orientation of a graph X is a set R consisting of exactly one member of each unoriented edge $\{e, \bar{e}\}$ for which $\neq \bar{e}$, together with every edge $e=\bar{e}$.
Definition 2.4: A graph Y is a sub graph of a graph X, if $V(Y) \subseteq V(X), E(Y) \subseteq E(X)$, and if $e \in E(Y)$, then $o(e), t(e)$ and \bar{e} are defined and have the same meaning in Y as they have in X . We write $Y \subseteq X$.
Definition 2.5: A path P of length n in a graph X is a finite sequence of edges:
$P=e_{1} \ldots e_{n}, n \geq 1$, such that, $t\left(e_{i}\right)=o\left(e_{i+1}\right)$ for $i=1, \ldots, n-1$.
$o(P)=o\left(e_{1}\right)$ and $t(p)=t\left(e_{n}\right)$ and we say that P is a path from $o\left(e_{1}\right)$ to $t\left(e_{n}\right)$.
The path P is closed if $o\left(e_{1}\right)=\left(e_{n}\right)$, and reduced if $e_{i+1} \neq \bar{e}_{i}$ for $i=1, \ldots, \mathrm{n}-1$. For each vertex v of X , we define an empty path 1_{v} of length zero (i.e. a path without edges) from v to v . The inverse $p^{-1}=\bar{e}_{n} \ldots \bar{e}_{1}$
Definition 2.6: The product of two path $P_{1}=e_{1} \ldots e_{n}$ and $P_{2}=e_{1}^{\prime} \ldots e_{m}^{\prime}$ in X , such that $t\left(P_{1}\right)=o\left(P_{2}\right)$, is defined by $: P_{1} P_{2}=e_{1} \ldots e_{n} e_{1}^{\prime} \ldots e_{m}^{\prime}$
Definition 2.7: A circuit is a non-empty reduced closed path, such that the terminals of any two different edges are different.
Definition 2.8: A graph X is connected if for each pair of vertices u, v in X, there is a path from u to v.
Definition 2.9: A tree in X is a connected subgraph T of X which contains no circuit.
Definition 2.10: A maximal tree T in a connected graph X, is a subtree in X which is maximal with respect to inclusion.
It can be shown that if T is a tree in a connected graph X , then T is a maximal tree if and only if $V(T)=V(X)$.
Definition 2.11: If X and Y are graphs, then a morphism $f: X \rightarrow Y$ is a mapping which takes vertices to vertices, edge to edges, such that $f(o(x))=o(f(x))$ and $f(\bar{x})=\overline{(f(x))}$ for all edge x in X .
f is called an isomorphism if it is one-one and onto. An isomorphism $f: X \rightarrow X$ is called an automorphim of X . The automorphim of X form a group, denoted by Aut X .
Definition 2.12: A group G acts on a graph X, if there is a homomorphism $\emptyset \rightarrow G$ Aut X.
If x is a vertex or an edge in $X, g \in G$; we write gx for $\emptyset(g)(x)$.
If x is an edge, then $(x)=g o(g x), g \bar{x}=\overline{(g x)}$.
A group G acts without inversions on a graph X , if $g x \neq \bar{x}$ for any $g \in G$ and any $x \in E(x)$.
G acts with inversions on x , if $g x=\bar{x}$ for some $g \in G$ and any $x \in E(x)$.
Let $V(x) / G$ denote the set of G-orbits in $V(x)$ and $E(x) / G$ denote the set of G-orbits in $E(x)$.
The graph X/G whose vertices and edge are the G-orbits in $V(x)$ and $E(x)$, with induced inverses and origins, is called the quotient graph. The morphism $P: X \rightarrow X / G$ is called the projection.
Definition 2.13: Let $v \in V(X)$. The star of v is the set : $\operatorname{star}(v)=\{x \in E(X): o(x)=v\}$.
If $f: X \rightarrow Y$ is a morphim of graphs and $v \in V(X)$ then f induces a map $f_{v}: \operatorname{Star}(v) \rightarrow \operatorname{star}(f(v))$ by restriction. We say that f is star injective (surjective) if f_{v} is injective (surjective) for every $v \in V(X)$. The following lemmas are proved in [4] and [9] and [8].
Lemma 2.1: Let $P: X \rightarrow Y$ be an onto graph morphism which is star surjective. Let T be a tree in Y . Then there is a morphism $q: T \rightarrow X$ such that pq is the identity on T .

Lemma 2.2: Let a group G act on a connected graph X with quotient $Y=X / G$. Let $p: X \rightarrow Y$ be the projection, and T a maximal tree of Y . Then there is a moephism $q: T \rightarrow X$ such that pq is the identity on T .
Lemma 2.3: Let x be a connected graph with sub graphs $X_{1} \subseteq X_{2} \subseteq X$. let g be a group acting on X and H a subgroup of G. Assume the following:
(1) If v_{1} and v_{2} are in $v\left(X_{1}\right), g \in G$, and $g v_{1}=v_{2}$, then $g \in H$.
(2) $G X_{2}=X$
(3) $V\left(X_{2}\right) \subseteq H \cdot V\left(X_{1}\right)$

Then $\mathrm{H}=\mathrm{G}$
The edges $\mathrm{E}(\mathrm{Y})$ of a graph Y consists of two disjoint sets. That is $\{e: e \in E(Y)=Y \in E(Y): y \neq \bar{y}\} \dot{U}\{\ell$: : is a loop and $\ell=\ell \in E Y$.
Definition 2.14:A graph of groups $\left(Y, G_{v}, G_{e}\right)$ consists of :
(1) a connected graph Y .
(2) a group G_{v} associated with each vertex v in Y .
(3) a group G_{e} associated with each edge e in Y , with $G_{e}=G_{\bar{e}}$.
(4) a monorphim $\lambda_{e}: G_{e} \rightarrow G_{t(e)}$ for each e in Y , denoted $a \rightarrow a^{e}$.
(5) If $e=\bar{e}$ in Y, then there is an automorphism $\alpha: G_{e} \rightarrow G_{e}$ of order at most two such that the inner automorphim α^{2} is determined by an element $a_{0} \in G_{e}$ fixed by α.
Let G be a group acting on a connected graph X . Let $Y=X / G$. Let T be a maximal tree of $Y, p: X \rightarrow Y$ the projection and $q: T \rightarrow Y$ as in lemma 1.2. Following Bass-Serre, Chiswell [5] and Khanfar, Y can be made into a graph of groups.

Definition 2.15: Let T be a tree and $\left(T, G_{v}, G_{e}\right)$ a tree of groups with the monomorphisms, $\lambda_{y}: G_{y} \rightarrow G_{t(y)}$ given by $a \rightarrow a^{y}$ and $\lambda_{\bar{y}}: G_{\bar{y}} \rightarrow G_{t(\bar{y})}$ given by $\rightarrow a^{\bar{y}}$, where $G_{y}=G_{\bar{y}}$.
The tree product of $\left(T, G_{v}, G_{e}\right)$ is defined to be the free product of all G_{v} with additional relations $a^{y}=a^{\bar{y}}$, for all $y \in E(T)$ and all $a \in G_{y}$.
The tree product can be presented by $\left\langle G_{v}: \operatorname{rel} G_{v}, a^{y}=a^{\bar{y}}, v \in V(T), y \in E(T)\right\rangle$
Definition 2.16: Let $\left(Y, G_{v}, G_{e}\right)$ be a graph of groups, and T a maximal tree of Y . The quasi-fundamental group Π of $\left(Y, G_{v}, G_{e}\right)$ is given by:
$\Pi=<G_{v}, t_{y}, t_{\ell} \mid$ rel $G_{v}, t_{y} a^{y} t_{y}^{-1}=a^{\bar{y}}, t_{y} t_{\bar{y}}=1$, for $y \neq \bar{y}, t_{y}=1$ if $y \in T, t_{\ell} c t_{\ell}^{-1}=a_{\ell}(c), t_{\ell}^{2}=c_{0}>$, where $v \in V(Y), y \neq \bar{y}$ in $E(Y), a \in G_{y}, c \in G_{\ell}$ and ℓ an inversion loop in Y .
Thus II is a quasi H.N.N. extension with base the tree product of (T, G_{v}, G_{ℓ}), stable letters t_{y}, t_{ℓ} and associated pairs $\left(G^{y}, G^{\bar{y}}\right)$ for each pair of edge $\{y, \bar{y}\}, y \neq \bar{y}$ not in T and $\left(G_{\ell}, G_{\ell}^{\alpha}\right)$ for each inversion loop.
By a similar situation in Serre [8], Π is independent (up to isomorphism) of T.
If there are no inversion loops in the graph, then the above definition reduces to:
Let $\left(Y, G_{v}, G_{y}\right)$ be a graph of graphs, and T a maximal tree of Y . The fundamental group $\Pi\left(Y, G_{v}, G_{y}\right)$ is defined to be the group with presentation $\Pi\left(Y, G_{v}, G_{y}\right)=\left\langle t_{y}, G_{v}\right|$ rel $G_{v}, t_{y} G_{y}^{y} t_{y}^{-1}=G_{\bar{y}}^{\bar{y}} t_{y} t_{\bar{y}}=1$ all y, and $t_{y}=$ 1 if $y \in T$, where y runs over $E Y, v$ over $V Y, \emptyset y: G y y \rightarrow G y y$ is the isomorphism given by $a y \rightarrow a y, a \in G y$ If R is an orientation of Y , then $\Pi=\left\langle t_{y}, G_{v}\right|$ rel $G_{v}, t_{y} a^{y} t_{y}^{-1}=a^{\bar{y}}, t_{j}=1$ for $\left.j \in E(T)\right\rangle$, where y runs through R $v \in V(Y)$.Bass [11] and Serre [8] constructed a graph \tilde{Y} on which Π acts without inversion, and showed that \tilde{Y} is a tree. From this they proved that if the group G acts on tree without inversion, then G is isomorphic to Π and X is isomorphic to \tilde{Y}.
The above argument can be stated as follows:
Let G be a group acting on a connected graph X . Let $Y=X / G,\left(Y, G_{v}, G_{y}\right)$ be the graph of group associated with the action of G on x , let II be the quasi -fundamental group of $\left(Y, G_{v}, G_{y}\right)$ relative to a maximal tree T of Y . Let R be an orientation of Y and \tilde{Y} be the tree constructed as above on which Π acts. If X is a tree, then $\tilde{Y} \cong x$ and $\Pi \cong G$.

3. Some Constructions

A " tree of groups ", which should not be confused with tree product, consists of :
(a) A set I partially ordered by < which contains no infinite descending chain, has a least element, and such that for all $i, j, k \in I$, if $i \leq k, j \leq k$ then either $i \leq j$ or $j \leq i$.
(b) A class of groups $\left\{G_{i}\right\}, i \in I$.
(c) For all $i, j \in I$, if $i<j$, a monomorphism $\emptyset_{i j}=G_{i} \rightarrow G_{j}$, with the condition that for all $i, j, k \in$ I, if $i<k, j<k$, then $\emptyset_{j k} . \emptyset_{i j}=\emptyset_{i k} G_{i} \rightarrow G_{k}$.
Identify $x \in G_{i}$, with $\emptyset_{i j}(x) \in G_{j}$, i.e. put an equivalence relation \sim on elements of $G={ }_{i} \dot{U} \in I$, by : $x \sim y \Leftrightarrow$ either for some $i \leq j, \emptyset_{i j}(x)=y$ or for some $i \leq j, \emptyset_{i j}(y)=x$.
Denote the equivalence classes containing x by $[\mathrm{x}]$ for all elements of $i \in \dot{U} G_{i}$.
Let $p=\left\{\left[x_{i}\right]: i \in I\right\}$. The product of two elements $\left[x_{i}\right],\left[x_{j}\right], x_{i} \in G_{i}, x_{j} \in G_{i}$ is defined in P by
$\left[x_{i}\right]\left[x_{j}\right]=\left[\emptyset_{i j}\left(x_{i}\right) x_{j}\right]$, where there exists a monomorphism $\emptyset_{i j}: G_{i} \rightarrow G_{j}$
$=\left[x_{i j i}\left(x_{j}\right)\right]$, where there exists a monomorphism $\emptyset_{j i}: G_{j} \rightarrow G_{i}$
Assuming that $\emptyset_{i i}=i d_{G_{i}}$
This multiplication between elements of P is well defined. It is easy to show that P is a pregraoup.
Since the map $x \rightarrow[x]$ is a monomorphism of G_{i} into P , then each G_{i} is embedded in P .

Definition 3.1: The product $g_{i} g_{j}$ of two elements of G_{i}, G_{j} is not defined in neither of g_{i}, g_{j} is the image of an element in a factor comparable with both G_{i}, G_{j}.
Any element $g \in U(P)$ can be written uniquely as:
$g=g_{i_{1}} g_{i_{2}} \quad \ldots g_{i_{n}}$, where
(i) No $g_{i_{j}}$ is an image.
(ii) No $g_{i_{j}}, g_{i_{j+1}}$ is defined, i.e. $G_{i_{j}}, G_{i_{j+1}}$ are not comparable where $g_{i_{j}} \in G_{i_{j}}$ and $g_{i_{j+1}} \in G_{i_{j+1}}$.

Now we make a further assumption that for the " tree of groups " given by Stallings, there is a unique tree T in which every edge is not the composite of any two monomorphism, $\emptyset_{i j}, \emptyset_{i k}, i<j<k$.
For a reduced from $g=g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{n}}$ take the shortest path $u_{1} u_{2} \ldots u_{n}$ in T starting in G_{0}, involving all vertices $G_{i_{j}}$ in the correct order, and ending in G_{0} where $g_{i_{j}} \in G_{i_{j}}$ in (1).
Define $P(g)=g_{0} u_{1} g_{1} u_{2} g_{2} \ldots u_{i_{1}} g_{i_{1}} u_{i_{2}} \ldots u_{i_{n}} g_{i_{n}} u_{i_{n+1}} \ldots u_{i_{2 m}} g_{2 n}$
Where u_{i} is an edge directed away from $G_{i-1}, g_{r} \in G_{r}$ and $g_{r}=1$ except that $g_{r}=g_{i_{j}}$ in the appropriate position on the path.
Definition 3.2: $g_{0} u_{1} g_{1} u_{2} g_{2} \ldots . g_{2_{m-1}} u_{2 m} g_{2 m}$, is reduced if $u_{1} \ldots . u_{2 m}$, is a path and
(i) $\quad g_{j}=1 \rightarrow u_{j} \neq u_{j+1}$
(ii) $\quad g_{r}, g_{r+t}$ are successive non-identity terms in $g \rightarrow g_{r} g_{r+t}$ is not defined $t \geq 2$.
(iii) No non-identity term is an image.

The following properties can be deduced from (i), (ii) and (iii):
(iv) Two successive terms g_{r}, g_{r+t} cannot be non-identities.
(v) For two successive non-identities g_{r}, g_{r+t} for some $t \geq 2$, in the subsequence
$u_{r} g_{r} u_{r+1} \ldots u_{r+t} g_{r+t}$, we have $g_{r} g_{r+t}$ is in reduced from
(vi) m is the minimum, i.e. no shorter path has these properties.
(vii) If g_{j} is any non- identity terms in (2), then $u_{j}=u_{j+1}^{-1}$
(viii) The length of the path is even.
(ix) $\quad g_{0}$ and $g_{2 n}$ are the identity of G_{0} for $m \neq 0$.

Definition 3.3: Let $\mathrm{U}(\mathrm{P})$ be the universal group of Stallings tree for $g \in U(P)$ in reduced form, define $|g|=1 / 2$ the length of the path $\mathrm{P}(\mathrm{g})$ given in (2).
| |: $U(P) \rightarrow R$, satisfies
$A 1^{\prime},|1|=0,1$ identity element of $U(P)$.
A2 $|g|=\left|g^{-1}\right|$
For A4, suppose
$P\left(x_{1}\right)=g_{0} u_{1} g_{1} u_{2} g_{2} \ldots g_{2 n-1} u_{2 n} g_{2 n}$
$P\left(x_{2}\right)=h_{0} v_{1} h_{1} v_{2} h_{2} \ldots h_{2 m-1} v_{2 n} h_{2 m}$ and
$P\left(x_{3}\right)=k_{0} w_{1} k_{1} w_{2} k_{2} \ldots k_{2 \ell-1} w_{2 \ell} k_{2 \ell}$, are all reduced,
Then $\left|x_{1}\right|=n,\left|x_{2}\right|=m$ and $\left|x_{3}\right|=\ell$.
Then consider the following
$g_{0} u_{1} g_{1} u_{2} g_{2} \ldots g_{2 n-1} u_{2 n} g_{2 n} h_{2 m}^{-1} v_{2 m}^{-1} h_{2 m-1}^{-1} v_{2 m-1}^{-1} \ldots v_{1}^{-1} h_{0}^{-1}$
Note that if $u_{2 n} \neq v_{2 m}$, then (1) is reduced and $\left|x_{1} x_{2}^{-1}\right|=n+m$.
Now (1) is reduced unless $u_{2 n}=v_{2 m}$ in which case $g_{2 n-1} h_{2 m-1}^{-1}$ is also defined.
If so, then put $g_{2 n-1} h_{2 m-1}^{-1}=a_{1}$
Then $g_{0} u_{1} g_{1} u_{2} g_{2} \ldots g_{2 n-2} u_{2 n-1} a_{1} v_{2 m-1}^{-1} \ldots v_{1}^{-1} h_{0}^{-1}$ is reduced unless a_{1} is an image and $u_{2 n-1}=v_{2 m-1}$, in which case a_{1} is after identification in the same factor as $g_{2 n-2}, h_{2 m-2}^{-1}$ and so $g_{2 n-2} a_{1} h_{2 m-2}^{-1}$ is also defined and equal to a_{2} say.
Suppose $d\left(x_{1}, x_{2}\right)$ and $\left(x_{2}, x_{3}\right) \geq r$, then by induction on i , there exists a_{r} such that a_{r-i} are images.
$u_{2 n-i-1}=v_{2 m-i-1}, a_{i}=g_{2 n-i} a_{i-1} h_{2 m-i}^{-1}$ is after identification defined, for all $0 \leq i \leq r$.
Similarly, there exists b_{r} such that b_{r-i} are images,
$v_{2 m-i-1}=w_{2 \ell-i-1}, b_{i}=h_{2 m-i} b_{i-1} k_{2 \ell-i}^{-1}$ is defined, for all $0 \leq i \leq r$.
Thus $u_{2 n-i-1}=w_{2 \ell-i-1}, 0 \leq i \leq r$.
Moreover, since for any $0 \leq i \leq r-1$, both a_{i}, b_{i} are in the same factor and are images, therefore $a_{i} b_{i}$ is defined and is an image.
Let $c_{i}=a_{i} b_{i}=g_{2 n-i} a_{i-1} h_{2 m-i}^{-1} h_{2 m-i} b_{i-1} k_{2 \ell-i}^{-1}=g_{2 n-i} c_{i-1} k_{2 \ell-i}^{-1}$
Hence $d\left(x_{1}, x_{3}\right) \geq r$
Therefore A4 is satisfied.
Another example of a pregroup can be constructed by using pregroups instead of groups in the tree with some extra condition follows:
(a) A set I, partially ordered by<, which contains no infinite descending chain, has a least element, and such that for all $i, j, k \in I$, if $i \leq k, j \leq k$ then either $i \leq j$ or $j \leq i$.
(b) A class of pregroups $\left\{p_{i}\right\}, i \in I$ such that each $i<j$ some j, P_{i} satisfies the following:

If xy and yz are both defined, then $\mathrm{x}(\mathrm{yz})$ is defined in P_{i} for $x, y, z \in P_{i}$.
(c) For all $i, j \in I$ if $i<j$, a monomorphism $\emptyset_{i j}: P_{i} \rightarrow P_{j}$, such that $\left\{\emptyset_{i j}\right\}$ satisfies the following :

If $i<j<k$, then $\emptyset_{j k} \emptyset_{i j}=\emptyset_{i k}: P_{i} \rightarrow P_{j}$
(d) If $x_{1}, x_{2} \in p_{i}$, and $\emptyset_{i j}\left(x_{1}\right) \emptyset_{i j}\left(x_{2}\right)$ is defined in P_{j}, then $x_{1} x_{2}$ is defined in P_{i}.

Put a relation \sim on elements of $\underset{i}{\dot{U}}{ }_{I} P_{i}$ by :
$x \sim y \Leftrightarrow$ either for some $i \leq j, \emptyset_{i j}(x)=y$, or for some $i \leq j, \emptyset_{i j}(y)=x$
Let R be the equivalence relation on $\underset{i}{\dot{U}} I_{I} P_{i}$ generated by \sim.
Denote the equivalence class containing x by $[\mathrm{x}]$ for all elements $x \in \underset{i \in I^{*}}{U} P_{i}$.
Let $P=\left\{\left[x_{i}\right]: x \in U P_{i}, i \in I\right\}$, then P is a pregroup .
The product of two elements $\left[x_{i}\right]\left[x_{j}\right], x_{i} \in P_{i}, x_{j} \in P_{j}$ is defined by:
$\left[x_{i}\right]\left[x_{j}\right]=\left[\emptyset_{i j}\left(x_{i}\right) x_{j}\right]$ or $=\left[x_{i} \emptyset_{j i}\left(x_{j}\right)\right]$
When there exists monomrphism $\emptyset_{i j}: P_{i} \rightarrow P_{j}$ and $\emptyset_{i j}\left(x_{i}\right) x_{j}$ is defined in P_{j}, or there exists monomrphism $\emptyset_{j i}: P_{j} \rightarrow P_{i}$ and $x_{i} \emptyset_{j i}\left(x_{j}\right)$ is defined in P_{i}. This multiplication is well defined.

References

[1]. Lyndon, R.C.; Length Function in Groups, Math. Scand, 12, 1963, 209-234.
[2]. Chiswell, I.M.; Abstract Length Function in groups, Math. Proc. Camb. PhilSoc., 80, 1976, 451-463.
[3]. Chiswell, I.M.; Length Function and Free products with amalgamation of groups', Math. Proc. Camb. Phil. Soc, (3), 1981, 42-58.
[4]. Chiswell, I.M.; On Groups acting on Trees, Ph.D Thesis, University of Michigan, 1973.
[5]. Hoare, A. H. M.; On Length Functions and Nielson Methods in Free Groups, J. London Mathematical Society, (2), 14, 1976, 188-192.
[6]. Wlikens, D.L.; On Non Archimedian length in Groups, Mathematika, 23, 1976, (57-61).
[7]. Stallings, J.R.,; Group Theory and Three Dimensional Manifolds, Yale University Press, New Haven and London, 1971.
[8]. Serre, J. P., Trees, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[9]. Khanfar, M. M.I.; Combinatorial Properties of Groups with Length Function Ph.D. Thesis, University of Birmingham. U.K, 1978.
[10]. Nesayef, F.H.; Presentation of groups generated by elements of length zero and one, International journal of Mathematics and Computer Applications Research, Vol.4, Issue 6, 2014, (45-52.
[11]. Bass, H., Some Remarks on Group Actions on Trees, Comm. in Algebra, 4 (12), 1976, 1091-1126.

