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Abstract In this work, a study involving the Maciel scheme to solve the reactive Favre averaged Navier-Stokes 

equations, coupled with a turbulence model and the Maxwell equations is performed. The Favre averaged 

Navier-Stokes equations coupled with the Maxwell equations, in conservative and finite volume contexts, 

employing structured spatial discretization, are studied. Eleven species chemical models, based on the works of 

Dunn and Kang and of Park are considered for the numerical experiments. Turbulence is taken into account 

considering the implementation of five k- two-equation turbulence models, based on the works of Coakley 

1983; Wilcox; Yoder, Georgiadids and Orkwis; Coakley 1997; and Rumsey, Gatski, Ying and Bertelrud. For the 

magnetic coupling, the Gaitonde formulation is taken into account. The “hot gas” hypersonic flow around a 

blunt body is the numerical experiment for comparisons. The results have indicated that the Maciel scheme 

using the Dunn and Kang chemical model coupled with the Coakley 1983 turbulence model yields the best 

prediction of the stagnation pressure value and the best prediction of the lift coefficient. On the other hand, the 

Maciel scheme using the Park chemical model coupled with the Coakley 1997 turbulence model is more 

computationally efficient. Errors in the stagnation pressure estimation inferior to 5.00% were found. 

 

Keywords Favre averaged Navier-Stokes and Maxwell equations, Turbulent flow, Magnetic formulation, 

Hypersonic flow, Reentry conditions 

1. Introduction 

Renewed interest in the area of hypersonic flight has brought Computational Fluid Dynamics (CFD) to the 

forefront of fluid flow research [1]. Many years have seen a quantum leap in advancements made in the areas of 

computer systems and software which utilize them for problem solving. Sophisticated and accurate numerical 

algorithms are devised routinely that are capable of handling complex computational problems. Experimental 

test facilities capable of addressing complicated high-speed flow problems are still scarce because they are too 

expensive to build and sophisticated measurements techniques appropriate for such problems, such as the non-

intrusive laser, are still in the development stage. As a result, CFD has become a vital tool in the flow problem 

solution. 

The study of hypersonic flows has gained momentum with the advent of concepts like the National AeroSpace 

Plane (NASP) and similar transatmospheric vehicles. Under the very high velocity and temperature conditions 

experienced by hypersonic vehicles, departure from chemical and thermal equilibrium occurs. Properties of air 

change dramatically as new chemical species are produced at the expense of others. The simple one temperature 

model used to describe the energy of air becomes inapplicable, and it becomes necessary to consider one or 

more additional temperatures (corresponding to vibrational and electronic energies). Determination of 

aerothermal loads on blunt bodies in such an environment is of great importance. 

In high speed flows, any adjustment of chemical composition or thermodynamic equilibrium to a change in local 

environment requires certain time. This is because the redistribution of chemical species and internal energies 
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require certain number of molecular collisions, and hence a certain characteristic time. Chemical non-

equilibrium occurs when the characteristic time for the chemical reactions to reach local equilibrium is of the 

same order as the characteristic time of the fluid flow. Similarly, thermal non-equilibrium occurs when the 

characteristic time for translation and various internal energy modes to reach local equilibrium is of the same 

order as the characteristic time of the fluid flow. Since chemical and thermal changes are the results of collisions 

between the constituent particles, non-equilibrium effects prevail in high-speed flows in low-density air. 

In chemical non-equilibrium flows the mass conservation equation is applied to each of the constituent species 

in the gas mixture. Therefore, the overall mass conservation equation is replaced by as many species 

conservation equations as the number of chemical species considered. The assumption of thermal non-

equilibrium introduces additional energy conservation equations – one for every additional energy mode. Thus, 

the number of governing equations for non-equilibrium flow is much bigger compared to those for perfect gas 

flow. A complete set of governing equations for non-equilibrium flow may be found in [2-3]. 

The problems of chemical non-equilibrium in the shock layers over vehicles flying at high speeds and high 

altitudes in the Earth’s atmosphere have been discussed by several investigators [4-7]. Most of the existing 

computer codes for calculating the non-equilibrium reacting flow use the one-temperature model, which 

assumes that all of the internal energy modes of the gaseous species are in equilibrium with the translational 

mode [6-7]. It has been pointed out that such a one-temperature description of the flow leads to a substantial 

overestimation of the rate of equilibrium because of the elevated vibrational temperature [5]. A three-

temperature chemical-kinetic model has been proposed by [8] to describe the relaxation phenomena correctly in 

such a flight regime. However, the model is quite complex and requires many chemical rate parameters which 

are not yet known. As a compromise between the three-temperature and the conventional one-temperature 

model, a two-temperature chemical-kinetic model has been developed [9-10], which is designated herein as the 

TTv model. The TTv model uses one temperature T to characterize both the translational energy of the atoms 

and molecules and the rotational energy of the molecules, and another temperature Tv to characterize the 

vibrational energy of the molecules, translational energy of the electrons, and electronic excitation energy of 

atoms and molecules. The model has been applied to compute the thermodynamic properties behind a normal 

shock wave in a flow through a constant-area duct [9-10]. Radiation emission from the non-equilibrium flow has 

been calculated using the Non-equilibrium Air Radiation (NEQAIR) program [11-12]. The flow and the 

radiation computations have been packaged into a single computer program, the Shock-Tube Radiation Program 

(STRAP) [10]. 

In spite of the advances made in the area of compressible turbulence modeling in recent years, no universal 

turbulence model, applicable to such complex flow problems has emerged so far. While the model should be 

accurate it should also be economical to use in conjunction with the governing equations of the fluid flow. 

Taking these issues into consideration, k- two-equation models have been chosen in the present work [13-17]. 

These models solve differential equations for the turbulent kinetic energy and the vorticity. Additional 

differential equations for the variances of temperature and species mass fractions have also been included. These 

variances have been used to model the turbulence-chemistry interactions in the reacting flows studied here. 

The effects associated with the interaction of magnetic forces with conducting fluid flows have been profitably 

employed in several applications related to nuclear and other [18] technologies and are known to be essential in 

the explanation of astrophysical phenomena. In recent years, however, the study of these interactions has 

received fresh impetus in the effort to solve the problems of high drag and thermal loads encountered in 

hypersonic flight. The knowledge that electrical and magnetic forces can have profound influence on hypersonic 

flow fields is not new [19-20]– note increased shock-standoff and reduced heat transfer rates in hypersonic 

flows past blunt bodies under the application of appropriate magnetic fields. The recent interest stems, however, 

from new revelations of a Russian concept vehicle, known as AJAX [21], which made extensive reference to 

technologies requiring tight coupling between electromagnetic and fluid dynamic phenomena. A 

magnetogasdynamics (MGD) generator was proposed [22] to extract energy from the incoming air while 

simultaneously providing more benign flow to combustion components downstream. The extracted energy could 

then be employed to increase thrust by MGD pumping of the flow exiting the nozzle or to assist in the 
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generation of a plasma for injection of the body. This latter technique is known to not only reduce drag on the 

body but also to provide thermal protection [23]. 

In addition to daunting engineering challenges, some of the phenomena supporting the feasibility of an AJAX 

type vehicle are fraught with controversy (see, for example, [24]). Resolution of these issues will require 

extensive experimentation as well as simulation. The latter approach requires integration of several disciplines, 

including fluid dynamics, electromagnetics, chemical kinetics, and molecular physics amongst others. This 

paper describes a recent effort to integrate the first three of these, within the assumptions that characterize ideal 

and non-ideal magnetogasdynamics. 

In the present work, a study involving the Maciel scheme to solve the reactive Favre averaged Navier-Stokes 

equations, coupled with a turbulence model and the Maxwell equations is performed. The Favre averaged 

Navier-Stokes equations coupled with the Maxwell equations, in conservative and finite volume contexts, 

employing structured spatial discretization, are studied. Turbulence is taken into account considering the 

implementation of five k- two-equation turbulence models, based on the works of [13-17]. For the magnetic 

formulation, the [25-26] model is implemented. The “hot gas” hypersonic flow around a blunt body, in two-

dimensions, is simulated. The convergence process is accelerated to steady state condition through a spatially 

variable time step procedure, which has proved effective gains in terms of computational acceleration [27-28]. 

The reactive simulations involve Earth atmosphere chemical models of eleven species and thirty-two reactions, 

based on the [29] model, and eleven species and forty-three reactions, based on the [30] model. N, O, N2, O2, 

NO, N
+
, O

+
, N2

+
, O2

+
, NO

+
 and e

-
 species are used to perform the numerical comparisons. The results have 

indicated that the Maciel scheme using the [29] chemical model coupled with the [13] turbulence model yields 

the best prediction of the stagnation pressure value and the best prediction of the lift coefficient. On the other 

hand, the Maciel scheme using the [30] chemical model coupled with the [16] turbulence model is more 

computationally efficient. 

 

2.  Favre Average 

The Navier-Stokes equations and the equations for energy and species continuity which governs the flows with 

multiple species undergoing chemical reactions have been used [31, 32, 33] for the analysis. Details of the 

present implementation for each chemical model, the specification of the thermodynamic and transport 

properties, as well the vibrational model are described in [34-35]. Density-weighted averaging [36] is used to 

derive the turbulent flow equations from the above relations. The dependent variables, with exception of density 

and pressure, are written as, 

"
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 ,                                                                      (1) 

where the "  is the fluctuating component of the variable under consideration and its Favre-mean 
~

 is defined 

as 
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with repeated indices indicating summation. The mass-averaged total energy can be written in terms of the total 

enthalpy as 
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Using the above definition and omitting the body force contribution, the time-averaged energy equation is 
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where jq  represents the averaged heat flux term. The species conservation equation is 
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The equations for the two turbulence variables, turbulent kinetic energy (k) and vorticity (), are derived using 

the momentum and continuity equations and time-averaging procedure [37-38]. These equations are presented 

in the fourth section. 

 

3. Modeled Equations 

Closure of the averaged equations is achieved by invoking the Boussinesq approximation in which relates the 

turbulent stresses (Reynolds stresses) to the mean strain rate. The Reynolds stress tensor is written as, 
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in which T is the turbulent/eddy viscosity and its definition depends of the construction of the studied k- 

model. 

The correlation between fluctuating velocity and the scalar fluctuations are modeled in a similar manner using a 

mean gradient hypothesis. A typical model is, 
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where  is a coefficient which, normally, is a constant. For  = ci,  = ScT (turbulent Schmidt number) and for 

the static enthalpy,  = h,  = PrdT (turbulent Prandtl number). 

The mean continuity equation, Eq. (4), does not require any further modeling. The modeled momentum equation 

is, 
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The correlation 
""

jHu  in the thermodynamic energy equation, Eq. (8), is split into its components as 
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The modeled energy equation then is, 
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Where k is a coefficient that appears in the turbulent kinetic energy equation. The modeled species continuity 

equation is 
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Differential equations for the variances of static enthalpy and species mass fractions have also been introduced 

in the solutions. Equations for 
""hh  and 

"

i

"

icc  have been derived. The modeled equations take a similar form 

as that of the turbulent kinetic energy (to be seen in the next section). These equations are given below. 
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where for g = 
""hh , G = h

~
,  = 0,  = PrdL(laminar Prandtl number) and g = PrdT and for g = 
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iic2  ,  = Sc and g = ScT, with “ns” being the total number of species. 

The g-equations for the species variances are summed over all species to obtain an equation for the turbulent 

scalar energy (Qs) defined as 
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and this equation is solved instead of the individual species variance equations. The production term [first term 

on the right hand side of Eq. (16)] is evaluated using Eq. (11). 

In a system involving J reaction steps and N species, the instantaneous production rate of a scalar i can be 

represented – from the law of mass action – in the following most general form: 
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Where mj = 



N

1i

'

ij  and nj = 



N

1i

"

ij . In the above equations, the number of molecules of the scalar i involved in 

the j-th forward reaction is 
'

ij
  and in the corresponding backward reaction is 

"

ij
 . The forward and backward 

rate-constants of the reaction j are given by kfj and kbj, respectively. Typically the reaction rates are functions of 

the temperature: 











T

T
expTAk

ajb

jfj
j ,                                                            (19) 

Where Aj, bj, and Taj are numerical constants specific to the given reaction. 

The purpose of solving the g-equations is to include the interaction between turbulence and chemical reactions 

in the reacting flow cases. The effect of temperature fluctuations on the species production rate is included using 

an approximate analysis. Here, the Arrhenius equations for the reaction rate term are written in terms of mean 

and fluctuating components of the temperature and expanded in the form of a series. The terms are truncated at 

the second order level of the fluctuations and the calculated variance of temperature is used to evaluate the 

resultant reaction rate term. The reaction rate term is given by the Arrhenius rate equation [Eq. (19)]. 
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Using Eq. (1), this can be written as 
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Assuming that 1
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 , the term  "TT
~
  can be expanded in a series and the resultant modified reaction 

rate term is (in a Favre averaged form), 
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In the above, Ta is the activation temperature and A is the pre-exponential factor in the Arrhenius equation. 

Terms of order higher than two in 

T
~
T "

 are neglected from the series expansion in the present analysis. The 

factor m represents the effect of turbulent fluctuations in temperature on reaction rate. The maximum value of m 

for a temperature fluctuation of 30% mean temperature is approximately 0.6 and this is the value adopted in this 

work. 

Practical reactive flows involve multiple scalar mixing and reactions. For such flows, [39] suggests the use of a 

multivariate -pdf model to account for the effects of the scalar fluctuations on the species production rates. 

This model is briefly outlined below. The multivariate -pdf for the N-scalar mixing process is given by 
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The parameters of the model  N1,...,  are functions of the mean mass fractions ic~  and turbulent scalar 

energy Qs [Eq. (17)]: 
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where S is given by 
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Subject to the above simplifications the mean species production rate is given by, 
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in which: 
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In the above equations, angular brackets represent conventional time averaging. The expression for Ifj is 

obtained from [39], 
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Similarly, the expression for Ibj is, 
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in which 
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The expression for the source term in the scalar variance (Qs) is given by [39], 
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The terms Jfj and Jbj are also moments of the scalar joint-pdf, and can be easily evaluated as 
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Substitution of Eq. (34) into Eq. (32) leads to the model for the source/sink of turbulent scalar energy. 

 

4. Favre-Averaged Navier-Stokes Equations Coupled with Maxwell Equations 

The flow is modeled by the Favre-averaged Navier-Stokes equations coupled with the Maxwell equations and 

the condition of thermochemical non-equilibrium, where the rotational and vibrational contributions are 

considered, is taken into account. Details of the eleven species model implementation are described in [34-35], 

and the interested reader is encouraged to read these works to become aware of the present study. The reactive 

Navier-Stokes equations in thermal and chemical non-equilibrium were implemented on conservative and finite 

volume contexts, in the two-dimensional space. In this case, these equations in integral and conservative forms 

can be expressed by: 
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where: Q is the vector of conserved variables, V is the volume of a computational cell, F


 is the complete flux 

vector, n


 is the unity vector normal to the flux face, S is the flux area, G is the k- two-equation model source 

term, SCV is the chemical and vibrational source term, Ee and Fe are the convective flux vectors or the Euler flux 

vectors in the x and y directions, respectively, and Ev and Fv are the viscous flux vectors in the x and y 

directions, respectively. The i


 and j


 unity vectors define the Cartesian coordinate system. Twenty-one (21) 

conservation equations are solved: one of general mass conservation, two of linear momentum conservation, one 

of total energy, ten of species mass conservation, one of the vibrational internal energy of the molecules, two of 

the k- turbulence model, two of the g-equations, and two of the Maxwell equations. Therefore, one of the 

species is absent of the iterative process. The CFD literature recommends that the species of biggest mass 

fraction of the gaseous mixture should be omitted, aiming to result in a minor numerical accumulation error. To 

the present study, in which is chosen chemical models to the air composed of eleven (11) chemical species (N, 

O, N2, O2, NO, N
+
, O

+
, N2

+
, O2

+
, NO

+
 and e

-
) and thirty-two chemical reactions to the [29] model or forty-three 

chemical reactions to the [30] model, this species can be the N2 or the O2. To this work, the N2 was chosen. The 

vectors Q, Ee, Fe, Ev, Fv, G and SCV can, hence, be defined as follows: 
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in which:  is the mixture density; u and v are Cartesian components of the velocity vector in the x and y 

directions, respectively; V


 is the complete flow velocity vector; P is the pressure term considering the magnetic 

effect; Z is the fluid total energy considering the contribution of the magnetic field; 
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B


 is the complete magnetic field vector; Rb is the magnetic force number or the pressure number; 1, 2, 4, 5, 

6, 7, 8, 9, 10, and 11 are densities of the N, O, O2, NO, N
+
, O

+
, N2

+
, O2

+
, NO

+
, and e

-
, respectively; k is the 

turbulent kinetic energy;  is the turbulent vorticity; Qh is the product of fluctuating enthalpy, 
""hh ; Qs is the 

sum of the product of fluctuating mass fraction, 


ns

1i

"

i

"

icc ;Bx and By are Cartesian components of the magnetic 

field vector in the x and y directions, respectively; µM is the mean magnetic permeability, with the value of 

4πx10
-7

T·m/A; eV is the sum of the vibrational energy of the molecules; the ’s are the components of the 

Reynolds stress tensor; the t’s are the components of the viscous stress tensor; fx and fy are viscous work and 

Fourier heat flux functions;svsx and svsy represent the species diffusion flux, defined by the Fick law; x and y 

are the terms of mixture diffusion; v,x and v,y are the terms of molecular diffusion calculated at the vibrational 

temperature; x, y, x, y, x, y, x and y are two-equation turbulence model parameters; sx and sy are 

diffusion terms function of the mass fraction gradients; 
s

  is the chemical source term of each species 

equation, defined by the law of mass action;
*

ve  is the molecular-vibrational-internal energy calculated with the 

translational/rotational temperature; s is the translational-vibrational characteristic relaxation time of each 

molecule; 
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qv,x and qv,y are the vibrational Fourier heat flux components in the x and y directions, respectively; Re is the 

laminar Reynolds number; qJ,x and qJ,y are the components of the Joule heat flux vector in the x and y directions, 

respectively; Reσ is the magnetic Reynolds number; σ is the electrical conductivity; Gk and G are k- source 

terms; T is the turbulent viscosity or vorticity viscosity; h is the static enthalpy; and cT is the total mass fraction 

sum. 
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The viscous stresses, in N/m
2
, are determined, according to a Newtonian fluid model, by: 

 

   yvxu32xu2t mmxx  ; 

 xvyut mxy  ;                                                                     (39a) 

    ,yvxu32yv2t mmyy                                                      (39b) 

where µm is the molecular viscosity. The components of the turbulent stress tensor (Reynolds stress tensor) are 

described by the following expressions: 

   ; kRe32yvxu32xu2 TTxx   

 xvyuTxy  ;                                                 (40) 

   . kRe32yvxu32yv2 TTyy   

Expressions to fx and fy are given below: 

    xx,vxxyxyxxxxx kqqvtutf  ;                                                     (41) 

    yy,vyyyyyxyxyy kqqvtutf  ,                                                                                       (42) 

where qx and qy are the Fourier heat flux components and are given by: 

  ;xhdPrdPrq TTLmx 
        

(43) 

  yhdPrdPrq TTLmy  .                            (44) 

The qv,x and qv,y are the vibrational heat flux components and are given by: 

;xTkq VVx,v                                 (45) 

yTkq VVy,v  ,                                                           (46) 

with kV being the vibrational thermal conductivity and TV is the vibrational temperature, what characterizes this 

model as of two temperatures: translational/rotational and vibrational. The last terms in Eqs. (41)-(42) are kx and 

ky and are defined as follows: 

;xkk
k

T
mx 












 and .ykk

k

T
my 












                              (47) 

The diffusion terms related to the k- equations are defined as: 

  ,xkkTmx    ykkTmy  ;                              (48) 

  ,xTmx     yTmy   ;                  (49) 

  ,xQdPrdPr hTTLmx    ;yQdPrdPr hTTLmy                      (50) 

  ,xQScSc STTmx    yQScSc STTmy  ,                  (51) 

where the Schmidt numbers are: Sc = 0.22 (laminar) and ScT = 1.00 (turbulent). The terms of species diffusion, 

defined by the Fick law, to a condition of thermal non-equilibrium, are determined by [40]: 

x

Y
Dv

s,MF

ssxs



 and

y

Y
Dv

s,MF

ssys



 ,                                    (52) 

with “s” referent to a given species, YMF,s being the molar fraction of the species, defined as: 









ns

1k

kk

ss
s,MF

M

M
Y                                    (53) 

and Ds is the species-effective-diffusion coefficient. 

The diffusion terms x and y which appear in the energy equation are defined by [41]: 
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ns

1s

ssxsx hv and  



ns

1s

ssysy hv ,                                          (54) 

being hs the specific enthalpy (sensible) of the chemical species “s”. The molecular diffusion terms calculated at 

the vibrational temperature, v,x and v,y, which appear in the vibrational-internal-energy equation are defined by 

[40]: 





mols

s,vsxsx,v hv and 



mols

s,vsysy,v hv ,                                          (55) 

with hv,s being the specific enthalpy (sensible) of the chemical species “s” calculated at the vibrational 

temperature TV. The sum of Eq. (55), as also those present in Eq. (38), considers only the molecules of the 

system, namely: N2, O2, NO, N2
+
, O2

+
, and NO

+
. The ’s terms of Eq. (37) are described as, 

  ;xcScSc STTmsx                                 (56) 

  ycScSc STTmsy  .                                                  (57) 

The Z total energy is defined as: 

   
M

2

b

22

V

0

mix,fREFmix,v
2

B
Rvu5.0ehTTcZ


 ,                           (58) 

with: TREF is the reference temperature, and 
0

mix,fh  is the mixture formation enthalpy. The pressure term is 

expressed by: 

M

2

b

M

2

y

2

x

b
2

B
Rp

2

BB
RpP







 ,                                            (59) 

with p the fluid static pressure. The magnetic force number or pressure number is determined by: 

  char,M

2

initial

2

initialchar

2

initial,y

2

initial,x

char,M

2

initialchar

2

initial
b

vu

BB

V

B
R







 ,                     (60) 

where Binitial, Bx,initial, By,initial, Vinitial, uinitial and vinitial are initial values of the magnetic field and of the fluid flow, 

and char, char,M  are characteristic or freestream flow properties. The laminar Reynolds number is estimated by: 

char,m

REFinitialchar LV
Re




 ,                                       (61) 

with LREF a characteristic configuration length. The magnetic Reynolds number is calculated by: 

charchar,MinitialREFVLRe  .                                (62) 

The components of the Joule heat flux vector, which characterizes the non-ideal formulation, are determined by: 
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5. Turbulence Models 

Five turbulence models were implemented according to a k-ω and k
1/2

-ω formulations. Details of the five 

turbulence models are found in [42,43]. The interested reader is encouraged to read these references to become 

aware of the numerical implementation of such models. 

 

6. Maciel Centered Scheme 

Maciel centered scheme is obtained by arithmetical average between the flux at the left and right states of the 

interface. Considering the two-dimensional and structured case, the algorithm is divided in three parts, as 

recommended by [44], each one corresponding to a characteristic flux. The first part takes into account the 
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dynamic part, which considers the Navier-Stokes equations plus the Maxwell equations and the four equations 

of the turbulence model, the second one takes into account the chemical part, and the third part takes into 

account the vibrational part. Hence, the discrete-dynamic-convective flux, which solves the dynamic part, is 

given by Eq. (64). 
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;                  (64) 

the discrete-chemical-convective flux is defined by: 
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;                             (65) 

and the discrete-vibrational-convective flux is determined by: 

 

          yRvLvxRvLv

Vib

j,2/1i Sveve
2

1
Sueue

2

1
R  .                             (66) 

The viscous formulation follows that of [45], which adopts the Green theorem to calculate primitive variable 

gradients. The viscous gradients at the interface are also obtained by arithmetical average between cell (i,j) and 
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its neighbors. As it was done with the convective terms, there is a need to separate the viscous flux in three 

parts: dynamical viscous flux, chemical viscous flux and vibrational viscous flux. The dynamical part 

corresponds to: 
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;                (67) 

To the chemical part one has: 
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;                  (68) 

Finally, to the vibrational part: 
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 .   (69) 

where   t

j,2/1iyxj,2/1i SSS
   defines the normal area vector for the surface (i+½,j). The normal area 

components Sx and Sy to each flux interface are given in Tab. 1. Figure 1 exhibits the computational cell adopted 

for the simulations, as well its respective nodes and flux interfaces. 

The resultant ordinary differential equation system can be written as: 

  j,ij,2/1i2/1j,ij,2/1i2/1j,ij,ij,i CRRRRdtdQV   ,                                (70) 

where the cell volume is given by: 

        j,1ij,i1j,1ij,i1j,1ij,1i1j,1ij,1ij,ij,i yxxyxxyxx5.0V  

     
1j,1ij,i1j,ij,i1j,i1j,1i1j,i1j,1ij,i yxxyxxyxx5.0   .                           (71) 

This centered scheme is second order accurate in space, according to a finite difference discretization, and needs 

an artificial dissipation operator, D, to guarantee stability in presence of shock waves and background 

instabilities. Considering this operator, Eq. (70) can be rewritten as: 

  j,ij,ij,ij,i VDCdtdQ  ,                                                       (72) 

where D has the following structure: 

       
j,i

4

j,i

2

j,i Qd-QdQD  ,                                                    (73) 

with: 

             j,ij,1ij,1ij,i

2
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2
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2 Q-QAA5.0QQAA5.0d  
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2

j,2/1-ij,i1j,i1j,ij,i

2

2/1j,i Q-QAA5.0Q-QAA5.0        (74) 

named the undivided Laplacian operator, responsible by the numerical stability in presence of shock waves; and 

       j,i

2

1-j,i

2

1-j,ij,i

4

2/1-j,i

4 Q∇-Q∇AA5.0d  

      j,i

2
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j,1ij,i

4

j,2/1i Q∇-Q∇AA5.0  

      j,i
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4

2/1j,i Q∇-Q∇AA5.0  

    j,i2

j,1-i

2
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4

j,2/1-i Q∇-Q∇AA5.0  ,                     (75) 
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named the bi-harmonic operator, responsible by the background stability (odd-even instabilities, for instance). In 

this last term, 

 

       
j,ij,1-ij,i1j,ij,ij,1ij,i1-j,ij,i

2 Q-QQ-QQ-QQ-QQ∇   .                            (76) 

In the d
(4)

 operator, 
j,i

2Q  is extrapolated from your neighbor cell every time that such one represents an 

especial boundary layer cell, recognized in the CFD literature as “ghost” cell. The  terms are defined, for 

instance, as: 

     1j,ij,i

22

2/1j,i ,MAXK  
 
and 

       2

2/1j,i

44

2/1j,i K,0MAX   ,                      (77) 

in which: 

   
j,ij,1-i1j,ij,1i1-j,ij,ij,1ij,i1j,ij,ij,1ij,i1j,ij,i p4ppppppp-pp-pp-p   .   (78) 

represents a pressure sensor employed to identify regions of high gradients. Each time that a neighbor cell 

represents a ghost cell, it is assumed that, for instance, j,ighost  . The Ai,j terms define the particular 

artificial dissipation operator. Two models were studied in the current work: 

(a) Artificial dissipation operator of Mavriplis / Scalar, non-linear, and isotropic model: 

In this case, the Ai,j terms represent the sum of the contributions of the maximum normal eigenvalue associated 

to the flux interface of the Euler equations, integrated along each cell face. Based on [46] work, these terms are 

defined as: 
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,     (79) 

where “a” represents the sound speed and the interface properties are evaluated by arithmetical average. The K
(2)

 

and K
(4)

 constants have typical values of 1/4 and 3/256, respectively. 

(b)  Artificial dissipation model of Turkel and Vatsa / Scalar, non-linear, and anisotropic model: 

The aforementioned artificial dissipation model presents the characteristic of being isotropic. In words, the 

dissipation introduced artificially in a given coordinate direction to stabilize the scheme weights equally the 

phenomena originated from all directions, having not a more significant weighting from the particular direction 

under study. The dissipation is clearly isotropic. The scalar, non-linear and anisotropic artificial dissipation 

model of [47] aims to provide a numerical attenuation that considers with bigger weight the propagation 

information effects associated to the characteristic maximum eigenvalue from the coordinate direction under 

study. Basically, such artificial dissipation model differs from the non-linear, isotropic model of [46] only in the 

determination of the weighting term of the dissipation operator. 
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Savnun   .        (81) 

To this artificial dissipation model, the recommended values of K
(2)

 and K
(4)

 by [47] are 1/2 and 1/64, 

respectively. 
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7. Time Integration 

Three methods of time integration were studied herein, namely: Euler Backward, Middle Point, and Runge-

Kutta 4
th

 Order. For details of such implementation, the reader is encouraged to read [43]. 

8. Spatially Variable Time Step 

The spatially variable time step has proved efficient gains in terms of convergence acceleration, as proved by 

[27-28]. Initially, the parameter  is determined, where: 

s

s
s

M

c
 and 




N

1s

s ,                                                           (82) 

with cs being the mass fraction and Ms the molecular weight. The total specific heat at constant volume due to 

translation is defined as: 





N

1s

s,T,VsT,V cc ,                                                                 (83) 

where, for each gas constituent of the eleven (11) species chemical model, the specific heat at constant volume, 

based on the kinetic theory of gases [48], is defined by 
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3
c .                                       (84) 

Being Rs the specific gas constant. The total pressure of the gaseous mixture is determined by Dalton law, which 

indicates that the total pressure of the gas is the sum of the partial pressure of each constituent gas, resulting in: 

TRcp sss  and 



N

1s

spp .                                                     (85) 

The speed of sound to a reactive mixture considering the two-equation turbulence models can be determined by:   

 
k

p1
a 




 ,                                      (86) 

where 

T,V

univ

c

R 
 , with Runiv = 1.987 cal/(g-mol.K). Finally, the spatially variable time step is defined from 

the CFL (Courant-Friedrichs-Lewis) definition: 

j,i

2

j,i

2

j,i

j,i

j,i

avu

sCFL
t




 ,                                                            (87) 

where j,is  is the characteristic length of each cell (defined between the minimum cell side length and the 

minimum centroid distance between each cell and its neighbors). 

 

9. Dimensionless Scales, Initial and Boundary Conditions 

9.1. Dimensionless Scales 

The dimensionless scales employed to the reactive equations consisted in: Rs is dimensionless by achar, where 

charcharchar pa  ; cv is dimensionless by achar; hs and 
0

sh   are dimensionless by 
2

chara ; T and Tv, 

translational/rotational temperature and vibrational temperature, respectively, are dimensionless by achar; s and 

 are dimensionless by char; u and v are dimensionless by achar; m is dimensionless by m,char; D, diffusion 
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coefficient, dimensionless by 
2

chara dtchar, where dtchar is the minimum time step calculated in the computational 

domain at the first iteration;   is dimensionless by   3

charchar 10xdt  ; ev is dimensionless by 
2

chara ; e and p 

are dimensionless by 
2

charchara ; s, relaxation time, is dimensionless by dtchar. To the Maxwell equations: the 

Bx and By Cartesian components of the magnetic field dimensionless by Binitial; the magnetic permeability of the 

mean is dimensionless by µM,char; and the electric conductivity is dimensionless by σchar. The characteristic 

parameters are defined in [49]. 

 

9.2. Initial Condition 

The initial conditions to this problem, for an eleven species chemical model, coupled with a turbulence model 

and suffering the actuation of a magnetic field, are presented in Tab. 2. The Reynolds number is obtained from 

data of [49]. 

 

9.3. Boundary Conditions 

The boundary conditions are basically of three types: solid wall, entrance, and exit. These conditions are 

implemented with the help of ghost cells. 

Wall condition. In the viscous case, the non-slip condition is enforced. Therefore, the tangent velocity 

component of the ghost volume at wall has the same magnitude as the respective velocity component of its real 

neighbor cell, but opposite signal. In the same way, the normal velocity component of the ghost volume at wall 

is equal in value, but opposite in signal, to the respective velocity component of its real neighbor cell. It results 

in: 

rg uu  and rg vv  .                                                         (88) 

where “g” indicates ghost cell properties and “r” indicates real cell properties. 

The normal pressure gradient of the fluid at the wall is assumed to be equal to zero according to a boundary-

layer like condition. The same hypothesis is applied for the normal temperature gradient at the wall, assuming 

an adiabatic wall. From these considerations, density and translational/rotational temperature are extrapolated 

from the respective values of its real neighbor volume (zero order extrapolation). The total vibrational internal 

energy is also extrapolated. The turbulent kinetic energy and the turbulent vorticity at the ghost volumes are 

determined by the following expressions: 

0.0kghost  and     22

nM

2 d338
ghost

 ,                                           (89) 

where  assumes the value 3/40 and dn is the distance of the first cell to the wall. The Qh and Qs variables are 

fixed by their initial values. 

With the mixture species mass fractions and with the values of the respective specific heats at constant volume, 

it is possible to obtain the mixture specific heat at constant volume. The mixture formation enthalpy is 

extrapolated from the real cell. The Cartesian components of the induced magnetic field at the wall to the ghost 

cells are fixed with their initial values. The magnetic permeability is considered constant with its initial value. 

The mixture total energy to the ghost cell is calculated by: 

       
gg,M

2

g,y

2

g,xb

2

g

2

gg,nond,v

0

g,mixtREFg,trg,mixt,vg 2BBRvu5.0ehTTcZ  .   (90) 

To the species density, the non-catalytic condition is imposed, what corresponds to zero order extrapolation 

from the real cell. 

 

Entrance condition. It is divided in two flow regimes: 

(a) Subsonic flow: Seven properties are specified and three extrapolated in the boundary conditions of the 

dynamic part of the algorithm. This approach is based on information propagation analysis along characteristic 

directions in the calculation domain ([50]). In other words, for subsonic flow, seven characteristics propagate 

information pointing into the computational domain. Thus seven flow properties must be fixed at the inlet plane. 

Just three characteristic lines allow information to travel upstream. So, three flow variables must be extrapolated 
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from the interior grid to the inlet boundary. The total energy and the components of the magnetic field were the 

extrapolated variables from the real neighbor volumes, for the studied problem. Density and velocity 

components adopted values of the initial flow. The turbulence kinetic energy and the vorticity were fixed with 

the values of the initial condition. Qh and Qs variables are also fixed with the values 10
-6 2

initialh  and 10
-3




N

si

2

initial,ic , respectively. To the chemical part, ten information propagate upstream because it is assumed that 

all ten equations are conducted by the eigenvalue “(qn-a)”. In the subsonic flow, all eigenvalues are negative and 

the information should be extrapolated. In the same reasoning to the chemical boundary conditions, the 

vibrational-internal-energy equation is dictated by the “(qn-a)” eigenvalue and, in the subsonic region, its value 

is negative. Hence, the vibrational internal energy should be extrapolated. 

(b) Supersonic flow: In this case no information travels upstream; therefore all variables are fixed with their 

initial values. 

 

Exit condition. It is also divided in two flow regimes: 

(a) Subsonic flow: Three characteristics propagate information outward the computational domain. Hence, the 

associated variables should be extrapolated from interior information. The characteristic direction associated to 

the “(qnormal-a)” velocity should be specified because it points inward to the computational domain ([50]). In this 

case, the ghost volume total energy and the induced magnetic components are specified from their initial values. 

Density and velocity components are extrapolated. The turbulence kinetic energy and the vorticity are 

prescribed and receive the following values: 0.01kff and 10u/LREF, respectively, where kff = 0.5u
2
. Qh and 

Qsvariables are also fixed with the values 10
-6 2

initialh  and 10
-3




N

si

2

initial,ic , respectively. For the [13] turbulence 

model, the turbulence kinetic energy is ffk0.01 .To the chemical part, the eigenvalue “(qn-a)” is again 

negative and the characteristics are always flowing into the computational domain. Hence, the ten chemical 

species under study should have their densities fixed by their initial values. In the same reasoning, the internal 

vibrational energy should have its value prescribed by its initial value due to the eigenvalue “(qn-a)” be negative. 

(b) Supersonic flow: All variables are extrapolated from interior grid cells, as no flow information can make its 

way upstream. In other words, nothing can be fixed. 

 

10. Physical Problem and Mesh 

Firstly the blunt body problem is studied. The geometry under study is a blunt body with 1.0 m of nose ratio and 

parallel rectilinear walls. The far field is located at 20.0 times the nose ratio in relation to the configuration nose. 

Figure 2 shows the viscous mesh used to the blunt body physical problem. This mesh is composed of 2,548 

rectangular cells and 2,650 nodes. This mesh is equivalent in finite differences to a one of 53x50 points. An 

exponential stretching of 5.0% in the  direction was used to the viscous simulations. A “O” mesh is taken as 

the base to construct such mesh. No smoothing is used in this mesh generation process, being this one 

constructed in Cartesian coordinates. 

 

11. Results 

Tests were performed in a Core i7 processor of 2.1GHz and 8.0Gbytes of RAM microcomputer, in a Windows 

8.0 environment. Three (3) orders of reduction of the maximum residual in the field were considered to obtain a 

converged solution. The residual was defined as the value of the discretized conservation equation. In the 

dynamic part, such definition results in: 

 j,ij,ij,ij,i DCVtsidualRe  .                    (91) 

The attack angle was adopted equal to zero. Only the [46] artificial dissipation model yielded converged 

solutions. 
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11.1. Euler Backward 

Coakley (1983) results. Figures 3 to 6 exhibit the pressure and N2 mass fraction contours obtained by the Maciel 

scheme as using the [29] and [30] chemical models coupled with the [13] turbulence model. The Maciel scheme 

captures the normal shock wave with good resolution. The shock wave captured by the Maciel scheme using the 

[29] chemical model is more severe than that obtained with the [30] chemical model. Good symmetry and 

homogeneous properties are observed. Good dissociation of N2 is perceptible for both chemical models. Some 

oscillations are noted in the mass fraction contours. The dissociation of N2 with the [29] chemical model is 

bigger than the respective dissociation with the [30] chemical model. 

Wilcox (1988) results. Figures 7 to 10 show the pressure and N2 mass fraction contours obtained by the Maciel 

scheme as using the [29] and [30] chemical models coupled with the [14] turbulence model. The Maciel scheme 

captures accurately the normal shock wave. The shock wave captured by the Maciel scheme using the [29] 

chemical model is again more severe than that obtained with the [30] chemical model. Good symmetry and 

homogeneous properties are observed. Good dissociation of N2 is perceptible for both chemical models. Some 

oscillations are perceptible in the mass fraction contours. 

Yoder, Georgiadids and Orkwis (1996). Figures 11 to 14 show the pressure and N2 mass fraction contours 

obtained by the Maciel scheme as using the [29] and [30] chemical models coupled with the [15] turbulence 

model. The Maciel scheme captures again the normal shock wave with precision. The shock wave captured by 

the Maciel scheme using the [29] chemical model is again more severe than that obtained with the [30] chemical 

model. Good symmetry properties are observed. Good dissociation of N2 is perceptible for both chemical 

models. Some oscillations are observed in the mass fraction contours. The dissociation of N2 with the [29] 

chemical model is bigger than the respective dissociation with the [30] chemical model. 

Coakley (1997). Figures 15 to 18 show the pressure and N2 mass fraction contours obtained by the Maciel 

scheme as using the [29] and [30] chemical models coupled with the [16] turbulence model. The Maciel scheme 

captures accurately the normal shock wave. The shock wave captured by the Maciel scheme using the [29] 

chemical model is again more strength. Good symmetry and homogeneous properties are observed. Good 

dissociation of N2 is perceptible for both chemical models. Some oscillations are noted in the mass fraction 

contours. 

Rumsey, Gatski, Ying and Bertelrud (1998). Figures 19 to 22 show the pressure and N2 mass fraction contours 

obtained by the Maciel scheme as using the [29] and [30] chemical models coupled with the [17] turbulence 

model. The Maciel scheme captures the normal shock wave with good precision. The shock wave captured by 

the Maciel scheme using the [29] chemical model is again more strength. Good symmetry properties are 

observed. Good dissociation of N2 is perceptible. Some oscillations are verified in the mass fraction contours. 

The dissociation of N2 with the [29] chemical model is bigger than the respective dissociation with the [30] 

chemical model. 

 

11.2. Middle Point 

Coakley (1983) results. Figures 23 to 26 exhibit the pressure and N2 mass fraction contours obtained by the 

Maciel scheme as using the [29] and [30] chemical models coupled with the [13] turbulence model. The Maciel 

scheme captures the normal shock wave with good precision. The shock wave captured by the Maciel scheme 

using the [29] chemical model is more severe. Good symmetry properties are observed. Good dissociation of N2 

is perceptible. Some oscillations are verified in the mass fraction contours. 

Wilcox (1988) results. Figures 27 to 30 show the pressure and N2 mass fraction contours obtained by the Maciel 

scheme as using the [29] and [30] chemical models coupled with the [14] turbulence model. The Maciel scheme 

captures accurately the normal shock wave. The shock wave captured by the Maciel scheme using the [29] 

chemical model is again more strength than that obtained with the [30] chemical model. Good symmetry and 

homogeneous properties are observed. Good dissociation of N2 is perceptible. Some oscillations are verified in 

the mass fraction contours. The dissociation of N2 with the [29] chemical model is bigger than the respective 

dissociation with the [30] chemical model. 

Yoder, Georgiadids and Orkwis (1996). Figures 31 to 34 show the pressure and N2 mass fraction contours 

obtained by the Maciel scheme as using the [29] and [30] chemical models coupled with the [15] turbulence 
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model. The Maciel scheme captures again the normal shock wave with precision. The shock wave captured by 

the Maciel scheme using the [29] chemical model is again more strength. Good symmetry properties are 

observed. Good dissociation of N2 is perceptible. Some oscillations are noted in the mass fraction contours. 

Coakley (1997). Figures 35 to 38 show the pressure and N2 mass fraction contours obtained by the Maciel 

scheme as using the [29] and [30] chemical models coupled with the [16] turbulence model. The Maciel scheme 

captures the normal shock wave with good resolution. The shock wave captured by the Maciel scheme using the 

[29] chemical model is again more severe. Good symmetry and homogeneous properties are observed. Good 

dissociation of N2 is perceptible. Some oscillations are observed in the mass fraction contours. The dissociation 

of N2 with the [29] chemical model is bigger than the respective dissociation with the [30] chemical model. 

Rumsey, Gatski, Ying and Bertelrud (1998). Figures 39 to 42 show the pressure and N2 mass fraction contours 

obtained by the Maciel scheme as using the [29] and [30] chemical models coupled with the [17] turbulence 

model. The Maciel scheme captures the normal shock wave with accuracy. The shock wave captured by the 

Maciel scheme using the [29] chemical model is more strength. Good symmetry properties are observed. Good 

dissociation of N2 is observed. Some oscillations are perceptible in the mass fraction contours. 

 

11.3. Runge-Kutta 4
th

 

Coakley (1983) results. Figures 43 to 46 exhibit the pressure and N2 mass fraction contours obtained by the 

Maciel scheme as using the [29] and [30] chemical models coupled with the [13] turbulence model. The Maciel 

scheme captures the normal shock wave with accuracy. The shock wave captured by the Maciel scheme using 

the [29] chemical model is more strength than that obtained with the [30] chemical model. Good symmetry 

properties are observed. Good dissociation of N2 is perceptible. Some oscillations are noted in the mass fraction 

contours. The dissociation of N2 with the [29] chemical model is bigger than the respective dissociation with the 

[30] chemical model. 

Wilcox (1988) results. Figures 47 to 50 show the pressure and N2 mass fraction contours obtained by the Maciel 

scheme as using the [29] and [30] chemical models coupled with the [14] turbulence model. The Maciel scheme 

captures accurately the normal shock wave. The shock wave captured by the Maciel scheme using the [29] 

chemical model is again more severe. Good symmetry properties are observed. Good dissociation of N2 is 

perceptible. Some oscillations are verified in the mass fraction contours. 

Yoder, Georgiadids and Orkwis (1996). Figures 51 to 54 show the pressure and N2 mass fraction contours 

obtained by the Maciel scheme as using the [29] and [30] chemical models coupled with the [15] turbulence 

model. The Maciel scheme captures again accurately the normal shock wave. The shock wave captured by the 

Maciel scheme using the [29] chemical model is more intense. Good symmetry and homogeneous properties are 

observed. Good dissociation of N2 is perceptible. Some oscillations are noted in the mass fraction contours. The 

dissociation of N2 with the [29] chemical model is bigger than the respective dissociation with the [30] chemical 

model. 

Coakley (1997). Figures 55 to 58 show the pressure and N2 mass fraction contours obtained by the Maciel 

scheme as using the [29] and [30] chemical models coupled with the [16] turbulence model. The Maciel scheme 

captures the normal shock wave with good precision. The shock wave captured by the Maciel scheme using the 

[29] chemical model is again more severe. Good symmetry properties are observed. Good dissociation of N2 is 

verified. Some oscillations are observed in the mass fraction contours. 

Rumsey, Gatski, Ying and Bertelrud (1998). Figures 59 to 62 show the pressure and N2 mass fraction contours 

obtained by the Maciel scheme as using the [29] and [30] chemical models coupled with the [17] turbulence 

model. The Maciel scheme captures the normal shock wave with accuracy. The shock wave captured by the 

Maciel scheme using the [29] chemical model is more intense. Good symmetry and homogeneous properties are 

noted. Good dissociation of N2 is observed. Some oscillations are perceptible in the mass fraction contours. The 

dissociation of N2 with the [29] chemical model is bigger than the respective dissociation with the [30] chemical 

model. 

 

11.4. Quantitative Analysis 

In order to perform a quantitative analysis, the present reactive results are compared to the perfect gas solutions. 

The stagnation pressure at the blunt body nose was evaluated assuming the perfect gas formulation. Such 
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parameter calculated at this way is not the best comparison, but in the absence of practical reactive results, this 

constitutes the best available solution. 

To calculate the stagnation pressure ahead of the blunt body, [51] presents in its B Appendix values of the 

normal shock wave properties ahead of the configuration. The ratio pr0/pr∞ is estimated as function of the 

normal Mach number and the stagnation pressure pr0 can be determined from this parameter. Hence, to a 

freestream Mach number of 8.78, the ratio pr0/pr∞ assumes the value 99.98.  The value of pr∞ is determined by 

the following expression: 

2

charchar

initial

a

pr
pr




.                                                                   (92) 

In the present study, prinitial = 687N/m
2
, char = 0.004kg/m

3
 and achar = 317.024m/s. Considering these values, one 

concludes that pr∞ = 1.709 (non-dimensional). Using the ratio obtained from [51], the stagnation pressure ahead 

of the configuration nose is estimated as 170.87 unities. Tables 3 and 4 compare the values of the stagnation 

pressure obtained from the simulations with this theoretical value and show the percentage errors. Table 3 

exhibits the results for the [29] chemical model and Tab. 4 the results for the [30] chemical model. As can be 

seen, the best result is provided by the [29] chemical model coupled with the [13] turbulence model, in all three 

time marching methods, with an error of 3.56%, inferior to 5.00%. 

As the hypersonic flow along the blunt body was simulated with a zero value to the attack angle, a zero lift 

coefficient is the expected value for this aerodynamic coefficient. Tables 5 and 6, for the [29] chemical model 

and for the [30] chemical model, respectively, exhibits an analysis of the lift aerodynamic coefficient, based 

only on pressure contribution, in this study. As can be observed, the best value to the lift coefficient is obtained 

by the Maciel scheme when using the [29] chemical model, coupled with the [13] turbulence model, employing 

the Middle Point time marching method. 

 

11.5. Computational Performance 

Tables 7 and 8, for the [29] chemical model and for the [30] chemical model, respectively, presents the 

computational data of the Maciel scheme for the blunt body problem. It shows the CFL number and the number 

of iterations to convergence for all studied cases in the current work. It can be verified that the best performance 

of the Maciel scheme occurred when using the [30] chemical model coupled with the [16] turbulence model and 

employing the Middle Point time marching method. It converged in 5,355 iterations, using a CFL of 0.05. 

As final conclusion, it is possible to highlight the Maciel scheme employing the [29] chemical model coupled 

with the [13] turbulence model as the best performance in estimating the stagnation pressure ahead of the blunt 

body for all time marching methods. The best value to the lift coefficient was again obtained by the [29] 

chemical model coupled with the [13] turbulence model, employing the Middle Point method to march in time. 

Moreover, the Maciel scheme employing the [30] chemical model coupled with the [16] turbulence model, 

using the Middle Point method to march in time, was the most efficient in terms of computational effort. It is 

also important to note that both chemical models coupled with all turbulence models predicted the stagnation 

pressure value with errors inferior to 5.00%. 

It is important to emphasize the result above where errors inferior to 5.00% were obtained for the estimation of 

the stagnation pressure. In the [43] work, similar studies were performed for a seven species chemical model, 

considering the five turbulence models studied herein and the same magnetic formulation. Errors close to 

10.00% were found. Comparing these studies, it is evident that an eleven species chemical model was more 

realistic and represents better the flow field. With errors inferior to 5.00%, the present formulation is better than 

the seven species chemical model studied in [43] and is recommended as providing better treatment of the 

hypersonic flow under study. 

 

Table 1: Values of Sx and Sy 

Surface Sx Sy 

i,j-1/2  
j,ij,1i

yy 


  
j,1ij,i

xx


  

i+1/2,j  
j,1i1j,1i

yy


   
1j,1ij,1i
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yy


   
1j,i1j,1i
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1j,ij,i

yy


   
j,i1j,i

xx 


 

Table 2: Initial conditions to the problem of the blunt body 

Property Value 

Minitial 8.78 

initial 0.00326 kg/m
3
 

prinitial 687 Pa 

Uinitial 4,776 m/s 

Tinitial 694 K 

Tv,initial 694 K 

TREF 0.0 K 

Altitude 40,000 m 

cN 10
-9

 

cO 0.07955 

cO2 0.13400 

cNO 0.05090 

cN+ 0.0 

cO+ 0.0 

cN2+ 0.0 

cO2+ 0.0 

cNO+ 0.0 

ce- 0.0 

LREF 2.0 m 

Rechar 2.386x10
6
 

kinitial 10
-6

 

initial 10Uinitial/LREF 

Qh,initial 10
-4 2

initialh  

 

Qs,initial 10
-2



N

si

2

initial,ic  

By,initial 0.15 T 

µM,char 1.2566x10
-6

T.m/A 

σchar 1,000 ohm/m 

 

Table 3: Values of stagnation pressure and respective errors (Dunn and Kang) 

March Method: Turbulence Model: Pr0: Error: 

 Coakley (1983) 164.79 3.56 

 Wilcox (1988) 164.13 3.94 

Euler Backward Yoder, Georgiadids and Orkwis (1996) 163.97 4.04 

 Coakley (1997) 164.14 3.94 

 Rumsey, Gatski, Ying and Bertelrud (1998) 164.14 3.94 

 Coakley (1983) 164.79 3.56 

 Wilcox (1988) 164.13 3.94 

Middle Point Yoder, Georgiadids and Orkwis (1996) 163.97 4.04 

 Coakley (1997) 164.14 3.94 

 Rumsey, Gatski, Ying and Bertelrud (1998) 164.14 3.94 

 Coakley (1983) 164.79 3.56 

 Wilcox (1988) 164.13 3.94 
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Runge-Kutta 4
th

 Yoder, Georgiadids and Orkwis (1996) 163.97 4.04 

 Coakley (1997) 164.14 3.94 

 Rumsey, Gatski, Ying and Bertelrud (1998) 164.14 3.94 

Table 4: Values of stagnation pressure and respective errors (Park) 

March Method: Turbulence Model: Pr0: Error: 

 Coakley (1983) 164.69 3.62 

 Wilcox (1988) 163.98 4.03 

Euler Backward Yoder, Georgiadids and Orkwis (1996) 163.82 4.13 

 Coakley (1997) 164.01 4.01 

 Rumsey, Gatski, Ying and Bertelrud (1998) 164.01 4.01 

 Coakley (1983) 164.69 3.62 

 Wilcox (1988) 163.98 4.03 

Middle Point Yoder, Georgiadids and Orkwis (1996) 163.82 4.13 

 Coakley (1997) 164.01 4.01 

 Rumsey, Gatski, Ying and Bertelrud (1998) 164.00 4.02 

 Coakley (1983) 164.69 3.62 

 Wilcox (1988) 163.98 4.03 

Runge-Kutta 4
th

 Yoder, Georgiadids and Orkwis (1996) 163.82 4.13 

 Coakley (1997) 164.01 4.01 

 Rumsey, Gatski, Ying and Bertelrud (1998) 164.01 4.01 

 

Table 5: Lift aerodynamic coefficient (Dunn and Kang) 

March Method: Turbulence Model: cL: 

 Coakley (1983) 1.6292x10
-14

 

 Wilcox (1988) 9.8966x10
-10

 

Euler Backward Yoder, Georgiadids and Orkwis (1996) 3.4588x10
-10

 

 Coakley (1997) 3.4669x10
-11

 

 Rumsey, Gatski, Ying and Bertelrud (1998) 3.6340x10
-4

 

 Coakley (1983) 7.9895x10
-15

 

 Wilcox (1988) 6.1186x10
-10

 

Middle Point Yoder, Georgiadids and Orkwis (1996) 6.8863x10
-10

 

 Coakley (1997) -2.8299x10
-11

 

 Rumsey, Gatski, Ying and Bertelrud (1998) 3.6342x10
-4

 

 Coakley (1983) 2.0727x10
-13

 

 Wilcox (1988) -1.9664x10
-10

 

Runge-Kutta 4
th

 Yoder, Georgiadids and Orkwis (1996) -8.7393x10
-10

 

 Coakley (1997) -4.0103x10
-11

 

 Rumsey, Gatski, Ying and Bertelrud (1998) 3.6339x10
-4

 

 

Table 6: Lift aerodynamic coefficient (Park) 

March Method: Turbulence Model: cL: 

 Coakley (1983) 3.2802x10
-13

 

 Wilcox (1988) 6.6932x10
-10

 

Euler Backward Yoder, Georgiadids and Orkwis (1996) 1.7756x10
-10

 

 Coakley (1997) 3.8380x10
-11

 

 Rumsey, Gatski, Ying and Bertelrud (1998) 3.6382x10
-4

 

 Coakley (1983) 7.3049x10
-14

 

 Wilcox (1988) 3.3829x10
-10

 

Middle Point Yoder, Georgiadids and Orkwis (1996) 7.1913x10
-10
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 Coakley (1997) 6.6547x10
-12

 

 Rumsey, Gatski, Ying and Bertelrud (1998) 3.6384x10
-4

 

 Coakley (1983) 1.5385x10
-13

 

 Wilcox (1988) -1.8369x10
-10

 

Runge-Kutta 4
th

 Yoder, Georgiadids and Orkwis (1996) 3.7825x10
-9

 

 Coakley (1997) 4.6503x10
-11

 

 Rumsey, Gatski, Ying and Bertelrud (1998) 3.6382x10
-4

 

 

Table 7: Computational data (Dunn and Kang) 

March Method: Turbulence Model: CFL: Iterations: 

 Coakley (1983) 0.05 5,361 

 Wilcox (1988) 0.05 5,453 

Euler Backward Yoder, Georgiadids and Orkwis (1996) 0.05 5,429 

 Coakley (1997) 0.05 5,362 

 Rumsey, Gatski, Ying and Bertelrud (1998) 0.05 5,366 

 Coakley (1983) 0.05 5,359 

 Wilcox (1988) 0.05 5,451 

Middle Point Yoder, Georgiadids and Orkwis (1996) 0.05 5,427 

 Coakley (1997) 0.05 5,360 

 Rumsey, Gatski, Ying and Bertelrud (1998) 0.05 5,364 

 Coakley (1983) 0.05 5,359 

 Wilcox (1988) 0.05 5,451 

Runge-Kutta 4
th

 Yoder, Georgiadids and Orkwis (1996) 0.05 5,427 

 Coakley (1997) 0.05 5,363 

 Rumsey, Gatski, Ying and Bertelrud (1998) 0.05 5,367 

 

Table 8: Computational data (Park) 

March Method: Turbulence Model: CFL: Iterations: 

 Coakley (1983) 0.05 5,368 

 Wilcox (1988) 0.05 5,457 

Euler Backward Yoder, Georgiadids and Orkwis (1996) 0.05 5,428 

 Coakley (1997) 0.05 5,356 

 Rumsey, Gatski, Ying and Bertelrud (1998) 0.05 5,361 

 Coakley (1983) 0.05 5,366 

 Wilcox (1988) 0.05 5,455 

Middle Point Yoder, Georgiadids and Orkwis (1996) 0.05 5,426 

 Coakley (1997) 0.05 5,355 

 Rumsey, Gatski, Ying and Bertelrud (1998) 0.05 5,359 

 Coakley (1983) 0.05 5,368 

 Wilcox (1988) 0.05 5,455 

Runge-Kutta 4
th

 Yoder, Georgiadids and Orkwis (1996) 0.05 5,427 

 Coakley (1997) 0.05 5,357 

 Rumsey, Gatski, Ying and Bertelrud (1998) 0.05 5,362 
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Figure 1: Computational Cell 

 
Figure 2: Blunt body viscous mesh 

Euler Backward Solutions 

 
Figure 3: Pressure contours (DK-C83) 

 
Figure 4: Pressure contours (P-C83) 

 
Figure 5: N2 mass fraction contours (DK-C83) 

 
Figure 6: N2 mass fraction contours (P-C83) 

 
Figure 7: Pressure contours (DK-W88) 

 
Figure 8: Pressure contours (P-C83) 
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Figure 9: N2 mass fraction contours (DK-W88) 

 
Figure 10: N2 mass fraction contours (P-W88) 

 
Figure 11: Pressure contours (DK-YGO96) 

 
Figure 12: Pressure contours (P-YGO96) 

 
Figure 13: N2 mass fraction contours (DK-YGO96) 

 
Figure 14: N2 mass fraction contours (P-YGO96) 

 
Figure 15: Pressure contours (DK-C97) 

 
Figure 16: Pressure contours (P-C97) 
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Figure 17: N2 mass fraction contours (DK-C97) 

 
Figure 18: N2 mass fraction contours (P-C97) 

 
Figure 19: Pressure contours (DK-RGYB98) 

 
Figure 20: Pressure contours (P-RGYB98) 

 
Figure 21: N2 mass fraction contours (DK-

RGYB98) 

 
Figure 22: N2 mass fraction contours (P-RGYB98) 

Middle Point Solutions 

 
Figure 23: Pressure contours (DK-C83) 

 
Figure 24: Pressure contours (P-C83) 
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Figure 25: N2 mass fraction contours (DK-C83) 

 
Figure 26: N2 mass fraction contours (P-C83) 

 
Figure 27: Pressure contours (DK-W88) 

 
Figure 28: Pressure contours (P-W88) 

 
Figure 29: N2 mass fraction contours (DK-W88) 

 
Figure 30: N2 mass fraction contours (P-W88) 

 
Figure 31: Pressure contours (DK-YGO96) 

 
Figure 32: Pressure contours (P-YGO96) 
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Figure 33: N2 mass fraction contours (DK-YGO96) 

 
Figure 34: N2 mass fraction contours (P-YGO96) 

 
Figure 35: Pressure contours (DK-C97) 

 
Figure 36: Pressure contours (P-C97) 

 
Figure 37: N2 mass fraction contours (DK-C97) 

 
Figure 38: N2 mass fraction contours (P-C97) 

 
Figure 39: Pressure contours (DK-RGYB98) 

 
Figure 40: Pressure contours (P-RGYB98) 
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Figure 41: N2 mass fraction contours (DK-

RGYB98) 

 
Figure 42: N2 mass fraction contours (P-RGYB98) 

Runge-Kutta 4
th

 Solutions 

 
Figure 43: Pressure contours (DK-C83) 

 
Figure 44: Pressure contours (P-C83) 

 
Figure 45: N2 mass fraction contours (DK-C83) 

 
Figure 46: N2 mass fraction contours (P-C83) 

 
Figure 47: Pressure contours (DK-W88) 

 
Figure 48: Pressure contours (P-W88) 
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Figure 49: N2 mass fraction contours (DK-W88) 

 
Figure 50: N2 mass fraction contours (P-W88) 

 
Figure 51: Pressure contours (DK-YGO96) 

 
Figure 52: Pressure contours (P-YGO96) 

 
Figure 53: N2 mass fraction contours (DK-YGO96) 

 
Figure 54: N2 mass fraction contours (P-YGO96) 

 
Figure 55:Pressure contours (DK-C97) 

 
Figure 56: Pressure contours (P-C97) 
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Figure 57: N2 mass fraction contours (DK-C97) 

 
Figure 58: N2 mass fraction contours (P-C97) 

 
Figure 59: Pressure contours (DK-RGYB98) 

 
Figure 60: Pressure contours (P-RGYB98) 

 
Figure 61: N2 mass fraction contours (DK-

RGYB98) 

 
Figure 62: N2 mass fraction contours (P-RGYB98). 

 

12. Conclusions 

In this work, a study involving magnetic field actuation over turbulent reentry flows in thermochemical non-

equilibrium condition was performed. The Favre averaged Navier-Stokes equations coupled with the Maxwell 

equations, in conservative and finite volume contexts, employing structured spatial discretization, were studied. 

The numerical algorithm of Maciel was used to perform the reentry flow numerical experiments, which gave us 

an original contribution to the CFD community. Two types of numerical dissipation models were applied, 

namely: [46-47]. The “hot gas” hypersonic flow around a blunt body, in two-dimensions, was simulated. The 

convergence process was accelerated to steady state condition through a spatially variable time step procedure, 

which had proved effective gains in terms of computational acceleration [27-28]. Three time integration 

methods were tested to march the scheme in time, and it was another relevant contribution to the present work. 
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They were: Euler Backward, Middle Point, and Runge-Kutta 4
th

 order. The reactive simulations involved Earth 

atmosphere chemical model of eleven species and thirty-two reactions, based on the [29] model, and forty-three 

reactions, based on the [30] model. The work of [25, 26] was the reference one to present the fluid dynamics and 

Maxwell equations of electromagnetism based on a conservative and finite volume formalisms. 

The results have indicated that the Maciel scheme, with the [46] artificial dissipation operator, using the [29] 

chemical model coupled with the [13] turbulence model yielded the best prediction of the stagnation pressure 

value. Moreover, the lift coefficient was again better predicted by the Maciel scheme, with the [46] artificial 

dissipation operator, employing the [29] chemical model coupled with the [13] turbulence model. This work is 

the couple of the [26] study, involving perfect gas magnetic actuation, [34-35] studies, involving reactive 

reentry flows, and [52-53], related to turbulent reactive flows, in two-dimensions. 

It is important to emphasize the result above where errors inferior to 5.00% were obtained for the estimation of 

the stagnation pressure. In the [43] work, similar studies were performed for a seven species chemical model, 

considering the five turbulence models studied herein and the same magnetic formulation. Errors close to 

10.00% were found. Comparing these studies, it is evident that an eleven species chemical model was more 

realistic and represents better the flow field. With errors inferior to 5.00%, the present formulation is better than 

the seven species chemical model studied in [43] and is recommended as providing better treatment of the 

hypersonic flow under study. 
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