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Abstract In the present work, a study involving aspectral method to solve the reactive Euler and Navier-Stokes 

equations is performed. The Euler and Navier-Stokes equations, in conservative and finite volume contexts, 

employing unstructured spatial discretization, on a condition of thermochemical non-equilibrium, are studied. 

The spectral method presented in this work employs collocation points and variants of Chebyshev and Legendre 

interpolation functions are analyzed. High-order studies are accomplished to verify the accuracy of the spectral 

method. The “hot gas” hypersonic flows around a blunt body, and around a double ellipse in two-dimensions are 

simulated. The Van Leer and the Liou and Steffen Jr. flux vector splitting algorithms are applied to execute the 

numerical experiments. The Euler backward integration method is employed to march the schemes in time. The 

convergence process is accelerated to steady state condition through a spatially variable time step procedure, 

which has proved effective gains in terms of computational acceleration (see Maciel). The reactive simulations 

involve Earth atmosphere chemical model of five species and seventeen reactions, based on the Saxena and Nair 

model. N, O, N2, O2, and NO species are used to accomplish the numerical comparisons. The results have 

indicated that the Chebyshev collocation point variants are more accurate in terms of stagnation pressure 

estimations, with errors inferior to 17.00% in the worst case, and in terms of lift coefficient estimations. 

Moreover, the Legendre collocation point variants are more computationally efficient. 

 

Keywords Spectral method; hypersonic flow; thermochemical non-equilibrium reentry flows; reactive Euler; 

Navier-Stokes equations; high order accuracy; Van Leer scheme; Liou and Steffen Jr. scheme 

1. Introduction 

There are several approaches for computationally modeling fluid dynamics. These include finite difference, 

finite element, and spectral methods to name a few. Finite element and finite difference methods are frequently 

used and offer a wide range of well-known numerical schemes. These schemes can vary in terms of 

computational accuracy, but are typically of lower order of accuracy. If a more accurate solution is desired, it is 

common practice to refine the mesh either globally or in a region of interest. This can often be a complicated or 

time consuming process as global mesh refinement will greatly increase the computation time while local 

refinement requires an elaborated refinement operation [1]. 

Alternatively, polynomial refinement has been used to improve the solution accuracy and has been shown to 

converge more quickly than mesh refinement in some cases [2-3]. For finite difference methods, polynomial 

refinement is performed by including neighboring node values in a higher order polynomial [4]. This can 

increase the complexity of the scheme especially near the boundaries where nodes do not exist to construct the 

higher order polynomials. Finite element methods instead increase the number of unknown values within the 

cell itself to construct a higher order solution [5]. 

A scheme with a very high formal order of accuracy will not necessarily always produce the highest resolution. 

[6] demonstrated that a spectral-like scheme with a formal fourth-order accuracy produced a much more highly 
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resolved solution than schemes with higher formal orders of accuracy when comparing modified wave numbers. 

Therefore, formal order of accuracy does not provide a comprehensive basis for selecting the best solution 

procedure. State-of-art methods such as spectral methods fall into this category. 

Spectral methods are considered a class of solution techniques using sets of known functions to solve 

differential equations [7]. Such methods are generally considered high order and capable of obtaining solutions 

with a high resolution. Unlike finite-difference and finite-element methods, spectral methods utilize an 

expansion in terms of global, rather than local, basis functions to represent the solution of a differential 

equation. When properly applied, these techniques accurately resolve phenomena on the scale of the mesh 

spacing. The order of truncation error decay with mesh refinement is also higher than which can be achieved 

with finite-difference and finite-element methods. For problems with smooth solutions, it is possible to produce 

spectral method whose truncation error goes to zero as faster than any finite power of the mesh spacing 

(exponential convergence). 

Spectral methods may be viewed as an extreme development of the class of discretization schemes known by 

the generic name of method of weighted residuals (MWR) [8]. The key elements of the MWR are the trial 

functions (also called the expansion or approximating functions) and the test functions (also known as weighted 

functions). The trial functions are used as the basis functions for a truncated series expansion of the solution 

that, when substituted into the differential equation, produces the residual. The test functions are used to enforce 

the minimization of the residual. 

The choice of the trial functions is what distinguishes the spectral methods from the element and finite 

difference methods. The trial functions for spectral methods are infinitely differentiable global functions 

(Typically, they are tensor products of the eigenfunctions of singular Sturm-Liouville problems). In the case of 

finite element methods, the domain is divided into small elements and a trial function is specified in each 

element. The trial functions are thus local in character and well suited for handling complex geometries. The 

finite difference trial functions are likewise local. 

The choice of test function distinguishes between Galerkin and collocation approaches. In the Galerkin 

approach, the test functions are the same as the trial functions, whereas in the collocation approach the test 

functions are translated Dirac delta functions. In other words, the Galerkin approach is equivalent to a least-

square approximation, whereas the collocation approach requires the differential equations to be solved exactly 

at the collocation points. 

The collocation approach is the simplest of the MWR and appears to have been first used by [9] in his study of 

electronic energy bands in metals. A few years later, [10] applied this method to the problem of torsion in square 

prism. [11] developed it as a general method for solving ordinary differential equations. They used a variety of 

trials functions and an arbitrary distribution of collocation points. The work of [12] established for the first time 

that a proper choice of the trial functions and the distribution of collocation points are crucial to the accuracy of 

the solution. Perhaps he should be credited with laying down the foundation of the orthogonal collocation 

method. 

Spectral methods have been used on one-dimensional, compressible flow problems with piecewise linear 

solutions by [13-14]. These reports demonstrated that spectral methods, when combined with appropriate 

filtering techniques, can capture one-dimensional shock waves in otherwise featureless flows. A different sort of 

demonstration was provided by [15]. They exhibited spectral solutions of compressible flows with nontrivial 

structures in the smooth regions. 

Renewed interest in the area of hypersonic flight has brought Computational Fluid Dynamics (CFD) to the 

forefront of fluid flow research [16]. Many years have seen a quantum leap in advancements made in the areas 

of computer systems and software which utilize them for problem solving. Sophisticated and accurate numerical 

algorithms are devised routinely that are capable of handling complex computational problems. Experimental 

test facilities capable of addressing complicated high-speed flow problems are still scarce because they are too 

expensive to build and sophisticated measurements techniques appropriate for such problems, such as the non-

intrusive laser, are still in the development stage. As a result, CFD has become a vital tool in the flow problem 

solution. 
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In high speed flows, any adjustment of chemical composition or thermodynamic equilibrium to a change in local 

environment requires certain time. This is because the redistribution of chemical species and internal energies 

require certain number of molecular collisions, and hence a certain characteristic time. Chemical non-

equilibrium occurs when the characteristic time for the chemical reactions to reach local equilibrium is of the 

same order as the characteristic time of the fluid flow. Similarly, thermal non-equilibrium occurs when the 

characteristic time for translation and various internal energy modes to reach local equilibrium is of the same 

order as the characteristic time of the fluid flow. Since chemical and thermal changes are the results of collisions 

between the constituent particles, non-equilibrium effects prevail in high-speed flows in low-density air. 

In chemical non-equilibrium flows the mass conservation equation is applied to each of the constituent species 

in the gas mixture. Therefore, the overall mass conservation equation is replaced by as many species 

conservation equations as the number of chemical species considered. The assumption of thermal non-

equilibrium introduces additional energy conservation equations – one for every additional energy mode. Thus, 

the number of governing equations for non-equilibrium flow is much bigger compared to those for perfect gas 

flow. A complete set of governing equations for non-equilibrium flow may be found in [17-18]. 

The problems of chemical non-equilibrium in the shock layers over vehicles flying at high speeds and high 

altitudes in the Earth’s atmosphere have been discussed by several investigators [19-22]. Most of the existing 

computer codes for calculating the non-equilibrium reacting flow use the one-temperature model, which 

assumes that all of the internal energy modes of the gaseous species are in equilibrium with the translational 

mode [21-22]. It has been pointed out that such a one-temperature description of the flow leads to a substantial 

overestimation of the rate of equilibrium because of the elevated vibrational temperature [20]. A three-

temperature chemical-kinetic model has been proposed by [23] to describe the relaxation phenomena correctly 

in such a flight regime. However, the model is quite complex and requires many chemical rate parameters which 

are not yet known. As a compromise between the three-temperature and the conventional one-temperature 

model, a two-temperature chemical-kinetic model has been developed [24-25], which is designated herein as the 

TTv model. The TTv model uses one temperature T to characterize both the translational energy of the atoms 

and molecules and the rotational energy of the molecules, and another temperature Tv to characterize the 

vibrational energy of the molecules, translational energy of the electrons, and electronic excitation energy of 

atoms and molecules. The model has been applied to compute the thermodynamic properties behind a normal 

shock wave in a flow through a constant-area duct [24-25]. Radiation emission from the non-equilibrium flow 

has been calculated using the Non-equilibrium Air Radiation (NEQAIR) program [26-27]. The flow and the 

radiation computations have been packaged into a single computer program, the Shock-Tube Radiation Program 

(STRAP) [25]. 

Algorithms for solving the Euler equations using a perfect gas model on structured grids in two- and three-

dimensions have become widespread in recent years [28-29]. However, these algorithms have shown difficulties 

in predicting satisfactory results around complex geometries due to mesh irregularities. As a result, attention has 

turned to the development of solution algorithms on arbitrary unstructured grids. Impressive results have been 

obtained for a wide range of problems [30-31]. 

One problem associated with unstructured meshes is the increased difficulty in obtaining smooth higher order 

spatial approximations to state data at cell interfaces. Two methods have been used to obtain higher order 

accuracy on unstructured meshes. A method used by several researchers for cell vertex schemes [32-33] was 

applied to obtain higher order accuracy in a procedure analogous to MUSCL (Monotone Upstream-centered 

Schemes for Conservation Laws) differencing on a structured mesh. A conventional structured mesh limiter can 

be employed in this scheme to obtain approximately monotone results near flow discontinuities. The second 

method, which was proposed by [31], linearly reconstructs the cell averaged data and imposes a monotone 

preserving limiter to achieve smooth results near flow discontinuities. 

In the present work, a study involving a spectral method to solve the reactive Euler and Navier-Stokes equations 

is performed. The Euler and Navier-Stokes equations, in conservative and finite volume contexts, employing 

unstructured spatial discretization, on a condition of thermochemical non-equilibrium, are studied. The spectral 

method presented in this work employs collocation points and variants of Chebyshev and Legendre interpolation 

functions are analyzed. High-order studies are accomplished to verify the accuracy of the spectral method. The 
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“hot gas” hypersonic flows around a blunt body, and around a double ellipse in two-dimensions are simulated. 

The [34-35] flux vector splitting algorithms are applied to execute the numerical experiments. The Euler 

backward integration method is employed to march the schemes in time. The convergence process is accelerated 

to steady state condition through a spatially variable time step procedure, which has proved effective gains in 

terms of computational acceleration [36-37]. The reactive simulations involve Earth atmosphere chemical model 

of five species and seventeen reactions, based on the [38] model. N, O, N2, O2, and NO species are used to 

accomplish the numerical comparisons. The results have indicated that the Chebyshev collocation point variants 

are more accurate in terms of stagnation pressure estimations, with errors inferior to 17.00% in the worst case, 

and in terms of lift coefficient estimations. Moreover, the Legendre collocation point variants are more 

computationally efficient. 

 

2. Spectral Method 

Two classes of techniques for spectral discretization are referred to as tau and collocation methods [39]. The 

latter technique is used here. In this scheme, the approximation series is determined by satisfying the differential 

equation exactly at a set of distinct collocation points. The locations of these points in the domain are linked to 

the choice of basis function. In this study, arbitrary collocation points are implemented. The collocation method 

is used here since enforcement of boundary conditions and evaluations of nonlinear terms are straightforward. 

Additionally, some accuracy advantage is seen in the collocation method over the tau method for a number of 

problems [39]. The series expansion for a function Q(x) may be represented as 





N

0n
nnN

)x(BQ̂)x(Q ,                                          (1)
 

where Bn(x) are the basis functions and N is the total number of nodes employed in the interpolation process (It 

is also the order of accuracy of the spectral method). The coefficients 
n

Q̂  are often termed the spectrum of 

QN(x). One common technique used to evaluate the spectrum is to consider Eq. (1) as an interpolation series 

representing Q(x). The interpolation “nodes” of such series are the collocation points of the method.  For a 

scheme based on Chebyshev collocation, the basis functions are: 

)x(P)x(xP2)x(T)x(B
2n1nnn 

 ,          2n  ,      (2) 

with: P0(x) = 1 and P1(x) = x. The Chebyshev-Gauss-Lobatto standard collocation points are 
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The Chebyshev collocation points result from a simple change of variables, which relates the Chebyshev 

interpolation series to a Fourier cosine series [39]. To evaluate the 
n

Q̂ , the inverse relation is required. This is 
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with wl being a normalized weighting function and 
n

ĉ a constant. These variables assume the following 

expressions to a Chebyshev-Gauss-Lobatto interpolation: 
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Legendre collocation is based on using Legendre polynomials as the basis function in Eq. (1), e.g., 

     n)x(P1n)x(xP1n2)x(B 2n1nn   ,          2n  ,     (6) 

 

where: P0(x) = 1 and P1(x) = x. Interpolation via Legendre series cannot easily be related to trigonometric 

interpolation, so there is no simple expression to evaluate the 
n

Q̂ coefficients. Appeal must be made to the 

theory of numerical quadrature to form an approximation to the integrals which result from analytic Legendre 
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interpolation [40]. Considering Eq. (4), the normalized weights and constant of the Legendre-Gauss-Lobatto 

collocation points are 
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In this work, it was assumed that the Legendre-Gauss-Lobatto collocation points are the same as the Chebyshev-

Gauss-Lobatto ones. It was also adopted the following collocation points and normalized weight for the 

Chebyshev-Gauss-Radau interpolation, based on the work of [41]: 
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For the Legendre-Gauss-Radau interpolation, also based in [41], the collocation points are defined by Eq. (8) 

and the normalized weights are described by: 

 

 


















elsewhere,
)x(B

x1

1N2

1

0l,
1N

1

w

lN

l

2

2

l

.                                           (10) 

The same calculation to the vector of conserved variables Q is applied to the vector of flux C, to be defined in 

section 4. 

Hence, we have two collocation point options and two normalized weight functions to be considered by the 

Chebyshev and the Legendre methods, namely: Chebyshev-Gauss-Radau, Chebyshev-Gauss-Lobatto, Legendre-

Gauss-Radau and Legendre-Gauss-Lobatto. 

 

3. Reactive Euler and Navier-Stokes Equations in 2D 

As the Navier-Stokes equations tend to the Euler equations when high Reynolds number are employed, only the 

former equations are presented. The reactive Navier-Stokes equations in thermochemical non-equilibrium, 

where the rotational and vibrational contributions are considered, were implemented on conservative and finite 

volume contexts, in the two-dimensional space. In this case, these equations in integral and conservative forms 

can be expressed by: 

  




V V
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where: Q is the vector of conserved variables, V is the volume of a computational cell, F


 is the complete flux 

vector, n


 is the unity vector normal to the flux face, S is the flux area, SCV is the chemical and vibrational 

source term, Ee and Fe are the convective flux vectors or the Euler flux vectors in the x and y directions, 

respectively, and Ev and Fv are the viscous flux vectors in the x and y directions, respectively. The i


 and j


 

unity vectors define the Cartesian coordinate system. Nine (9) conservation equations are solved: one of general 

mass conservation, two of linear momentum conservation, one of total energy, four of species mass 

conservation, and one of the vibrational internal energy of the molecules. Therefore, one of the species is absent 

of the iterative process. The CFD literature recommends that the species of biggest mass fraction of the gaseous 

mixture should be omitted, aiming to result in a minor numerical accumulation error. To the present study, in 

which is chosen a chemical model to the air composed of five (5) chemical species (N, O, N2, O2, and NO) and 

seventeen chemical reactions to the [38] model, this species can be the N2 or the O2. To this work, the N2 was 

chosen. The vectors Q, Ee, Fe, Ev, Fv, and SCV can, hence, be defined as follows: 
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in which:  is the mixture density; u and v are Cartesian components of the velocity vector in the x and y 

directions, respectively; e is the fluid total energy; H is the total enthalpy; 1, 2, 4, and 5 are densities of the 

N, O, O2, and NO, respectively; eV is the sum of the vibrational energy of the molecules; the ’s are the 

components of the viscous stress tensor; fx and fy are viscous work and Fourier heat flux functions; svsx and 

svsy represent the species diffusion flux, defined by the Fick law; x and y are the terms of mixture diffusion; 

v,x and v,y are the terms of molecular diffusion calculated at the vibrational temperature; 
s

  is the chemical 

source term of each species equation, defined by the law of mass action;
*

ve  is the molecular-vibrational-internal 

energy calculated with the translational/rotational temperature; s is the translational-vibrational characteristic 

relaxation time of each molecule; qv,x and qv,y are the vibrational Fourier heat flux components in the x and y 

directions, respectively; and Re is the laminar Reynolds number. 
The viscous stresses, in N/m

2
, are determined, according to a Newtonian fluid model, by: 

   yvxu32xu2 mmxx  ; 

 xvyumxy  ;                             (14) 

    ,yvxu32yv2 mmyy   

where µm is the molecular viscosity. Expressions to fx and fy are given below: 

x,vxxyxxx qqvuf  ;                 (15) 

y,vyyyxyy qqvuf  ,                     (16) 

where qx and qy are the Fourier heat flux components and are given by: 
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where: k is the thermal conductivity due to translation and rotation. The qv,x and qv,y are the vibrational heat flux 

components and are given by: 

xTkq VVx,v  and yTkq VVy,v  ,             (18) 

with kV being the vibrational thermal conductivity and TV is the vibrational temperature, what characterizes this 

model as of two temperatures: translational/rotational and vibrational. The terms of species diffusion, defined by 

the Fick law, to a condition of thermal non-equilibrium, are determined by [42]: 
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with “s” referent to a given species, YMF,s being the molar fraction of the species, defined as: 
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and Ds is the species-effective-diffusion coefficient. “ns” is the number of species. The diffusion terms x and y 

which appear in the energy equation are defined by [38]: 





ns
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ns

1s

ssysy hv ,                                          (21) 

being hs the specific enthalpy (sensible) of the chemical species “s”. The molecular diffusion terms calculated at 

the vibrational temperature, v,x and v,y, which appear in the vibrational-internal-energy equation are defined by 

[42]: 





mols

s,vsxsx,v hv and 



mols

s,vsysy,v hv ,                                   (22) 

With hv,s being the specific enthalpy (sensible) of the chemical species “s” calculated at the vibrational 

temperature TV. The sum of Eq. (13), as also those present in Eq. (22), considers only the molecules of the 

system, namely: N2, O2, and NO. The laminar Reynolds number is estimated by: 

char,m

charinitialchar LV
Re




 ,                                       (23) 

with “char” representing characteristic or freestream properties, ρchar is the characteristic density, Vinitial is the 

initial velocity of the fluid flow, Lchar is a characteristic configuration length, and char,m  is a characteristic 

molecular viscosity. For details of the chemical model, the calculation of thermodynamic and transport 

properties see [43-44]. 

 

4. Numerical Schemes 

Considering the two-dimensional and structured case, the flux vector splitting algorithms follow that described 

in [34-35, 43-44]. The speed of sound is defined by the following expression: 

 



p

1a ,                                                                   (24) 

where β is a parameter to be defined, calculated at each interaction. 

The system is solved in three parts separately, according to [45]. The first part takes into account the dynamic 

part, which considers the Navier-Stokes equations, the second one takes into account the chemical part 

involving the chemical contributions, and finally, the third part considers only the vibrational contribution. 

Hence, the discrete-dynamic-convective flux, which solves the dynamic part, is given by: 
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where m = 1, 2, 3 representing each one a cell interface, “R” being the cell “i” and “L” being its neighbor; the 

discrete-chemical-convective flux is defined by: 
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and finally the discrete-vibrational-convective flux is given by: 
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where: C is the sum of the fluxes at each interface, and  T
myx

m SSS   defines the normal area vector for the 

surface “m”. The normal area components Sx and Sy to each flux interface are given by 

mm
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The normal unity vector components, 
m

xn and 
m

yn , and the flux area of the “m” interface, S
m
, are defined as: 
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Expressions to xm and ym are given in Tab. 1. 

The same definitions presented in [34-35, 43-44] are valid to these algorithms. The definition of the dissipation 

term  determines the particular formulation of the convective fluxes. The choice below corresponds to the [34] 

scheme, according to [46]: 
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and the [35] scheme is obtained by, according to [46]: 

m

LS

mm M .             (31) 

Both schemes are first-order accurate in space and in time. The high-order spatial accuracy is obtained, in the 

current study, by the spectral method. 

The viscous formulation follows that of [47], which adopts the Green theorem to calculate primitive variable 

gradients. The viscous gradients at the flux interfaces are obtained by arithmetical average between cell “i” and 

its neighbors. As was done with the convective terms, there is a need to separate the viscous flux in three parts: 

dynamic viscous flux, chemical viscous flux, and vibrational viscous flux. The dynamic part corresponds to the 

first four equations of the Navier-Stokes, the chemical part corresponds to the four equations immediately below 

the energy equation, and the vibrational part corresponds to the equation that follows the last chemical one. The 

resultant ordinary differential equation system can be written as: 

  ii321ii CRRRdtdQV  ,                                  (32) 

where the cell volume on an unstructured context is given by: 

   1n2n1n3n2n3n3n2n3n1n2n1ni yxxyyxyxxyyx5.0V  ,     (33) 

with n1, n2 and n3 being the nodes of a given triangular cell, defined in Fig. 1. Figure 1 exhibits the 

computational cell adopted for the simulations, as well its respective nodes, neighbors and flux interfaces. 

In the present study, the Euler backward method was employed to march the scheme in time. This method is 

first-order accurate in time, to the three types of complete flux. To the convective dynamic component, this 

method can be represented in general form by: 
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to the convective chemical part, it can be represented in general form by: 
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where the chemical source term SC is calculated with the temperature Trrc (reaction rate controlling temperature, 

see [43-44]. Finally, to the convective vibrational component: 

    )n(

iVi

)n(

ii

)n(

i

)1n(

i QSVQCtQQ 
,                                  (36) 

 



de Góes Maciel ES                                    Journal of Scientific and Engineering Research, 2018, 5(2):100-129 

 

Journal of Scientific and Engineering Research 

108 

 

in which: 

,                          (37) 

where qT-V is the heat flux due to translational-vibrational relaxation, defined in Eq. (13) and in [43-44]. 

 

5. Spatially Variable Time Step 

The spatially variable time step has proved efficient gains in terms of convergence acceleration, as verified by 

[36-37]. Initially, the parameter  is determined, where: 

s

s
s

M

c
 and 




ns

1s

s ,                                                      (38) 

with cs being the mass fraction, and Ms the molecular weight. The total specific heat at constant volume due to 

translation is defined as: 





ns

1s

s,T,VsT,V cc ,          (39) 

where, for each gas constituent of the five (5) species chemical model, the specific heat at constant volume, 

based on the kinetic theory of gases [48], is defined by 

NN,T,V R
2

3
c  , OO,T,V R

2

3
c  , 

22 NN,T,V R
2

5
c  , 

22 OO,T,V R
2

5
c  , and NONO,T,V R

2

5
c  ,        (40) 

being Rs the specific gas constant. The total pressure of the gaseous mixture is determined by Dalton law, which 

indicates that the total pressure of the gas is the sum of the partial pressure of each constituent gas, resulting in: 

TRcp sss  and 



ns

1s

spp .         (41) 

The speed of sound to a reactive mixture can be determined by Eq. (24), where 

T,V

univ

c

R 
 , with Runiv = 1.987 

cal/(g-mol.K). Finally, the spatially variable time step is defined from the CFL (Courant-Friedrichs-Lewis) 

definition: 

i

2

i

2

i

i
i

avu

sCFL
t




 ,                                                         (42) 

where is  is the characteristic length of each cell (defined between the minimum cell side length and the 

minimum centroid distance between each cell and its neighbors). 

 

6. Dimensionless Scales, Initial and Boundary Conditions 

6.1. Dimensionless Scales 

The dimensionless scales employed to the reactive equations consisted in: Rs is dimensionless by achar, where 

charcharchar pa  ; cv is dimensionless by achar; hs and 
0

sh   are dimensionless by 
2

chara ; T and Tv, 

translational/rotational temperature and vibrational temperature, respectively, are dimensionless by achar; s and 

 are dimensionless by char; u and v are dimensionless by achar;  is dimensionless by char; D, diffusion 

coefficient, dimensionless by 
2

chara dtchar, where dtchar is the minimum time step calculated in the computational 

domain at the first iteration;   is dimensionless by   3

charchar 10xdt  ; ev is dimensionless by 
2

chara ; e and p 

are dimensionless by 
2

charchara ; s, relaxation time, is dimensionless by dtchar. The characteristic physical 

properties are defined in [49]. 

 




 
mols

s,vs,C

mols

s,VTV eSqS
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6.2. Initial Condition 

The initial conditions to the blunt body, and to the double ellipse problems, for a five species chemical model, 

are presented in Tabs. 2-3. The Reynolds number is obtained from data of [49]. 

6.3. Boundary Conditions 

The boundary conditions are basically of three types: solid wall, entrance, and exit. These conditions are 

implemented with the help of ghost cells. 

Wall condition. In the inviscid case, this condition imposes the flow tangency at the solid wall. This condition is 

satisfied considering the wall tangent velocity component of the ghost volume as equals to the respective 

velocity component of its real neighbor cell. At the same way, the wall normal velocity component of the ghost 

cell is equaled in value, but with opposite signal, to the respective velocity component of the real neighbor cell. 

Hence, the ghost cell velocity components are written as: 

        .vnnunn2vand;vnn2unnu r

2

y

2

xryxgryxr

2

x

2

yg 
   

(43) 

with “g” related with ghost cell and “r” related with real cell. To the viscous case, the boundary condition 

imposes that the ghost cell velocity components be equal to the real cell velocity components, with the negative 

signal: 

rg uu  and rg vv  .                                                         (44) 

The normal pressure gradient of the fluid at the wall is assumed to be equal to zero according to a boundary-

layer like condition. The same hypothesis is applied for the normal temperature gradient at the wall, assuming 

an adiabatic wall. From the above considerations, density and translational/rotational temperature are 

extrapolated from the respective values of its real neighbor volume (zero order extrapolation). The total 

vibrational internal energy is also extrapolated. 

With the mixture-species-mass fractions and with the values of the respective specific heats at constant volume, 

it is possible to obtain the mixture specific heat at constant volume. The mixture formation enthalpy is 

extrapolated from the real cell. The mixture total energy to the ghost cell is calculated by: 

    2

g

2

gg,v

0

g,mixtREFg,trg,mixtvgg vu5.0ehTTce  ,              (45) 

Where cv,mixt,g, TREF, ev,g are defined in [43-44]. To the species density, the non-catalytic condition is imposed, 

what corresponds to zero order extrapolation from the real cell. 

 

Entrance condition. It is divided in two flow regimes: 

(a) Subsonic flow: Three properties are specified and one extrapolated in the boundary conditions of the 

dynamic part of the [34-35] numerical schemes. This approach is based on information propagation analysis 

along characteristic directions in the calculation domain [50]. In other words, for subsonic flow, three 

characteristics propagate information pointing into the computational domain. Thus three flow properties must 

be fixed at the inlet plane. Just one characteristic line allows information to travel upstream. So, one flow 

variable must be extrapolated from the interior grid to the inlet boundary. The total energy was the extrapolated 

variable from the real neighbor volume, for the studied problems. Density and velocity components adopted 

values of initial flow. To the chemical part, four information propagate upstream because it is assumed that all 

four equations are conducted by the eigenvalue “(qn-a)”. In the subsonic flow, all eigenvalues are negative and 

the information should be extrapolated. In the same reasoning to the chemical boundary conditions, the 

vibrational-internal-energy equation is dictated by the “(qn-a)” eigenvalue and, in the subsonic region, its value 

is negative. Hence, the vibrational internal energy should be extrapolated. 

(b) Supersonic flow: In this case no information travels upstream; therefore all variables are fixed with their 

initial values. 

 

Exit condition. It is also divided in two flow regimes: 

(a) Subsonic flow: Three characteristics propagate information outward the computational domain. Hence, the 

associated variables should be extrapolated from interior information. The characteristic direction associated to 

the “(qnormal-a)” velocity should be specified because it points inward to the computational domain [50]. In this 
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case, the ghost volume total energy is specified from its initial value. Density and velocity components are 

extrapolated. To the chemical part, the eigenvalue “(qn-a)” is again negative and the characteristics are always 

flowing into the computational domain. Hence, the four chemical species under study should have their densities 

fixed by their initial values. In the same reasoning, the internal vibrational energy should have its value 

prescribed by its initial value due to the eigenvalue “(qn-a)” be negative. 

(b) Supersonic flow: All variables are extrapolated from interior grid cells, as no flow information can make its 

way upstream. In other words, nothing can be fixed. 

 

7. Physical Problems 

Two physical problems were solved in this work, namely: blunt body, and double ellipse. The first problem 

considers the geometry of a blunt body with 1.0 m of nose ratio and parallel rectilinear walls. The far field is 

located at 20.0 times the nose ratio in relation to the configuration nose. A mesh composed of 5,096 triangular 

cells and 2,650 nodes was studied for the inviscid case, with an exponential stretching of 5.0% for the viscous 

case. This mesh is equivalent in finite differences to a one of 53x50 points. Figure 2 shows the detail of the 

geometry and Figs. 3 and 4 exhibit the inviscid and viscous meshes. 

The double ellipse problem is the second under study. The mesh is composed of 8,232 triangular cells and 4,250 

nodes, with an exponential stretching of 5.0% for the viscous case, and far field located at 20.0 unities. This 

mesh is equivalent in finite differences to a one of 85x50 points. Figure 5 shows the double ellipse geometry and 

Figs. 6 and 7 exhibit the inviscid and viscous meshes. 

 

8. Results 

Tests were performed in a Core i7 processor of 2.3GHz and 8.0Gbytes of RAM microcomputer, in a Windows 

7.0 environment. Three (3) orders of reduction of the maximum residual in the field were considered to obtain a 

converged solution. The residual was defined as the value of the discretized conservation equation. In the 

dynamic part of the [34-35] schemes, such definition results in: 

iii CVtsidualRe  .                                             (46) 

The attack angle was adopted equal to zero. In this work, the inviscid results were obtained for a 5
th

 order of 

accuracy of the spectral method, whereas the viscous solutions were obtained for a 8
th

 order of accuracy of the 

spectral method. For a matter of simplicity, the following abbreviations were used: [34] scheme = VL, [35] 

scheme = LS, Chebyshev-Gauss-Radau = CGR, Chebyshev-Gauss-Lobatto = CGL, Legendre-Gauss-Radau = 

LGR, and Legendre-Gauss-Lobatto = LGL. 

 

8.1. Blunt Body Problem 

Inviscid case. Figures 8 to 11 exhibit the pressure and temperature contours obtained by the VL and LS schemes 

as using the CGR collocation points. The LS algorithm captures a more intense shock than the VL scheme, as 

can be seen by the pressure legend. Good homogenous properties are observed in the pressure and in the 

translational/rotational temperature contours. No pre-shock oscillations are observed. The maximum 

temperature at the configuration nose is 8,951.11K, obtained by the VL scheme. 

Figures 12 to 15 show the pressure and translational/rotational temperature contours generated by the VL and 

LS schemes as using CGL collocation points. The maximum pressure is obtained by the LS algorithm, being 

inferior to that observed in the CGR case. No pressure oscillations are observed in the solutions. The 

temperature contours presents good homogeneous properties. The maximum temperature reaches the value of 

8,986.87K and is captured by the VL scheme. The contours are free of oscillations. 

Figures 16 to 19 present the pressure and translational/rotational temperature contours calculated by the VL and 

LS schemes when using the LGR collocation points. The pressure peaks of both solutions are smaller than those 

obtained in the Chebyshev variants. No pressure oscillations are observed. The maximum temperature peak is 

9,027.15K, obtained again by the VL scheme. Good homogeneous properties are also observed in both 

temperature contours. 

Figures 20 to 23 exhibit the pressure and temperature contours obtained by the VL and LS algorithms when 

using the LGL collocation points. The pressure peaks are still low. The shock wave is well captured by both 
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schemes. The temperature contours present good homogeneous properties, free of oscillations. The maximum 

temperature is obtained by the VL scheme with a value of 9,016.46K. 

Viscous case. Figures 24 and 25 present the pressure and temperature contours generated by the LS scheme as 

using CGR collocation points. The VL scheme did not yield converged results. The pressure peak is closer to 

the theoretical stagnation pressure value. Good homogenous properties are observed and no pre-shock 

oscillations are observed. The maximum temperature reaches the mark of 9,025.58K. Good symmetry properties 

are verified in the temperature field. 

Figures 26 to 29 show the pressure and translational/rotational temperature contours calculated by the VL and 

LS algorithms when using CGL collocation points. The VL’s pressure peak is very close to the theoretical value 

of stagnation pressure (see Table 4). The shock wave is well captured by both schemes. Figures 28 and 29 show 

the translational/rotational temperature contours and the good transport of viscosity and thermal conduction is 

noted in the VL solution. Note that the heat transfer is better captured by the VL scheme, as can be seen by the 

contours of temperature close to the configuration wall. The correct transport of properties like viscosity and 

thermal conduction are qualitatively confirmed. The maximum temperature is 9,205.91K and is again obtained 

by the VL scheme; in other words, the VL scheme is being more conservative than the LS scheme. 

Figures 30 to 33 exhibit the pressure and temperature contours obtained by the VL and LS algorithms as using 

the LGR collocation points. Both pressure contours are very similar in qualitative terms, although the pressure 

peaks are very low. Good symmetry properties are observed in both solutions, free of pre-shock oscillations. 

Figures 32 and 33 exhibit the temperature contours calculated by the VL and LS schemes. The temperature field 

of VL algorithm is more intense than that of the LS scheme, reaching a maximum of 9,195.82K. Good 

symmetry and homogenous properties are observed in both figures. 

Figures 34 to 37 present the pressure and translational/rotational temperature contours calculated by the VL and 

LS algorithms when using the LGL collocation points. Both pressures are reduced in relation to the theoretical 

stagnation pressure value. Both solutions present good symmetry and homogenous properties, free of 

oscillations. The shock waves are well captured and the transport of properties is well highlighted in the VL’s 

temperature contours. The maximum temperature is obtained by the VL scheme and reaches the value of 

9,200.61K. The Legendre solutions present in general higher values to the stagnation temperature than the 

Chebyshev solutions. It general terms, the Chebyshev variants dominate the pressure field, whereas the 

Legendre variants dominate the temperature field. 

 

8.2. Double Ellipse Problem 

Inviscid case. In this problem, only the VL scheme converged in the numerical simulations. Figures 38 to 45 

show pressure and temperature contours generated by the VL algorithm as using the CGR, CGL, LGR, and LGL 

collocation points. Comparing with the theoretical stagnation pressure value, the best result is due to CGR 

collocation points with an error of 0.09%. Good homogenous properties are observed in all solutions and the 

two shock waves are well captured by all spectral variants. The maximum temperature in the field is captured by 

the LGL collocation points and reaches the value of 10,112.70K. 

Viscous case. Again, only the VL scheme generated converged results and the CGR collocation points did not 

present solutions. Figures 46 to 51 exhibit the pressure and temperature contours calculated with the VL scheme 

as using the CGL, LGR, and LGL variants of the proposed spectral method. The best value to the stagnation 

pressure is captured by the CGL collocation points, with an error of 1.65%. Good homogenous properties are 

observed in all solutions. Figures 47, 49, and 51 exhibit the thermal boundary layer captured by all variants of 

the spectral method as using the VL scheme. The transport properties are well detected by the VL scheme. No 

temperature oscillations are observed in these figures. The temperature fields calculated by the Legendre 

variants reach values above 10,400K and are the most intense fields in the double ellipse simulations. 

 

8.3. Other Comparisons 

Figure 52 shows the convergence history of the VL scheme to a 5
th

 order spectral method using LGL collocation 

points and to a structured MUSCL solution of 2
nd

 order using the minmod limiter, for the blunt body inviscid 

case. The LGL collocation points were chosen because they provide the best convergence of the VL scheme for 
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the inviscid case and 5
th

 order of accuracy. The structured MUSCL procedure was implemented by the author 

and was used for numerical comparisons due to its moderate CFL number in the blunt body simulations. To 

details of the implementation of the structured MUSCL procedure on a context of thermochemical non-

equilibrium, the reader is encouraged to read [51]. As can be seen in Fig. 52, the spectral (LGL) method coupled 

with the VL scheme was the most efficient converging in 1,344 iterations, with a maximum CFL of 0.10. The 

MUSCL solution was very inefficient compared with the spectral method. The maximum allowable CFL 

number employed in the MUSCL solution was 0.10. Figure 53 compares the structured MUSCL solution of 2
nd

 

order and the spectral (LGL) method, all of them coupled with the LS scheme. Again, the LGL collocation 

points were chosen due to provide the best convergence for the LS scheme in the inviscid case and 5
th

 order of 

accuracy. In this case, the good convergence of the spectral (LGL) method was highlighted, converging in 523 

iterations, whereas the MUSCL solutions converged in more than 2,000 iterations. 

As conclusion, the correct implementation of the proposed spectral method on an unstructured context leant to 

an efficient high order scheme, converging in less than 1,500 iterations in the inviscid case, for the blunt body 

problem, when programmed coupled with the VL or LS schemes. The LGL variant of the spectral method was 

the most efficient in the studies performed by this author and ratified the fast convergence as expected. 

 

8.4. Quantitative Analysis 

In order to perform a quantitative analysis, the present reactive results are compared to the perfect gas solutions. 

The stagnation pressures at the blunt body nose, and at the double ellipse nose were evaluated assuming the 

perfect gas formulation. Such parameter calculated at this way is not the best comparison, but in the absence of 

practical reactive results, this constitutes the best available solution. 

To calculate the stagnation pressure at the nose of these two configurations, [52] presents in its B Appendix 

values of the normal shock wave properties ahead of the configuration. The ratio pr0/pr∞ is estimated as function 

of the normal Mach number and the stagnation pressure pr0 can be determined from this parameter. Hence, 

Table 4 gives the theoretical stagnation pressure values obtained for the two configurations at the initial-normal-

Mach number. The value of pr∞ is determined by the following expression: 

2

charchar

initial

a

pr
pr




,           (47) 

where, for example, for the blunt body case, prinitial = 687N/m
2
, char = 0.004kg/m

3
 and achar = 317.024m/s. 

Considering these values, one concludes that pr∞ = 1.709 (non-dimensional). Using the ratio obtained from [52], 

the stagnation pressure ahead of the configuration nose is estimated as 170.87 unities. Tables 5 (inviscid case) 

and 6 (viscous case) compare values of the stagnation pressure obtained from the simulations with the 

theoretical values and show the percentage errors. As can be seen, the best results in the inviscid case are 

provided by the CGR collocation points, with an error of 3.85%, when coupled with the VL scheme, for the 

blunt body problem; and again by the CGR collocation points, with an error of 0.09%, when coupled with the 

VL scheme, for the double ellipse problem. For the viscous case, the CGL collocation points, with an error of 

1.65%, coupled with the VL scheme, for the blunt body problem, was the best; and with the CGL collocation 

points, with an error of 2.17%, coupled with the VL scheme, for the double ellipse problem, was the best. 

As the hypersonic flow around the blunt body configuration was simulated with a zero value to the attack angle, 

a zero lift coefficient, due to geometry symmetry, is the expected value for this aerodynamic coefficient. Table 7 

presents an analysis of the lift aerodynamic coefficient, based only on pressure contribution, for both inviscid 

and viscous cases in this study. As can be observed, the best value to the lift coefficient in the inviscid case is 

obtained by the LGL collocation points, coupled with the LS scheme, for the blunt body problem. In the viscous 

case, the best value to the lift coefficient is obtained by the CGL collocation points, coupled with the LS 

scheme, for the blunt body problem. 

 

8.5. Computational Performance 

Tables 8 and 9 present the computational data of the VL and LS schemes for the blunt body, and for the double 

ellipse problems in both inviscid and viscous cases. It shows the CFL number and the number of iterations to 
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convergence for all studied cases in the current work. It can be verified that the best performance of the VL 

scheme in the inviscid case occurred when using the LGL collocation points, employing a CFL of 0.10, and 

converging in 1,344 iterations, in the blunt body problem, whereas in the viscous case occurred when using the 

LGL collocation points, employing a CFL of 0.08, and converging in 2,713 iterations, also in the blunt body 

problem. On the other hand, the best performance of the LS scheme in the inviscid case occurred when using the 

LGL collocation points, employing a CFL of 0.20, and converging in 523 iterations, in the blunt body problem, 

whereas in the viscous case occurred when using the LGR collocation points, employing a CFL of 0.20, and 

converging in 1,074 iterations, also in the blunt body problem. 

As final conclusion, it is possible to highlight that, for the blunt body problem, the VL scheme in the viscous 

case using CGL collocation points had the best performance in estimating the stagnation pressure, and the lift 

aerodynamic coefficient was best estimated by the LS scheme as using the CGL collocation points; and for the 

double ellipse problem, the VL scheme in the inviscid case using CGR collocation points had the best 

performance in estimating the stagnation pressure. Moreover, the best performance of the numerical schemes, 

for the 5
th

 order of accuracy, was due to the LS one, when using the LGL collocation points, employing a CFL 

of 0.20, and converging in 523 iterations, in the blunt body problem, whereas for the 8
th

 order of accuracy, the 

best performance of the numerical schemes was due to the LS one, when using the LGR collocation points, 

employing a CFL of 0.20, and converging in 1,074 iterations, also in the blunt body problem. 

Finally, to close this work, the computational cost of the numerical schemes using the several types of 

collocation points is presented in Tab. 10. For the inviscid case, the cheapest combination was the VL scheme 

using CGR collocation points with a cost of 0.0001115 sec/per-volume/per-iteration, whereas for the viscous 

case the cheapest was due to the LS scheme coupled with the CGR collocation points with a cost of 0.0002139 

sec/per-volume/per-iteration. 

Table 1: Values of xm and ym 

Interface xm ym 

m = 1 
1n2n xx 
 1n2n yy 

 
m = 2 

2n3n xx 
 2n3n yy 

 
m = 3 

3n1n xx 
 3n1n yy 

 

 

Table 2: Initial conditions to the blunt body problem 

Property Value 

Minitial 8.78 

initial 0.00326 kg/m
3
 

prinitial 687 Pa 

Uinitial 4,776 m/s 

Tinitial 694 K 

Altitude 40,000 m 

cN 10
-9

 

cO 0.07955 

cO2 0.13400 

cNO 0.05090 

Lchar 2.0 m 

Rechar 2.386x10
6
 

 

Table 3: Initial conditions to the double ellipse problem 

Property Value 

Minitial 15.0 

initial 0.00922 kg/m
3
 

prinitial 794 Pa 
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Uinitial 5,208 m/s 

Tinitial 300 K 

Altitude 50,000 m 

cN 10
-9

 

cO 0.07955 

cO2 0.13400 

cNO 0.05090 

Lchar 5.0 m 

Rechar 1.574x10
6
 

 

Table 4: Values of theoretical stagnation pressure 

Problem: Minitial: pr0/pr∞: pr∞: pr0 (Theoretical): 

Blunt body 8.78 99.98 1.709 170.87 

Double ellipse 15.00 290.20 7.109 2,063.03 

 

Table 5: Values of stagnation pressure and respective errors (Inviscid case/5
th

 Order) 

Physical Problem: Scheme: Spectral Method: pr0: 

(Numerical) 

Error: 

 VL
(1)

 Chebyshev-Gauss-Radau 164.29 3.85 

 LS
(2)

 Chebyshev-Gauss-Radau 179.14 4.84 

 VL Chebyshev-Gauss-Lobatto 143.02 16.30 

Blunt Body LS Chebyshev-Gauss-Lobatto 162.73 4.76 

(pr0 = 170.87) VL Legendre-Gauss-Radau 111.57 34.70 

 LS Legendre-Gauss-Radau 141.13 17.41 

 VL Legendre-Gauss-Lobatto 99.62 41.70 

 LS Legendre-Gauss-Lobatto 133.95 21.61 

 VL Chebyshev-Gauss-Radau 2,061.23 0.09 

 LS Chebyshev-Gauss-Radau - - 

 VL Chebyshev-Gauss-Lobatto 1,842.56 10.69 

Double Ellipse LS Chebyshev-Gauss-Lobatto - - 

(pr0 = 2,063.03) VL Legendre-Gauss-Radau 1,576.21 23.60 

 LS Legendre-Gauss-Radau - - 

 VL Legendre-Gauss-Lobatto 1,483.22 28.10 

 LS Legendre-Gauss-Lobatto - - 

(1): Van Leer; (2): Liou and Steffen Jr. 

 

Table 6: Values of stagnation pressure and respective errors (Viscous case/8
th

 Order) 

Physical Problem: Scheme: Spectral Method: pr0: 

(Numerical) 

Error: 

 VL Chebyshev-Gauss-Radau - - 

 LS Chebyshev-Gauss-Radau 185.91 8.80 

 VL Chebyshev-Gauss-Lobatto 173.69 1.65 

Blunt Body LS Chebyshev-Gauss-Lobatto 177.21 3.71 

(pr0 = 170.87) VL Legendre-Gauss-Radau 136.57 20.07 

 LS Legendre-Gauss-Radau 145.20 15.02 

 VL Legendre-Gauss-Lobatto 137.41 19.58 

 LS Legendre-Gauss-Lobatto 146.92 14.02 

 VL Chebyshev-Gauss-Radau - - 

 LS Chebyshev-Gauss-Radau - - 
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 VL Chebyshev-Gauss-Lobatto 2,018.33 2.17 

Double Ellipse LS Chebyshev-Gauss-Lobatto - - 

(pr0 = 2,063.03) VL Legendre-Gauss-Radau 1,591.21 22.87 

 LS Legendre-Gauss-Radau - - 

 VL Legendre-Gauss-Lobatto 1,602.16 22.34 

 LS Legendre-Gauss-Lobatto - - 

 

Table 7: Values of the lift coefficient for the blunt body problem 

Type of Flow: Scheme: Spectral Method: cL: 

 VL Chebyshev-Gauss-Radau -5.5503x10
-2

 

 LS Chebyshev-Gauss-Radau -2.7735x10
-2

 

 VL Chebyshev-Gauss-Lobatto -4.4128x10
-2

 

Inviscid case LS Chebyshev-Gauss-Lobatto -2.2701x10
-2

 

(5
th

 order) VL Legendre-Gauss-Radau -9.3822x10
-2

 

 LS Legendre-Gauss-Radau -1.5975x10
-2

 

 VL Legendre-Gauss-Lobatto -8.8020x10
-2

 

 LS Legendre-Gauss-Lobatto -1.4321x10
-2

 

 VL Chebyshev-Gauss-Radau - 

 LS Chebyshev-Gauss-Radau -4.4204x10
-3

 

 VL Chebyshev-Gauss-Lobatto -2.3363x10
-2

 

Viscous case LS Chebyshev-Gauss-Lobatto 5.6692x10
-4

 

(8
th

 order) VL Legendre-Gauss-Radau -4.2447x10
-2

 

 LS Legendre-Gauss-Radau 3.6571x10
-3

 

 VL Legendre-Gauss-Lobatto -4.2857x10
-2

 

 LS Legendre-Gauss-Lobatto 3.5594x10
-3

 

 

Table 8: Computational data (Inviscid case/5
th

 Order) 

Physical Problem: Scheme: Spectral Method: CFL: Iterations: 

 VL Chebyshev-Gauss-Radau 0.10 2,483 

 LS Chebyshev-Gauss-Radau 0.10 2,646 

 VL Chebyshev-Gauss-Lobatto 0.10 1,841 

Blunt Body LS Chebyshev-Gauss-Lobatto 0.40 556 

 VL Legendre-Gauss-Radau 0.10 1,426 

 LS Legendre-Gauss-Radau 0.20 623 

 VL Legendre-Gauss-Lobatto 0.10 1,344 

 LS Legendre-Gauss-Lobatto 0.20 523 

 VL Chebyshev-Gauss-Radau 0.10 4,538 

 LS Chebyshev-Gauss-Radau - - 

 VL Chebyshev-Gauss-Lobatto 0.10 3,283 

Double Ellipse LS Chebyshev-Gauss-Lobatto - - 

 VL Legendre-Gauss-Radau 0.10 2,236 

 LS Legendre-Gauss-Radau - - 

 VL Legendre-Gauss-Lobatto 0.10 1,897 

 LS Legendre-Gauss-Lobatto - - 

 

Table 9: Computational data (Viscous case/8
th

 Order) 

Physical Problem: Scheme: Spectral Method: CFL:  Iterations: 

 VL Chebyshev-Gauss-Radau - - 

 LS Chebyshev-Gauss-Radau 0.10 4,963 
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 VL Chebyshev-Gauss-Lobatto 0.10 3,879 

Blunt Body LS Chebyshev-Gauss-Lobatto 0.30 1,818 

 VL Legendre-Gauss-Radau 0.08 2,750 

 LS Legendre-Gauss-Radau 0.20 1,074 

 VL Legendre-Gauss-Lobatto 0.08 2,713 

 LS Legendre-Gauss-Lobatto 0.20 1,093 

 VL Chebyshev-Gauss-Radau - - 

 LS Chebyshev-Gauss-Radau - - 

 VL Chebyshev-Gauss-Lobatto 0.08 7,395 

Double Ellipse LS Chebyshev-Gauss-Lobatto - - 

 VL Legendre-Gauss-Radau 0.06 4,694 

 LS Legendre-Gauss-Radau - - 

 VL Legendre-Gauss-Lobatto 0.06 4,904 

 LS Legendre-Gauss-Lobatto - - 

 

Table 10: Computational cost of spectral variants 

Order of 

Accuracy: 

Scheme: Spectral Method: Computational Cost 

(seconds/volumes/iterations): 

 VL Chebyshev-Gauss-Radau 0.0001115 

 LS Chebyshev-Gauss-Radau 0.0001233 

 VL Chebyshev-Gauss-Lobatto 0.0001365 

5
th

 Order LS Chebyshev-Gauss-Lobatto 0.0001359 

(Inviscid case) VL Legendre-Gauss-Radau 0.0001355 

 LS Legendre-Gauss-Radau 0.0001354 

 VL Legendre-Gauss-Lobatto 0.0001348 

 LS Legendre-Gauss-Lobatto 0.0001347 

 VL Chebyshev-Gauss-Radau - 

 LS Chebyshev-Gauss-Radau 0.0002139 

 VL Chebyshev-Gauss-Lobatto 0.0002743 

8
th

 Order LS Chebyshev-Gauss-Lobatto 0.0002741 

(Viscous case) VL Legendre-Gauss-Radau 0.0002764 

 LS Legendre-Gauss-Radau 0.0002761 

 VL Legendre-Gauss-Lobatto 0.0002769 

 LS Legendre-Gauss-Lobatto 0.0002765 

 

 
Figure 1: Schematic of a cell and its neighbors, nodes and flux interfaces 
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Figure 2: Blunt body configuration 

 

Figure 3: Blunt body inviscid mesh 

Figure 4: Blunt body viscous mesh 

 

 

 

Figure 5: Double ellipse configuration 

 

Figure 6: Double ellipse inviscid mesh. 

 

Figure 7: Double ellipse viscous mesh 
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Blunt Body Inviscid Solutions 

Figure 8: Pressure contours (CGR-VL) Figure 9: Pressure contours (CGR-LS) 

Figure 10: Translational/rotational temperature 

contours (CGR-VL) 

Figure 11: Translational/rotational temperature 

contours (CGR-LS) 

 

 

Figure 12: Pressure contours (CGL-VL) 

 

Figure 13: Pressure contours (CGL-LS) 
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Figure 14: Translational/rotational temperature 

contours (CGL-VL) 

Figure 15: Translational/rotational temperature 

contours (CGL-LS) 

Figure 16: Pressure contours (LGR-VL) Figure 17: Pressure contours (LGR-LS) 

 

Figure 18: Translational/rotational temperature 

contours (LGR-VL) 

 

Figure 19: Translational/rotational temperature 

contours (LGR-LS) 
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Figure 20: Pressure contours (LGL-VL) Figure 21: Pressure contours (LGL-LS) 

Figure 22: Translational/rotational temperature 

contours (LGL-VL) 

Figure 23: Translational/rotational temperature 

contours (LGL-LS) 

Blunt Body Viscous Solutions 

Figure 24: Pressure contours (CGR-LS) Figure 25: Translational/rotational temperature 

contours (CGR-LS) 
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Figure 26: Pressure contours (CGL-VL) Figure 27: Pressure contours (CGL-LS) 

Figure 28: Translational/rotational temperature 

contours (CGL-VL) 

Figure 29: Translational/rotational temperature 

contours (CGL-LS) 

 

Figure 30: Pressure contours (LGR-VL) 

 

Figure 31: Pressure contours (LGR-LS) 
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Figure 32: Translational/rotational temperature 

contours (LGR-VL) 

Figure 33: Translational/rotational temperature 

contours (LGR-LS) 

Figure 34: Pressure contours (LGL-VL) Figure 35: Pressure contours (LGL-LS) 

Figure 36: Translational/rotational temperature 

contours (LGL-VL) 

Figure 37: Translational/rotational temperature 

contours (LGL-LS) 
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Double Ellipse Inviscid Solutions 

Figure 38: Pressure contours (CGR-VL) Figure 39: Translational/rotational temperature 

contours (CGR-VL) 

Figure 40: Pressure contours (CGL-VL) Figure 41: Translational/rotational temperature 

contours (CGL-VL) 

Figure 42: Pressure contours (LGR-VL) Figure 43: Translational/rotational temperature 

contours (LGR-VL) 
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Figure 44: Pressure contours (LGL-VL) Figure 45: Translational/rotational temperature 

contours (LGL-LS) 

Double Ellipse Viscous Solutions 

Figure 46: Pressure contours (CGL-VL) Figure 47: Translational/rotational temperature 

contours (CGL-VL) 

Figure 48: Pressure contours (LGR-VL) Figure 49: Translational/rotational temperature 

contours (LGR-VL) 
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Figure 50: Pressure contours (LGL-VL) Figure 51: Translational/rotational temperature 

contours (LGL-VL) 

Figure 52: Convergence histories comparison (VL) Figure 53: Convergence histories comparison (LS) 

 

9. Conclusions 

In the present work, a study involving a spectral method to solve the reactive Euler and Navier-Stokes equations 

was performed. The Euler and Navier-Stokes equations, in conservative and finite volume contexts, employing 

unstructured spatial discretization, on a condition of thermochemical non-equilibrium, were studied. The 

spectral method presented in this work employed collocation points and variants of Chebyshev and Legendre 

interpolation functions were analyzed. High-order studies were accomplished to verify the accuracy of the 

spectral method. The “hot gas” hypersonic flows around a blunt body, and around a double ellipse in two-

dimensions were simulated. The [34-35] flux vector splitting algorithms were applied to execute the numerical 

experiments. The Euler backward integration method was employed to march the schemes in time. The 

convergence process was accelerated to steady state condition through a spatially variable time step procedure, 

which had proved effective gains in terms of computational acceleration (see [36-37]). The reactive simulations 

involved Earth atmosphere chemical model of five species and seventeen reactions, based on the [38] model. N, 

O, N2, O2, and NO species were used to accomplish the numerical comparisons. The results have indicated that 

the Chebyshev collocation point variants are more accurate in terms of stagnation pressure estimations, with 

errors inferior to 17.00% in the worst case, and in terms of lift coefficient estimations. Moreover, the Legendre 

collocation point variants are more computationally efficient. 
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As final conclusion, it is possible to highlight that, for the blunt body problem, the [34] scheme in the viscous 

case using Chebyshev-Gauss-Lobatto collocation points had the best performance in estimating the stagnation 

pressure, and the lift aerodynamic coefficient was best estimated by the [35] scheme as using the Chebyshev-

Gauss-Lobatto collocation points; and for the double ellipse problem, the [34] scheme in the inviscid case using 

Chebyshev-Gauss-Radau collocation points had the best performance in estimating the stagnation pressure. 

Moreover, the best performance of the numerical schemes, for the 5
th

 order of accuracy, was due to the [35] one, 

when using the Legendre-Gauss-Lobatto collocation points, employing a CFL of 0.20, and converging in 523 

iterations, in the blunt body problem, whereas for the 8
th

 order of accuracy, the best performance of the 

numerical schemes was due to the [35] one, when using the Legendre-Gauss-Radau collocation points, 

employing a CFL of 0.20, and converging in 1,074 iterations, also in the blunt body problem. 

Finally, to close this work, the computational cost of the numerical schemes using the several types of 

collocation points was presented in Tab. 10. For the inviscid case, the cheapest combination was the [34] 

scheme using Chebyshev-Gauss-Radau collocation points with a cost of 0.0001115 sec/per-volume/per-

iteration, whereas for the viscous case the cheapest was due to the [35] scheme coupled with the Chebyshev-

Gauss-Radau collocation points with a cost of 0.0002139 sec/per-volume/per-iteration. 

 

10. Motivation and Novelty 

The motivation to study spectral methods applied to reentry flow was enormous because of some papers in the 

CFD literature report for such methods as the state of art of high order resolution. The intention of this paper 

was to propose a different spectral method that was of easy implementation and conformed about author’s ideas 

of treating the governing equations of fluid flow. The formulation presented here is for a thermochemical non-

equilibrium condition and a two-temperature model. The comparisons involving the residual histories of 

MUSCL and of spectral method were very important to confirm that our numerical implementation was correct 

and also the potentiality of the method. Two physical problems were also a challenge that we accepted to lead 

with. The results with good accuracy represent a motivation to extend the present formulation to more species 

and different chemical conditions. 

The novelty of the present study was to implement this different spectral method to treat thermochemical non-

equilibrium reentry flows and to formulate the appropriate equations for accepting this method. The robustness 

and convergence features of this spectral method are very impressive. While the first author had to use CFL 

numbers of order 0.10 for his MUSCL explicit method, CFL numbers as great as 0.40 for his explicit spectral 

method were of common use. The proposed spectral method is different from the standard spectral ones on a 

sense that in the latter, the differential equations and the solution method are discretized with spectral tools, 

whereas in the former, only the vector of conserved variables and the convective fluxes should be discretized 

according to the spectral tools. The result is a robust and fast solver to treat the fluid-dynamic of reentry flows. 

 

11. Future Works 

For the future, the author should extend the present formulation for a seven species chemical model under the 

condition of thermochemical non-equilibrium in two-dimensions. After that, he should extend to eleven species 

in two-dimensions until to arrive to the desired three-dimensional studies. Finally, its implementation with 

turbulence effects and magnetic field actuation, that the first author consider as the state of the art project, is an 

objective to be reached, in both, two- and three-dimensions. 
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