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Abstract We propose a way to perform analytic integration of the Van der Pol unforced equation, in order to 

provide the Cartesian algebraic equation of the integral curve representing the Van der Pol limiting cycle. The 

method provides exact analytic solutions to the Van der Pol equation in the small control parameter (  ) 

approximation. A plot comparison with the results obtained with the numerical Runge-Kutta method is also 

examined. The present approach exhibits the advantage of dealing with the only geometry of the integral curve 

avoiding to involve kinematics, i.e., time dependence of the co-ordinate variable during motion. 
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1. Introduction 

The search for exact analytic solutions to the Van der Pol unforced oscillator and the investigation on the related 

limit cycle solution (for an historical overview see, i.e. [1]) was attempted by several authors starting from the 

original paper of Balthasar Van der Pol [2] until it was “shown that by a series of variable transformations the 

Van der Pol oscillator can be exactly reduced to Abel’s equations of the second kind. The absence of exact 

analytic solutions in terms of known (tabulated) functions of the reduced equations leads to the conclusion that 

there are no exact solutions of the Van der Pol oscillator in terms of known (tabulated) functions” [3]. 

Therefore more and more attention was concentrated on numerical methods in order to obtain affordable 

solutions (a comparison of the efficiency of different numerical methods has been offered in [4]) and on 

approximated analytical ways based either on linearization (see, e.g. [5]) or on perturbative approaches or on 

Adomian decomposition [6]. Generally all those approaches are involved in studying the time dependent 

solutions to the original second order evolutionary Van der Pol equation, written in the equivalent form of a 

system of two first order o.d.e. Here we intend to propose an alternative way to attack the analytical problem 

concentrating ourselves on the Cartesian equation of the phase path solution to the non-evolutionary equation of 

integral curves arising eliminating the time parameter from the autonomous evolutionary o.d.e. Our approach 

will provide exact analytical solutions to the approximated integral curve equation, when the control parameter 

  is small respect to unity ( 1 ). We will be able to integrate solutions up to the third order of   power 

expansion, employing the symbolic manipulation package Xmaxima (see Appendix). 

A graphical comparison with the numeric method by Runge-Kutta shows a very high level of agreement even in 

correspondence to the upper limit value of the range 1= . 

2. The Van der Pol unforced oscillator 

We consider the non-linear second order o.d.e. governing the unforced Van der Pol oscillator: 

 0,=)(1 2 xxxx     (1) 

 where: 

 ),(txx   (2) 
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is the unknown real function of time Rt , differentiable at least twice on the time real axis and   is a 

(generally positive) constant real control parameter. 

As usual we reduce the second order eq (1) to an equivalent system of two first order equations:  

 
.)(1=

,=
2 xyxy

yx




 (3) 

The system (3), being autonomous, may be replaced in non-singular points ( 0y ) by the equation of integral 

curves: 

 .)(1=)(1= 22 xyxyy
y

x
xy    (4) 

The solutions to (4):  

 ),(xyy   (5) 

characterize the Cartesian equations of the integral curves representing the solution to the system (3) in the 

phase plane xy , prime denoting the derivative respect to x . We are unable to integrate (4) analytically for any 

value of  . So in order to proceed analytically, we are led to involve a power series expansion approximation 

respect to the control parameter  . 

 

3. Power expansion respect to the parameter   

In the present section we will look for analytic solutions to eq (4) which exhibit the form of a series expansion 

into powers of the control parameter  :  

 .)(=)(
0=

k

k

k

xhxf 


 (6) 

In the assumption that   is enough less than unity ( 1 ) the powers 
k  decrease as k  increases and we 

may drop higher order contributions according to the desired order of approximation n  regardless of 

assumptions on the series convergence. So we consider the Taylor polynomial: 

  ,)()()()(=)( 2

210][

n

nn xhxhxhxhxf     (7) 

 which is to be introduced into the differential equation: 

 0.=)()(1
)(

)(),( 2 xxfx
xd

xfd
xfxp    (8) 

Further we consider the Taylor expansion (polynomial) of ),( xp  at order n , in the neighborhood of 0= : 

 ,,0)(
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1
,0)(

2

1
,0)(,0)(=),( 2

2

2

(][

n

n

n

n x
p

n
x

p
x

p
xpxp 























   (9) 

which will be required to be zero. We will proceed stepwise searching for analytical solutions at each stage of 

the expansion, until we are able to proceed analytically. 

3.1. Order zero (
0 ) 

At order zero we have to consider simply:  

 ),(=)( 0[0] xhxf  (10) 

which is to be introduced into:  

 ,0),(),([0] xpxp   (11) 

leading to the equation of the integral curves of the unforced harmonic oscillator:  

 0,=]
2

)(
[0=

)(
)(

22

[0][0]

[0]

xxh

xd

d
x

xd

xhd
xh


  (12) 

the solution to which provides the Cartesian equations of the two branches: 
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 ,=)(=)( 22)(

[0]

22)(

[0] xAxfxAxh  
 (13) 

of the circular integral curve of radius || A , where A  is constant depending on the boundary conditions (see 

fig. 1). 

 

Figure  1: Analytic solution of the integral curve at order 0=n  when 2|=| A  

3.2. Order one (
1 ) 

At the first order of approximation we need to consider the linear function:  

 ,)()(=)( [1][0][1] xhxhxf   (14) 

where )([0] xh  is now provided by the previous result (13-a). 

Then we have to test the functions, related to two branches of the integral curve:  

 ,)(=)( )(

[1]

22)(

[1] xhxAxf    (15) 

 where the )()(

[1] xh 
 are to be determined imposing that the Taylor polynomial: 

 ,,0)(,0)(=),([1] 


 x
p

xpxp



  (16) 

 is equal to zero when non-linear powers of   are neglected. 

Since at order zero the harmonic oscillator solution 
)(

[0]

h , given by (13) implies that ,0)(xp  becomes null, it 

remains to impose that the coefficient of the linear term   vanishes. Calculations lead to the differential 

equation for the unknown coefficient )()(

[1] xh 
: 

  ).(1)(=)(
)(

)( 222)(

[1]

)(

[1]22 xxAxhx
xd

xhd
xA  



 (17) 

The solution to which is given by: 

 ,)]42()(sin
)(4

[
8

1
=)(

22

)(
321

22

22
)(

[1]

xA

C
xxAx

A

x

xA

AA
xh






 


 (18) 

where 
)(C  are integration constants. Remarkably the previous result, when 4=2A  and 0=)(C , becomes 

simply: 

  .
4

=)()(
3

)(

[1]

)(

[1]

x
xxhxh  

 (19) 
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Then we obtain the analytic solution at the first order approximation respect to   of the Van der Pol limit cycle 

(see fig. 2): 

 .)
4

(4=)(
3

2)(

[1] 
x

xxxf 
 (20) 

 
  

Figure 2: a) Analytic solution of the integral curve at order 1=n  when .5=2,|=| A ; b) Comparison of 

the 
st1  order analytic result with Runge-Kutta method 

   

Moreover it happens that, at this law level of approximation, when || A  is near 2  some branches of the phase 

trajectories appear to approach the limit cycle (see fig. 3), even if they escape elsewhere, since a more accurate 

order of approximations would be required for a true asymptotic behavior. 

 

Figure 3: Analytic solutions of the integral curves at order 1=n  when .5=|,2=| A  (limit cycle) and 

branches of the phase trajectories in correspondence to 31.3,.58,=7365,2.8,2.4,1.|=| CA  (from top 

to bottom) 

3.3. Order two (
2 ) 

At the second order of approximation we now consider:  

 ,)()()(=)( 2

[2][1][0][2]  xhxhxhxf   (21) 
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where )(),( [1][0] xhxh  are known being provided respectively by (13) and (18). 

It follows that:  

 



  )(sin

)(4
[
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1
=)( 1

22

22
22)(

[2]
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xAxf  (22) 

 ,)(])42( 2)(

[2]
22

)(
32  xh
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C
xxAx 






  

where )([2] xh  is to be determined requiring that the Taylor quadratic polynomial:  

 ,,0)(
2

1
,0)(,0)(=),( 2
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([2] 





 x
p

x
p

xpxp








  (23) 

becomes null when cubic powers of   and of higher order are neglected. 

Substitution of (22) into (23) leads to an extremely long and complicated o.d.e., i.e.:  

 
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   2162132)(4)( )(sin[16])(sin8[}6432
A

x
xA

A

x
xxxCxC  
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x
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x
xC  

 0.=][6416164]1624 2)(579235 xCxxxAxx   

Remarkably the latter equation becomes dramatically simpler in correspondence to the parameter choices: 

 0,=2,|=| )(CA  (25) 

which identifies the Van der Pol limit cycle, resulting simply:  

 0.=4
164

)()(
2

3

2

)(

[2]

)(

[2]
x

x

x

xhx

xd

xhd




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 (26) 

Integration yields now to:  

 .
496

326
=)(

2

46
)(

[2]

x

xx
xh






 (27) 

Therefore we obtain the second order approximation for the Van der Pol limit cycle equation (see fig. 4):  

 .
496

326
)

4
(4=)( 2

2

463
2)(

[2] 
x

xxx
xxxf






 (28) 

 

We point out that even in the extreme value 1=  there is a fine agreement between our analytic result and the 

Runge-Kutta numerical method (see fig. 5). 

 

3.4. Order three (
3 ) 

Proceeding further we examine now what happens at the third order of approximation:  
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 ,)()()()(=)( 3

[3]

2

[2][1][0][3]  xhxhxhxhxf   (29) 

where )(,)(),( [2][1][0] xhxhxh  are known from the previous results. We limit ourselves to analyze the solution 

corresponding to the Van der Pol limit cycle, which is characterized by the parameter values 0=2,|=| )(CA . 

According to (28) we know have: 

 .)(
496

326
)

4
(4=)( 3

[3]
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2)(

[3]  xh
x

xxx
xxxf 
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


 (30) 

The unknown function )([3] xh  will now be determined requiring that the cubic Taylor polynomial: 

 ,,0)(
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1
,0)(
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1
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





  (31) 

 vanishes in correspondence to the solution )()(

[3] xf 
, if the powers 

4  and of higher order are dropped. 

 

Figure  4: a) Analytic solution of the integral curve at order 2=n  when 5.=2,|=| A   b) 

Comparison of the 
nd2  order analytic result with Runge-Kutta method 

 

Figure 5: a) Analytic solution of the integral curve at order 2=n  when 1=2,|=| A   

 b) Comparison of the 
nd2  order result with Runge-Kutta method 
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Figure 6: a) Analytic solution of the integral curve at order 3=n  when .5=2,|=| A   b) Comparison of 

the 
nd3  order analytic result with Runge-Kutta method 

 

Figure 7: a) Analytic solution of the integral curve at order 3=n  when 1=2,|=| A   b) Comparison of the 

nd3  order analytic result with Runge-Kutta method 

Substitution of (30) into (31) yields:  

 0,=16249)(96
)(

384)(96 2468)(

[3]

)(

[3]2 xxxxxhx
xd

xhd
x  



 (32) 

the solution of which results to be:  

 .
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1234223
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cxxxx
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
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




  (33) 

The third order approximation fo the Van der Pol cycle function is obtained setting 0=)(c  (see fig. 7 and fig. 

7):  
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At higher orders the o.d.e. becomes to heavy to be solved analytically even running a symbolic manipulator on a 

computing machine. 

 

4. Conclusion 

We presented an analytic approach to obtain solutions to the equation of integral curves in terms of polynomials 

of powers of the control parameter  . The advantage of our method, in order to simplify the problem, is that of 

avoiding time dependence of the unknown functions, pointing directly to the Cartesian equation of the 

trajectories, being the system of the ordinary differential equations involved, autonomous. We were able to 

obtain analytical solutions up to the third order (
3 ) of approximation, which exhibit a good agreement with the 

numerical results provided by the Runge-Kutta method. 

 

APPENDIX  

Xmaxima List of commands 

kill(all)$  

assume(A>0, A^2-x^2>0)$ 

h[1](x,A,c1):=(-asin(x/A)*A^4+sqrt(A^{2}-x^{2})*(x*A^2-2*x^3+4*x)+ 

4*asin(x/A)*A^2+8*c1)/(8*sqrt(A^{2}-x^{2})$ 

f[2](x,A):=h[0](x,A):=sqrt(A^2-x^2)$ 

 g[0](x,A):=h[0](x,A)$ 

pp[2](x,A):=f[2](x,A)+g[0](x,A)$ 

pm[2](x,A):=f[2](x,A)-g[0](x,A)$ 

qp[2](x,A):=pp[2](x,A)*diff(pp[2](x,A),x)-qm[2](x,A):=pm[2](x,A)*diff(pm[2](x,A),x)-

Tp[2](x,A):=taylor(qp[2](x,A),Tm[2](x,A):=taylor(qm[2],Cp[2](x,A):=radcan(coeff(Tp[2](x,A),Cm[2](x,A):=ra

dcan(coeff(Tm[2](x,A),radcan(ode2(Cp[2](x,A)=0,h[2](x,A),x))$ 

ratsimp(Cp[2](x,2))$ 

 radcan(ode2(Cp[2](x,2)=0,h[2](x,2),x))$ 

radcan(integrate(sqrt(2-x)*sqrt(x-2)*(x^4+2*x^3),x))$ 

ratsimp(Cp[2](x,-2))$ 

h[2](x,A):=ratsimp(((x^6-6*x^4+32)/6)/(16*sqrt(4-x^2)))$ 

set_plot_option(['plot_format, 'xmaxima])$ 

wxplot_size:[800,600]$ 

results:rk(wxplot2d([pp[2](x,2),pm[2](x,2)], [x,-3,3],[y,-3,3],[yx_ratio,1],[axes,solid], [box,false][legend,false], 

[label,["X",3.1,0.0],["Y",.2,2.9]],[style,[lines,3]])$ 

 wxplot2d([[discrete,-results],[discrete,results]], [x,-3,3],[y,-3,3],[yx_ratio,1], [box,false], [legend,false], 

[label,["X",3.1,0.0],["Y",.2,3.9]], [point_type,times],[style,[points,5]])$ 

wxplot2d([pp[2](x,2),pm[2](x,2),[discrete,-results],[discrete,results]], [x,-3,3], [y,-

3,3],[yx_ratio,1],[axes,solid],[box,false],[legend,false], [label,["X",3.1,0.0], ["Y",.2,3.9]],[point_type,times], 

[style,[lines,3],[lines,3],[points,5],[points,5]])$ 

results:rk(wxplot2d([pp[2](x,2),pm[2](x,2)],[x,-3,3],[y,-3,3],[yx_ratio,1],[axes,solid], [box,false],[legend,false] 

[label,["X",3.1,0.0],["Y",.2,2.9]],[style,[lines,3]])$ 

wxplot2d([[discrete,-results],[discrete,results]],[x,-3,3],[y,-3,3],[yx_ratio,1], [axes,solid],[box,false], 

[legend,false], [label,["X",3.1,0.0],["Y",.2,3.9]], [point_type,times],[style,[points,5]])$ 

wxplot2d([pp[2](x,2),pm[2](x,2),[discrete,-results],[discrete,results]],[x,-3,3], [y,-3,3],[yx_ratio,1], 

[axes,solid],[box,false],[legend,false],[label,["X",3.1,0.0], ["Y",.2,3.9]],[point_type,times], 

[style,[lines,3],[lines,3],[points,5],[points,5]])$  
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