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1. Introduction and preliminaries 

In this section, we give the necessary information and preliminaries which shall need in our investigation. 

Let A  be the class of analytic functions  f z  in the open unit disk  :  1U z z   , normalized by 

   0 0 0 1f f     of the form 

  2 3

2 3

2

,  n n

n n n

n

f z z a z a z a z z a z a




          .                 (1.1) 

It is well-known that an analytic function :f   is said to be univalent if the following condition is 

satisfied:    1 2 1 2 if z z f z f z   or    1 2 1 2 if f z f z z z  . We denote by S  the subclass of A  

consisting of functions which are also univalent in U . 

Let T  denote the subclass of all functions  f z  in A  of the form 

  2 3

2 3

2

,  0n n

n n n

n

f z z a z a z a z z a z a




        .                   (1.2) 

We will also denote by    *  and S C   the subclasses of S  that are, respectively, starlike and convex of 

order     0,1   in the open unit disk U . By definition, we have (see for details, [5, 6], also [15])     

 
 

 
 * :  Re ,   ,  0,1

zf z
S f A z U

f z
  

   
       
   

, 

and  
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 :  Re 1 ,   ,  0,1

zf z
C f A z U

f z
  

   
           

. 

Let’s        * *  and TS S T TC C T       . 

Interesting generalization of the functions classes    *  and S C  , are classes  * ,S    and  ,C   , 

which defined by 

 
 

     
 * , :  Re ,  ,  , 0,1

1

zf z
S f A z U

zf z f z
    

 

   
            

 

and 

 
   

   
 

z
, :  Re ,  ,  , 0,1

f zf z
C f A z U

f z zf z
    



    
           

, 

respectively.  

We will denote    * *, ,TS S T      and    , ,TC C T     . The classes  * ,TS    

and  ,TC   were extensively studied by Altintaş and Owa [3] and certain conditions for hypergeometric 

functions and generalized Bessel functions for these classes were studied Mosutafa [8] and Porwal and Dixit 

[12].  

Inspired by the works mentioned above, we introduce a unification of the functions classes  * ,S    and 

 ,C    defined as follows 

Definition 1.1. A function f A  given by (1.1) is said to be in the class 

   * , ; ,  0,  0,  0,1S C          if the following condition is satisfied 

   

             

2

Re ,
1 1

zf z z f z
z U

z f z zf z zf z f z




    

  
  

        

. 

Note that for 0   and 1  ,    * *, ;0 , ,  0,  0S C S         and  * , ;1S C     

 , ,C    0,  0   , respectively. We will also denote    * *, ; , ;TS C S C T        

For the custom values of the parameters, the above-defined classes include several simple subclasses. Here are 

some of these special cases as follows: 

1) For 0  , we get the subclass      * *, ;0 , ,  , 0,1TS C TS        consisting     

    of the functions f T  satisfying the following condition 

 

     
Re ,  

1

zf z
z U

zf z f z


 

 
      

, 

     which was studied by Altıntaş (see [1,2 and 4]); 

2)  For 0  , 0  , we obtain the classes    * ,0;0 *S C S  ,     * *,0;0TS C TS  ,  

      0,1  . These classes are well-known starlike functions of order   and was studied    

     by several researchers (see for example Silverman [13]);   
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3) For 0  , 1  , we get the classes    * ,0;1S C C  ,    * ,0;1TS C TC  ,  0,1  . 

These classes are well-known convex functions of order   and were studied by several researchers (see for 

example Silverman [13]);   

4) For 1  , we get the class      * , ;1 , ,  , 0,1TS C TC        consisting of  

     the functions f T  satisfying the following condition  

   

   
Re ,

f z zf z
z U

f z zf z




  
     

, 

     which was studied by Altıntaş [3]; 

5) For 0  , we obtain the classes    * *,0; , ;1S C S C    ,    * *,0; , ;1TS C TS C    , 

   0,1 ,  0,1    consisting of the functions f A  satisfying the following condition 

   

     

2

Re ,
1

zf z z f z
z U

zf z f z




 

  
      

, 

     which was studied by Mustafa [9, when 1  ] and the references cited in of them. 

The object of the present paper is to examine characteristic properties of the classes  * , ;S C     and 

 * , ;TS C    ,  , 0,1   ,  0,1  . Coefficient bounds for the functions belonging to these classes 

are also determined. We also prove several distortion theorems involving certain operators of fractional calculus 

for the functions in the class  * , ;TS C    ,  , 0,1   ,  0,1  .  

 

2. Coefficient bounds for the classes  * , ;S C     and  * , ;TS C     

In this section, we will examine some characteristic properties of the subclasses  * , ;S C     and 

 * , ;TS C     of analytic functions in the open unit disk. Also, we give coefficient estimates for the 

functions belonging to these subclasses. 

A sufficient condition for the functions in the class  * , ;S C     is given by the following theorem.  

Theorem 2.1. Let f A . Then, the function  f z  belongs to the class  * , ;S C    ,  , 0,1 ,    

 0,1   if the following condition is satisfied    

     
2

1 1 1 1n

n

n n n a   




       .                              (2.1) 

The result is sharp for the functions 

 
     

1
,  ,  2,3,... .

1 1 1

n

nf z z z z U n
n n n



  


   

    
        (2.2) 

Proof. From the Definition 1.1, a function  * , ;f S C    ,    , 0,1 ,  0,1     if and only if  

   

             

2

Re
1 1

zf z z f z

z f z zf z zf z f z




    

  
 

        

.             (2.3) 

We can easily show that condition (2.3) holds true if  
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2

1 1
1 1

zf z z f z

z f z zf z zf z f z




    

 
  

      
.            (2.4) 

Now, let us show that this condition is satisfied under hypothesis (2.1) of the theorem. 

If we take into account the expansion series (1.1) of the function  f z , we can write 

   

             

    

     

    

     

2

2 2

2 2

1
1 1

1 1 1 1 1 1 ) 1 1 )

.

1 1 1 1 1 1 1 1 1

n

n n

n n

n

n n

n n

zf z z f z

z f z zf z zf z f z

n n a z n n a

z n n a z n n a



    

   

   

 

 

 

 

 


      

       

 

         

 

 

 

As you can see the inequality (2.4) holds true if  

    

     

2

2

1 1 ) 1 1 )

1

1 1 1 1 1

n

n

n

n

n n a

n n a

 



 









   

 

    




, 

which is equivalent to 

            
2 2

1 1 1 1 1 1 1 1 1 1n n

n n

n n a n n a    
 

 

 
           

 
  . 

But, this is the same of the condition (2.1). 

Moreover, we can easily see that the inequality (2.1) is sharp for the functions  nf z  given by (2.2).  

Thus, the proof of Theorem 2.1 is completed.   

By setting 0   and 1   in Theorem 2.1, we can readily deduce the following results, respectively. 

Corollary 2.1. The function ( )f z  defined by (1.1) belongs to the class  * ,S   ,  , 0,1    if the 

following condition is satisfied    

  
2

1 1n

n

n n a  




     . 

The result is sharp for the functions 

 
 

1
,  ,  2,3,... .

1

n

nf z z z z U n
n n



 


   

  
  

Corollary 2.2. The function  f z  defined by (1.1) belongs to the class  ,C   ,  , 0,1    if the 

following condition is satisfied 

  
2

1 1n

n

n n n a  




     . 

The result is sharp for the functions 

 
  

1
,  ,  2,3,... .

1

n

nf z z z z U n
n n n



 


   

  
 

By taking 0   in Corollary 2.1 and 2.2, respectively, we have the following results. 
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Corollary 2.3. (see [13, p. 110, Theorem 1]) The function  f z  defined by (1.1) belongs to the class 

   * ,  0,1S    if the following condition is satisfied    

 
2

1n

n

n a 




   . 

The result is sharp for the functions 

 
1

,  ,  2,3,... .n

nf z z z z U n
n






   


  

Corollary 2.4. (see [13, p. 110, Corollary of Theorem1]) The function  f z  defined by (1.1) belongs to the 

class    ,  0,1C    if the following condition is satisfied    

 
2

1n

n

n n a 




   . 

The result is sharp for the functions 

 
 
1

,  ,  2,3,... .n

nf z z z z U n
n n






   


  

For the function in the class  * , ;TS C    , the converse of Theorem 2.1 is also true. 

Theorem 2.2. Let f T . Then, the function ( )f z  belongs to the class  * , ;TS C    , 

   , 0,1 ,  0,1     if and only if    

     
2

1 1 1 1n

n

n n n a   




       .                               (2.5) 

The result is sharp for the functions 

 
     

1
,  ,  2,3,...

1 1 1

n

nf z z z z U n
n n n



  


   

    
.         (2.6) 

Proof. The proof of the sufficiency of theorem can be proved similarly to the proof of Theorem 2.1. That's why; 

we will prove only the necessity of the theorem. 

Assume that 
* ( , ; )f TS C    ,    , 0,1 ,  0,1    , which is equivalent to  

   

             

2

Re ,  
1 1

zf z z f z
z U

z f z zf z zf z f z




    

   
  

        

. 

Then, by simple computation, we obtain 

   

             

  

     

2

2

2

Re
1 1

1 1

                   Re .

1 1 1 1

n

n

n

n

n

n

zf z z f z

z f z zf z zf z f z

z n n a z

z n n a z



    





 









   
 

        

 
    

  
     
  





 

The last expression in the brackets of the above inequality is real if choose z  real. Hence, from the previous 

inequality letting 1z   through real values, we obtain  
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2 2

1 1 1 1 1 1 1 1n n

n n

n n a n n a   
 

 

 
               

 
  . 

But, this is the same of the condition (2.5). 

This is clear that the inequality (2.5) is sharp for the functions  nf z  given by (2.6).  

Thus, the proof of Theorem 2.2 is completed.  

By taking 0   and 1   in Theorem 2.2, we arrive at the following results, respectively. 

Corollary 2.5. The function  f z  defined by (1.2) belongs to the class  * ,TS   ,  , 0,1    if and 

only if    

  
2

1 1n

n

n n a  




     . 

The result is sharp for the functions 

 
 

1
,  ,  2,3,...

1

n

nf z z z z U n
n n



 


   

  
.  

Corollary 2.6. The function  f z  defined by (1.2) belongs to the class  ,TC   ,  , 0,1    if and only 

if    

  
2

1 1n

n

n n n a  




     . 

The result is sharp for the functions 

 
  

1
,  ,  2,3,...

1

n

nf z z z z U n
n n n



 


   

  
. 

Remark 2.1. The results obtained in Corollary 2.5 and 2.6 have been provided in [3].  

By taking 0   in Corollary 2.5 and 2.6, respectively, we have the following results. 

Corollary 2.7. (see [13, p. 110, Theorem 2]) The function  f z  defined by (1.2) belongs to the class 

 *TS  ,  0,1   if and only if    

 
2

1n

n

n a 




   . 

The result is sharp for the functions 

 
1

,  ,  2,3,...n

nf z z z z U n
n






   


.  

Corollary 2.8. (see [13, p. 111, Corollary 2]) The function  f z  defined by (1.2) belongs to the class 

 TC  ,  0,1   if and only if    

 
2

1n

n

n n a 




   . 

The result is sharp for the functions 

 
 
1

,  ,  2,3,...n

nf z z z z U n
n n






   


. 

From the Theorem 2.2, we have the following result. 

Corollary 2.9. If      * , ; ,  , 0,1 ,  0,1f TS C         , then  
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1

,  2,3,...
1 1 1

na n
n n n



  


 

    
.  

Remark 2.2. Numerous consequences of Corollary 2.9 can indeed be deduced by specializing the various 

parameters involved. Many of these consequences were proved by earlier studies on the subject (cf., e.g., [1, 13, 

16]). 

From the Theorem 2.2, we can readily deduce the following result.  

Theorem 2.3. Let the function  f z  definition by (1.2) belongs to the class  * , ;TS C    , 

   , 0,1 ,  0,1     . Then,  

    2

1

1 2 1
n

n

a


  








  
                                                 (2.7) 

and 

 

    2

2 1

1 2 1
n

n

n a


  








  
 .                                           (2.8) 

 

Proof. Assume that      * , ; ,  , 0,1 ,  0,1f TS C         . Then, it follows from (2.5) that      

          
2 2

1 2 1 1 1 1 1n n

n n

a n n n a      
 

 

            ;            (2.9) 

that is, 

    
2

1 2 1 1n

n

a   




     . 

But, this is the same of the inequality (2.7). 

On the other hand, similarly to (2.9), we can write 

           
2 2

2 1 1 1 1 1 1 1n n

n n

n a n n n a      
 

 

             . 

So, 

     
2

2 1 1 1 1n

n

n a   




      . 

The last inequality equivalent to  

      
2 2

2 1 1 2 1 1n n

n n

na a      
 

 

         . 

Using the inequality (2.7) to the last inequality, we obtain 

  
 

2

2 1
2 1

1
n

n

na
 

  







  


 . 

This completes the proof of the inequality (2.8).   

Thus, the proof of Theorem 2.3 is completed. 

By setting 0   and 1   in Theorem 2.3, we arrive at the following results, respectively. 

Corollary 2.10. Let the function  f z  defined by (1.2) belongs to the class  * ,TS   ,  , 0,1   . 

Then,  

 2

1

2 1
n

n

a


 








 
   and  

 

 2

2 1

2 1
n

n

n a


 








 
 .      



MUSTAFA N & GORKMAZ S            Journal of Scientific and Engineering Research, 2018, 5(11):301-313 

 

Journal of Scientific and Engineering Research 

308 

 

Corollary 2.11. Let the function  f z  defined by (1.2) belongs to the class  ,TC   ,  , 0,1   . Then,  

  2

1

2 2 1
n

n

a


 








 
  and 

 2

1

2 1
n

n

n a


 








 
 .        

Remark 2.3. Numerous consequences of the coefficient inequalities obtained in the Theorems 2.1 and 2.2 and 

in the Corollaries 2.10 and 2.11 can indeed be deduced by specializing the various parameters involved. 

 

3. Some properties of the function class  * , ;TS C     

In this section, we will examine some interesting properties of the class  * , ;TS C    , 

   , 0,1 ,  0,1    .  

Theorem 3.1. The subclass      * , ; ,  , 0,1 , 0,1TS C         of the analytic functions in the open 

unit disk is convex set. 

Proof. Assume that each of the functions  *, , ;f g TS C    ,    , 0,1 , 0,1     with  

 
2

,  0n

n n

n

g z z b z b




   .                                                     (3.1) 

Then, for  0,1 , we write 

       
2

1 n

n

n

z f z g z z c z  




     ,  

where  1 ,  2,3,... .n n nc a b n       

Apply Theorem 2.2, we can easily write 

           

            

2 2

2

1 1 1 1 1 1

1 1 1 1 1 + 1 1 1 .

n n

n n

n

n

n n n c n n n a

n n n b

      

        

 

 





          

            

 


 

This immediately completes the proof of Theorem 3.1. 

Next we define the modified Hadamard product of the functions in the class T  by  

  
2

n

n n

n

f g z z a b z




   , 

where     and f z g z  are functions defined by (1.2) and (3.1), respectively. 

Theorem 3.2. If each of the functions     and f z g z  is in the class  * , ;TS C    , 

   , 0,1 ,  0,1    , then  * , ;TS C    , where  

    z f g z    and 
  

       

2

2 2

1 1
1

1 2 1 1 1

 


    

 
 

     
. 

Proof. From the Theorem 2.2, we have 

     
2

1 1 ) 1
1 

1
n

n

n n n
a

  







    



                                  (3.2) 

and  
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2

1 1 ) 1
 1

1
n

n

n n n
b

  







    



 .                                  (3.3) 

To complete the proof of Theorem 3.2, we have to find the largest   such that 

     
2

1 1 ) 1
1

1
n n

n

n n n
a b

  







    



 .                                (3.4) 

Applying the Cauchy-Schwarz inequality and using inequalities (3.2) and (3.3), we find 

     

           

           

2

1/2 1/2

2

2 2

1 1 1

1

1 1 1 1 1 1

1 1

1 1 1 1 1 1
1;

1 1

n n

n

n n

n

n n

n n

n n n
a b

n n n n n n
a b

n n n n n n
a b

  



     

 

     

 









 

 

    




            
    

       

         
 

 





 

 

that is, 

     
2

1 1 1
1

1
n n

n

n n n
a b

  







    



 .                                 (3.5) 

It follows from (3.4) and (3.5) that, inequality (3.4) holds true if 

    
    

1 1
,  2,  

1 1
n n

n n
a b n n

n n

  

  

   
  

   
.                             (3.5) 

 On the other hand, since  

     
1

, 2,  
1 1 1

n na b n n
n n n



  


  

    
, 

(3.5) is satisfied if 

     
    
    

1 11
,  2,  

1 1 1 1 1

n n
n n

n n n n n

  

     

   
  

        
. 

Solve of the last inequality according to   gives the following inequality 

   

          

2

2 2

1 1 1
1 ,  2,  

1 1 1 1 1 1 1

n
n n

n n n n

 


    

  
   

        
. 

If we use that the function :h  , defined by 

 
   

          

2

2 2

1 1 1
1 ,  2,  

1 1 1 1 1 1 1

n
h n n n

n n n n

 

    

  
   

        
 

for all    , 0,1 ,  0,1     is increasing, then we have  

    min :  2 and 2h n n n h     .  

Thus, the proof of Theorem 3.2 is completed.   

By taking 0   and 1   in Theorem 3.2, we can readily deduce the following results, respectively. 
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Corollary 3.1. If each of the functions     and f z g z  is in the class    * , ,  , 0,1TS      , then 

 * ,TS C   , where  

    z f g z    and 
  

     

2

2 2

1 1
1

2 1 1 1

 


   

 
 

    
. 

Corollary 3.2. If each of the functions     and f z g z  is in the class    , ,  , 0,1TC      , then 

 * ,TS C   , where  

    z f g z    and 
  

     

2

2 2

1 1
1

2 2 1 1 1

 


   

 
 

    
. 

By taking 0   in Corollary 3.1 and 3.2, respectively, we obtain the following results. 

Corollary 3.3. If each of the functions     and f z g z  is in the class    * ,  0,1TS   , then 

 *TS C  , where  

    z f g z    and 

22

3 2










. 

Corollary 3.4. If each of the functions     and f z g z  is in the class    ,  0,1TC   , then 

 *TS C  , where  

    z f g z    and 
2

6 4

6 7




 




 
. 

Remark 3.1. Further consequences of the properties given by Theorem 3.1 and Theorem 3.2 can be obtained for 

each of the classes studied by earlier studies, by specializing the various parameters involved. 

 

4. Distortion theorems for the fractional operators  

In this section, we will give distortion theorems for the functions belonging to the class  * , ;TS C    . Each 

of these theorems would involve certain integral of fractional calculus, which are defined as follows (see for 

details, [14- 16]). 

Definition 4.1. The fractional integral of order   is defined by  

 
 

 
1

0

,  ,  0

z

z

f t
D f z dt z

z t







  


 , 

where  f z  is an analytic function in a simply-connected region of the complex plane containing the origin, 

and the multiplicity of  
1

z t
 

  is removed by requiring  ln z t  to be real 0z t  .  

 Definition 4.2. The fractional derivative of order   is defined by  

 
 

 

 
 

0

1
,  ,  0,1

1

z

z

f td
D f z dt z

dz z t







  
  

 , 

where  f z  is constrained, and the multiplicity of  z t


  is removed, as in Definition 4.1. 

 Definition 4.3. Under the hypotheses of Definition 4.1, the fractional derivative of order n   is defined by 
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       0,  0,1 ,  : 0
n

n

z zn

d
D f z D f z n

dz

        . 

Theorem 4.1. Let      * , ; ,  , 0,1 ,  0,1f TS C         . Then,  

 

 

      

 
 

 

    

1

1

2 11

2 1 2 1 3

2 11

2 1 2 (1 ) 3
z

z z

D f z z z







    



    





 
 

        

 
           

              (4.1) 

for 0   and for all z U .  

The result is sharp for the function 

 
    

21
,  

1 2 1
f z z z z U



  


  

  
.                                 (4.2) 

Proof. Suppose that      * , ; ,  , 0,1 ,  0,1f TS C         . Then, from the Definition 4.1, we have 

 
 

 

 

 
1

2

2 1

2 1

n

z n

n

n
D f z z a z

n

 

 


 



   
        

 .                          (4.3) 

Since the function :  , defined by 

 
 

 

1
,  2,  ,  0

1

n
n n n

n
 



 
   
  

, 

is decreasing, by using the triangle inequality, we find from (4.3) and (2.7) that 

  
1 (2) (1 ) (3)

( )
(2 ) 1 2 (1 ) (3 )

zD f z z z
 

    


   

          

. 

This completes the proof of the right hand side of the inequality (4.1). 

From (4.3), we write 

 
 

 

 

 
1

2

2 1

2 1

n

z n

n

n
D f z z a z

n



 






   
        

 . 

Similarly, from here, we obtain 

 
 

 

   

      
1 2 1 3

2 1 2 1 3
zD f z z z

 

    


   

  
        

. 

But, this is the same of the left hand side of the inequality (4.1). 

Further, easily see that the equality in (4.1) is satisfied by the function  f z  given by (4.2).  

Thus, the proof of Theorem 4.1 is completed. 

The proofs of the following theorems are very similar to the proof of Theorem 4.1, so the details of the 

proofs may be omitted.  

Theorem 4.2. Let      * , ; ,  , 0,1 ,  0,1f TS C         . Then,  
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for  0,1   and for all z U . The result is sharp for the function  f z  given by (4.2). 

Theorem 4.3. Let      * , ; ,  , 0,1 ,  0,1f TS C         . Then,  
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for  0,1   and for all z U . The result is sharp for the function  f z  given by (4.2). 

By taking 0   in Theorem 4.2, we can readily deduce the following corollary. 

Corollary 4.1. If      * , ; ,  , 0,1 ,  0,1f TS C         , then  
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for all z U . The result is sharp for the function  f z  given by (4.2) 

If, we set 0   in Theorem 4.3, we arrive at the following corollary. 

Corollary 4.2. If      * , ; ,  , 0,1 ,  0,1f TS C         , then  
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for all z U . The result is sharp for the function  f z  given by (4.2) 

Remark 4.1. Numerous consequences of the distortion properties given by Corollary 4.1 and Corollary 4.2 can 

be obtained for each of the classes studied by earlier studies.  
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