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Abstract The current trend of seamless and ubiquitous wireless communication in fifth generation (5G) ultra-

dense networks (UDNs) has led to increased traffic intensity, extended capacity limits, while average energy 

demand has increased tremendously. In addition, as the demand for wireless data services increases, especially 

in the context of UDN, Inter-cell Interference (ICI) poses a lot of contention for access to the media. Hence, 

network utility theory has been extensively employed for resource management purposes. Power control proves 

to be an important scheme utilized to reduce interference and improve Quality of Service (QoS) requirements in 

wireless networks. This paper therefore presents power control solutions using Non-Cooperative Game (NCG) 

theoretic framework where players seek to maximize their utility, which represents degree of satisfaction. The 

solution to this game has inefficient Nash equilibrium outcome in power usage and convergence. Therefore, we 

introduce a novel Access-based Pricing Policy NCG (APPNCG) model to improve efficiency of the game and 

guarantee fairness. Performance analyses of the proposed scheme in comparison to existing schemes with and 

without pricing are illustrated. Simulation results showing robustness and performance enhancement with fast 

convergence of the scheme are also presented. 

 

Keywords Game theory, intercell inter-cell interference, Nash equilibum, power control, utility function 

1. Introduction 

The current evolution and advancement in wireless communication system is enabled by the innovation and 

development of modern utilities for mobile devices [1]. One main target for this paradigm shift in 

communication system is the provision of considerably high data rate for end-users as against the achievable 

data rates available in previous standards. Recently, remarkable attention has been shifted to small cell 

technology due to the ability to offer enhanced capacity as well as providing seamless wireless coverage. This is 

in addition to their capability to improve spectral efficiency (SE), enhance capacity, offload traffic and optimize 

coverage in next generation wireless networks [2]. However, smart frequency reuse through densification of 

small cells has been acknowledged to provide considerable gains in network capacity. Consequently, future 

generation wireless networks are expected to be ultra-dense and heterogeneous, comprising various base stations 

(BSs) with different footprints and functionalities. Here, we succinctly refer to small cell as femtocells, picocells 

and remote radio heads (RRHs) with the range of coverage radius between 10 m and 300 m, being the adopted 

term by LTE [3]-[5]. 

Hence, to ensure a substantial Quality of Service (QoS) in the entire network, there is need to develop a cost-

effective scheme for the purpose. Also, to attain higher channel utilization and improved system throughput in 

Ultra-Dense Network (UDN), it is important to deploy the available frequency spectrum in a co-channel manner 

[2]. Hence, there is need to increase wireless communication networks capacity for guaranteed user experience 

as well as to meet the demand for communication service expansion. In general, network’s capacity can 

potentially be increased by enhancing the network architecture, modifying the physical layer air interface, and 
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obtaining additional spectrum [3]. Among these, resource frequency reuse for spectral efficiency improvement 

will introduce severe interference (both inter and intra cell) between microcell and small cells. Although, the 

introduction of orthogonality feature in the Long-Term Evolution Advanced (LTE-A) system helps to mitigate 

the intra-cell interference.  

However, the case is different for the inter-cell interference (ICI) scenario, as neighbouring users cause severe 

interference to the users who experience bad channel quality in a situation whereby the limited frequency 

spectrum is globally reused. This category of users is mostly located at the edge of the cell. One way to reduce 

the effect of ICI is efficient power control. Power control achieves this aim by reducing power levels of users at 

the center of the cell, thereby limiting the impact of interfering signals. Besides, power of resource blocks (RBs) 

suffering from bad channel quality can greatly be enhanced via power control techniques. Such conditions 

require each BS to make an informed decision on the optimal transmit power level on each RB at any instance, 

resulting to maximum satisfaction for its users.   

The rest of this paper is organized as follows: Section II reviews the related literature. System model is first 

introduced in Section III and then description of the formulated noncooperative power control game follows. 

Thereafter, we present our proposed access-based pricing technique. Simulation results are reported in Section 

IV and Section V ends the paper. 

 

2. Related Literature  

Several works have proposed distributed power control as techniques used to mitigate interference in wireless 

data and cellular networks [6-9]. However, the majority of these approaches cannot guarantee optimal power 

and resource allocation in the traditional multiuser access scheme such as Orthogonal Frequency Division 

Multiple Access (OFDMA) networks, deployed for LTE/LTE-A and heterogeneous small cell technologies. 

Recently, Game theory is gaining popularity as it provides an insight into the utility function thus defining 

users’ QoS and resolving the power allocation problems for cellular networks [10]. A game is a branch of 

mathematics that involves multiple players having conflicting and competitive interests such that each player’s 

decision outcomes are influenced by the actions of others [11]. A detailed work on game theory approach in 

two-tier networks comprising of femtocells, exploiting local gains for efficient power control and interference 

coordination was provided in [6]. 

However, in [12], the authors developed a cooperative game model for cellular Het- Nets having three layers 

with optimized utility function for bandwidth allocation maximization. Also, a method that adapts the BSs 

transmit power using a noncooperative game-theory approach was developed in [13], to reduce co-channel 

interference and achieve required balance between macrocell and small cells. The works in [14] and [1] differ 

slightly as [14] addresses ICIC challenges in OFDMA downlink cellular systems, where the process of selecting 

RB power level is formulated as a sub-modular game. On the other hand, [1] combines game theory and the 

mechanism of virtual currency. The authors introduced incentive mechanism, which maximizes node returns 

through enhanced cooperative optimization model. 

Recently, exponential growth of data-driven devices has made Energy Efficiency (EE) to become a topic of 

interest in research community. Hence, energy efficient communication design for UDN is important because 

the terminals are generally energy constrained. In [15], a convergent distributed power allocation based on 

pricing mechanism was proposed to reach the Karush-Kuhn-Tucker (KKT) of the EE algorithm. On the other 

hands, authors in [16] analysed and designed a unified framework for both network and user centric EE power 

allocation processes to maximize different EE metrics while satisfying minimum QoS requirements in a wireless 

network. To this end, most work on game theory application concentrate on cooperative game approach, which 

result to bargaining and coalition forming strategies. The need for bargaining process among the players is time 

consuming and ultimately renders the approach unsuitable for ultra-dense application. In this paper, we 

formulate a non-cooperative game theory technique to improve system performance, reduce signaling overhead 

and ultimately guarantee flexibility of radio resource management. 

While we adopt a similar approach to [16], we succinctly distinguish our work in two ways. Firstly, we adopt 

weighted sum in our formulation for each power allocation link to manage EE individually. This approach helps 

to cater for the need of users for different power consumption levels, spectrum usage and QoS requirements. 
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The corresponding weights can enable more degree of freedom, prioritize specific links and provide useful 

information for system design purposes. Secondly, we seek to achieve efficient Nash Equilibrium (NE) in our 

game formulation by introducing a pricing function that incorporates various cost components for interference 

mitigation and provide fairness for all users in the network. To the best of our knowledge, this approach is the 

first to jointly consider weighted assignment and cost tuning parameters approach for EE and power control. 

 

3. System Model 

Our model considers a single cell downlink OFDMA system, where L  information bits is transmitted by each 

BS frames of M L bits at a rate R  b/s using power p  in Watts. In previous work [17], R  assumed a fixed 

rate which is not ideal in the downlink scenario due to varying transmit power of the BSs. In addition, we 

assume that each user is assigned to only one BS at a given time, i.e. no BS diversity. Let cP  denote the 

probability that a frame is correctly decoded at the receiver, termed frame success rate (FSR). However, in order 

to adequately predict the actual success rate of the signal and cancel out short term variations, successful 

reception of signal must be monitored over a certain period. Also, cP  represents the SINR function obtained by 

the user at its serving BS which depends on the system configurations such as receiver pattern, modulation and 

radio propagation model.  

Thus, the generalized utility function, expressed as the number of information bits successfully received per 

Joule of energy expended is given as [17] 

    bits/JoulecLRP
u

Mp
                                                     (1) 

In the absence of error correction, the FSR can be expressed as 

(1 )M

c eP P                                                            (2) 

where eP  is the bit error rate (BER). Generally, the BER decreases monotonically with (SINR). Therefore, to 

accommodate some emerging technologies for 5G UDN, which were not considered by most previous related 

works, we assume that the SINR   experienced by any user (UE) from its serving BS i  on resource block k  

is given by [16] 

, ,
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                                 (3) 

where W  denotes the available bandwidth in Hz, ,i kp is the transmit power allocated by BS i  on RB kK , 

,i k , ,i k and ,i k are positive quantities which are independent on the transmit power of the BS, but only on 

the system parameter and propagation channels, while 
2 is the variance of the Gaussian noise. However, it is 

noteworthy that both ,i k and ,i k are quantities assumed to depend only on the thi  BS channel on RB k . 

Hence, the envisioned technologies for 5G are properly captured in the SINR expression by simply letting 

, 0i k   for all ,i k . To properly incorporate the tradeoff between saving transmit power and providing an 

acceptable throughput in the entire network, we adopt energy efficiency maximization approach for each BS. 

However, unlike the traditional average sum energy efficiency (ASEE), which accounts for the entire network’s 

energy efficiency, this paper employs weighted sum energy efficiency (WSEE). This proves to be more efficient 

when utilized in ultra-dense setting where channels are differentiated by distinct quality levels and users have 

diverse QoS requirements [18]. 

The weighted sum EE ,i k of BS i  which is the ratio of the achievable throughput on RBs and the power 

expenditure, measured in bit/Joule of energy consumed is expressed as [16] 
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where , 0i k  is a constant, providing more degree of freedom for different EE priorities of the links, 

, 2 ,1
 log (1 )i k i kk

W 


 
K

is the achievable rate experienced by any UE attached to BS i  on RB k , 

,c ip is the dissipated circuit power for the thi  BS operation and its served UE, while 

,1 ,2 ,[ , ,..., ]T K

i i i Kp p p  p R is the power allocation vector of thi  BS on RB kK . At any rate, the 

following average power constraint must be satisfied by ip  

0T

i ip 1 p                                                  (5) 

where our goal is to optimize [0, ]i i ip P P @ , which is the maximum power of the thi  BS. To ensure that 

the minimum achievable rate is satisfied, we set , 0i k i   so that 

,i k i                                                       (6) 

where i denotes the target rates of thi  BS in bit/s/Hz/cell. Thus, the feasibility set of ip  is expressed as 

,{ : , }K T

i i i i i k iP p    p 1 p@ R                                 (7) 

Consequently, the formulation of the noncooperative power control game can be mathematically described as 

follows: 

[ ,{ } ,{ } ]i i i iG   I II P U                                        (8) 

where {1,2,..., }II is the set of players which are the base stations, { }iP  is the strategy set for each player 

i , given also as the subset of a finite dimensional Euclidean space and { ( )}i pU is the utility (payoff) 

associated to player i , for a combination of choices, 1 1[ ,..., ] [ , ]I ip p p p = p , where 

1,...,[ , ,..., ]i i I i I Kp p p p  p =  denotes the strategies of all other players except player i . Each player i  selects 

a transmit power level 1p  such that i ip P . If iP  denotes the set of all power vectors, then power vector 

1,..., )Ip p p = ( P represents the game outcome in relation to all players selected power. This results to 

utility level ( )iu p  for the thi  player. To demonstrate the strategic interdependence between players, each 

player gets a certain level of utility having close dependence on its own power level and also on the choice of 

other players’ strategies. Hence, the strategy of each player i I is to select a power value i ip P so as to 

maximize its utility function given by 

arg max  ( , )     
i i

i i i
p

u p i


 p
P

I                                         (9) 

where 1,...,[ , ,..., ]T

i i I i I Kp p p p  p = is the interference power vector of all players except thi  player. The 

transmit powers of player i  are selected from a convex and compact set with lower and upper bound power 

constraints ,  i i ip p p i    I . Hence, we let 0ip  , i  such that the strategy space [0, ]i ipP . 

Generally in a non-cooperative game (NPG), it is often difficult to predict the interaction among players and the 

effect on the convergence to Nash equilibrium. Although, interference levels can prove effective in observing 

the outcome of other BSs’ actions only, but explicit knowledge of their actions and payoffs may not be acquired 

in this way. In such a situation where information exchange is not possible among BSs, their transmission 
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powers are chosen to maximize individual payoff functions. Thus, to attain NE in (9) and maximize player i ’s 

choice, given other players’ strategies, we employ the concept of best response dynamics (BRD), expressed by 

the following 

( )

( ) arg max  ( , )     
i i i

i i i i i
p

b u p i


 


 
p

p p@
P

I                                 (10) 

More often, it is difficult for BRD to converge as well as find an optimal NE due to the tight coupling between 

the players strategy sets, which are solved with the following [16]: 

If 

2
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At this point, we compute the best response of player i that yields a distributed solution for the NE. Hence, we 

define 

( ) 1 ( ( ))
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Lemma 1: The solution to (14), considering ip , is given by 
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where 
*

i  follows from Dinkelbachs algorithm as the solution to 

* * *

2 , log (1 ( )) ( ( )) 0i i i c i i iW p                                 (18) 

Consequently, the unique NE of game in (8) can be obtained by iteratively updating the initial feasible transmit 

power vector 1{ }i ip 

I
 according to (12). In this manner, it follows that an iterative algorithm of the form 

 *[ 1] min ,max{ ( [ ]), [ ]}i i i i ip t p t p t                             (19) 

where the thi  player transmit power at iteration step t  is given as [ ]ip t , and [ ]ip t computed using 

1
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will converge to the unique NE. Hence, [ ]i t corresponds to the channel gain at tht  iteration step. 

In a real environment, every BS requires specific information about the strategy of all other BSs on every used 

RB. Hence, Algorithm 1 is distributed as the downlink transmission signaling information is made available for 

convergence. Consequently, the computation of [ 1]ip t  basically requires knowledge of [ ]i t , which can be 

obtained from 

1

[ ] [ ]
[ ] 1

[ ]

i i
i

i i

t t
t

p t

 






 
  

 
                                      (21) 

where [ ]i t denotes the SINR of thi  player measured from its served UE at iteration t . 

As with the base-station assignment case based on the maximum received signal strength [19], the Nash 

equilibrium can be inefficient, hence pricing strategies can be implemented to improve this efficiency. Hence, 

the optimal solution to the proposed pricing game follows Pareto optimality [20], which seeks to maximize the 

utility of individual players based on the price offered. 

  

Algorithm 1 Power Allocation Algorithm 

1:   initialize  0t  and  [0]ii p  R in the feasible set 

2:   repeat 

3:       for 1i  to I do 

4:           receive [ ]i t from the serving BS 

5:           compute [ ]i t using (23) 

6:           use [ ]i t to update [ ]ip t in (19) 

7:           use [ ]i t in (20) to run the Dinkelbach’s algorithm 

8:           set 
*[ ]i t equal to the Dinkelbach’s output and update the power as (21) 

9:       end for 

10:     update 1t t   

11:  until convergence 

 

Proposed Access-based Pricing Policy NCG (APPNCG) 

This APPNCG scheme proposes an improvement to the equilibrium utilities of NCG and aligns the users’ goal 

with those of the network. Introduction of pricing into the game can effectively enhance system performance 

and efficiency by modifying the utility function while maintaining the game structure. An effective price should 

consider demand requirements for the services offered and also manifest accurately usage cost of all resources 

[17]. Such a pricing scheme ensures that players aim to improve their SINR as well as reduce their energy 

consumption, which eventually helps in minimizing the interference in the system. At this point, a cost function 

is introduced to capture the interference levels, as well as fairness for all users such that 

( , )c

i i i i ip p q    p                                              (22) 

where   and  denote assigned weight to each component of the cost function to indicate the price per 

transmitted power unit of player i  and the unit price that each user is paid for not being served, respectively, 

while iq  is the fraction of UEs in the coverage of player i  experiencing SINR below a certain threshold. Each 

player can estimate iq  depending on all available strategies with the knowledge of UE density in the network. 

Thus, the first part of (22) (i.e., ip ) is targeted at penalizing players who choose high power strategies. On the 

other hand, the last term establishes fairness in the network by protecting UEs exposed to undue outages. Hence, 
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the cost function is an increasing function of an increase in the transmit power level. In other words, low 

overhead cost will be incurred and some level of fairness is guaranteed for BSs serving users with bad channel 

condition. 

Therefore, we express the payoff function as 

( , ) ( ) ( , )c c

i i i i i i iu p u p  p p p                                        (23) 

Our objective is to find optimal payoff function that results in the best response approach, as stated in (14). This 

will allow a player to choose among its available strategies based on knowledge of other players’ strategies. 

Therefore, the multi-objective optimization problem that the APPNCG attempts to solve can be expressed as 

max ( , ) ( ) ( , )   
i i

c c

i i i i i i i
p

u p u p i 


   p p p
P

I                             (24) 

The pricing equation in (24) is imposed on access-based policy and increases monotonically with respective 

players’ transmission power. Importantly, the pricing factor must be adjusted appropriately in order to provide 

an improvement in the overall network performance, which is also an outcome of the users’ interest. Therefore, 

the justification behind APPNCG is the need to reduce interference experienced by players and close the gap 

between equilibrium and optimal SINRs. This is achieved by imposing power taxation on each base station 

(player) as a way of discouraging them from transmitting at higher power level [20]. 

 

4. Simulation Results 

In our simulation, we first consider two types of applications used in cellular systems to describe users’ 

satisfaction, which are real-time and delay-tolerant applications, designated by sigmoid and logarithmic 

functions, respectively. The basis for this is to assess utility for data services and high transmission rate 

requirement in 5G UDN, which leads to high satisfaction levels. Hence, we use the sigmoidal function with the 

following mathematical representation [21-22] 

1
( )

1 ( )a
U r c d

e r b

 
  

  
                                           (25) 

where 
1 ab

ab

e
c

e


 and 

1

1 ab
d

e



. Similarly, the normalized logarithmic utility is represented by 

max

log(1 )
( )

log(1 )

kr
U r

kr





                                                  (26) 

where 
maxr  and k , respectively, correspond to 100% utilization of utility and increased utility function with 

increasing rate. It follows that (0) 0U  and ( ) 1U    are satisfied for equation (25), much as (0) 0U  and 

( ) 1maxU r   are true for equation (26). In addition, the inflection point of the sigmoidal function is at
infr b . 

Table 1 shows different parameters corresponding to different applications (e.g VoIP, SD and HD video 

streaming). 

Table 1: Application Utility Parameters [22]  

Sigmoid1      a=5, b=10    log1     k=15,  r
max

 = 100 

Sigmoid2      a=3, b=20    log2     k=3,    r
max

 = 100 

Sigmoid3      a=1, b=30    log3     k=0.5  r
max

 = 100  

Fig. 1 shows the utility functions of various applications plotted against their corresponding rates. It can be seen 

that the utility functions represent a strictly increasing continuous functions with zero value for zero rates. 

Hence, following from (2), the efficiency function given as ( ) (1 2 )M

i ef P   is a real-time application with 

inelastic traffic, which requires rate in order to arrive within a given delay bound irrespective of data arrival 

time. This shows minimum rate demand for real-time (sigmoidal) applications, and the upper limit of the 

inflection point to which the QoS is fully guaranteed. In the envisioned 5G UDN scenario, Fig. 1 reflects the 

trade-off between linear characteristic of the network throughput maximization and non-linear property of the 

users’ QoS satisfaction. 
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Figure 1: Application utility functions ( )U r plotted against rates r  

In Fig. 2, we consider average throughput of the entire network over different values of SINR. It is observed that 

by maintaining the SINR below a tolerable threshold based on the price imposed to penalize the use of excessive 

power, there is considerable improvement in the throughput of the system. This is more noticeable at the point 

where the SINR value is at 0dB. Therefore, this demonstrates the fact that throughput is a monotonically 

increasing function of the SINR i . Also, in Fig. 2, it can be seen that our proposed technique shows better 

performance than the popular scheme without assigned weights. Here, we clearly showed that adaptation of EE 

with different weights enables proper tuning and helps individual EEs spread to be controlled over the available 

bandwidth, as against classical EE which only takes into account the entire network [18]. 

 
Figure 2: Improved Throughput and EE as functions of SINR 

In Fig. 3, we show the relationship between the pricing factor and sum utility as an effective mechanism for 

improving the efficiency of the game, and evaluation of the NE p
as a function of the pricing factor 

c

i in (24). 

This value is chosen by each player and it is proportional to the traffic in the cell. As a result, the solution point 

optimalc  of the pricing game offers a considerable improvement in sum utilities in relation to game without 

pricing. At this optimal point, it can be seen that further increase in the values of 
c

i  results in decrease of 

utility of at least one terminal. It is noteworthy, however, that users closer to the base stations experience higher 

SINRs at equilibrium with
optimalc , although the equilibrium SINRs of the game without pricing remain the 

same for all users.  
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Figure 3: Normalized sum utility plotted against the pricing factor 

5. Conclusion 

In this paper, a Non-cooperative Power Control Game model is used to address the EE issue in the context of 5G 

UDN. Unlike previous works, our expression considered different rate constraints in order to capture emerging 

5G technologies. In addition, we assigned weights to individual EEs so that each allocation link can be 

effectively managed, as opposed to traditional average sum EE. Thereafter, we discussed and analyzed the Nash 

Equilibrium’s existence and uniqueness solutions of the formulated game. Subsequently, we introduced an 

access-based pricing scheme to improve the efficiency of the Nash equilibrium, mitigate interference and 

provide more degree of fairness for all users. Finally, effectiveness of the APPNCG model is validated through 

simulation results. 
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