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Abstract Investigations on the effect of thermal radiation and magnetic field on unsteady free convection flow 

with time-dependent suction and chemical reaction in a porous medium are carried out. All the fluid properties 

are assumed constant except the influence of the density variation with temperature and concentration. The 

Boussinesq approximation is used for the density variation with temperature and concentration. The governing 

equations are non dimensionalised and the regular perturbation technique is used for solving the nonlinear 

partial differential equations governing the flow variables (velocity, temperature and concentration). Numerical 

results for the velocity, temperature and concentration profiles, are obtained by using NDSolve of the software 

Mathematica. Finally, the analytical solutions for the flow variables are graphically shown and discussed. 
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Introduction 

In industries, MHD systems are very significant in a moving conducting fluid producing electrical energy by 

extraction, reactors cooling in connection with nuclear engineering, filtration of solids from liquids, gas 

turbines, propulsion in airplanes, missiles and air vehicles. Over time the theory of MHD free convective flow 

through a porous medium has been of great importance in many facets of life such as in various transport 

processes both naturally and artificially in the areas of science and engineering applications. Many researchers 

have succeeded in carrying out related studies on these as found in [1-10]. For instance, Israel-Cookey et al. [1] 

examined the impact of viscous dissipation and radiation on the issue of unsteady magnetohydrodynamic free-

convection stream past an endless vertical warmed plate in some optically thin surroundings with time 

dependent suction. Elgazery [6] examined numerically the problem of unsteady free convection flow with heat 

and mass transfer from an isothermal vertical plate in a porous medium. Kim [11] analysed unsteady MHD 

convective heat transfer past a semi-infinite vertical porous moving plate with variable suction, the plate moved 

with steady velocity in the direction of the flow and the stream velocity increasing exponentially with a small 

perturbation law. Chamkha [12] then extended the problem of [11] to mass transfer and heat absorption effects. 

Several researchers have investigated on the effects of uniform magnetic field and thermal radiation [13-19] For 

example, Kumar et al. [13] extended the work in [9] by including thermal diffusion effect on MHD free 

convective radiating flow past an impulsively started vertical plate embedded in a porous medium using Laplace 

transform technique to solve the governing equations. 

Other researchers worked on the effects of chemical reaction with or without magnetic field and radiation. For 

example, using finite difference method Sarada & Shanker [20] studied numerically the impact of chemical 

reaction on an unsteady MHD flow past an infinite vertical porous plate with variable suction and heat 

convective mass transfer. Sinha [21] carried out a parametric study on the effect of first order chemical reaction 

on an unsteady MHD free convective flow of an incompressible, electrically conducting and heat absorbing 
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fluid past an infinite vertical porous plate in the presence of uniform transverse magnetic field. Rao et al. [22] 

studied the effects of chemical reaction on an unsteady magnetohydrodynamics free convection fluid flow past a 

semi-infinite vertical plate implanted in a permeable medium with heat absorption. While Shivaiah & Rao [23] 

studied the impact of chemical reaction on unsteady MHD free convective fluid flow past a vertical porous plate 

in the presence of injection or suction. Finite element method was used to solve the dimensionless equations. 

Using Runge- Kutta fourth order with shooting method, Hemalatha et al. [24] examined the impacts of both 

thermal radiation and chemical reaction on MHD free convection flow past a moving vertical plate consisting 

heat source and convective surface boundary condition in the presence of heat generation. Kowsalya & Begam 

[25] carried out a research on the impacts of thermal diffusion and hall current on MHD unsteady mass transfer 

flow past a semi-vast vertical permeable plate embedded in a permeable medium in a slip flow regime in the 

existence of variable suction, thermal radiation as well as chemical reaction.  Ahmed & Kalita [26] presented a 

paper on the impacts of chemical reactions and magnetic field on the mass and heat transfer of Newtonian fluid 

over a boundless vertical wavering plate with variable mass dissemination. Gurivireddy et al. [27] aimed at 

examining the effect of thermodiffusion on an unsteady simultaneous convective flow of heat and mass transfer 

of an incompressible, electrically conducting, heat generating and absorbing fluid along a semi-unbounded 

moving permeable plate implanted in a permeable medium with the presence of pressure slope, thermal 

radiation field and chemical reaction. Hence based on these works we have studied the combined effects of 

thermal radiation, and magnetic field with chemical reaction. 

 

Formulation of the Problem 

Consider an unsteady convective flow of an incompressible viscous, chemically reacting and radiating 

hydromagnetic fluid through an infinite porous plate with time – dependent suction.We assumed 𝑢′ and 𝑣 ′ to be 

the component of velocity in the directions of 𝑥 ′ and 𝑦′ respectively. The plate is long enough in the 

𝑥 ′ −direction, so all the physical variables are functions of y and t only.The plate temperature and concentration 

are varying with time. A uniform magnetic field of 𝐵0 is applied normal to the plate. The plate moves uniformly 

along the positive x-direction with velocity 𝑈0 . All the fluid properties are assumed constant except the 

influence of the density variation with temperature and concentration and hence the Boussinessq approximation. 

The flow is consequently governed by the equations of continuity, momentum, energy and species concentration 

below:   

𝜕𝑣 ′

𝜕𝑦 ′
= 0                                                      (1) 

𝜕𝑢 ′

𝜕𝑡 ′
+ 𝑣′

𝜕𝑢 ′

𝜕𝑦 ′
=  𝜕2𝑢 ′

𝜕𝑦 ′
2 +

𝜕𝑈 ′

𝜕𝑡
−  

𝜇2𝜎𝑐

𝜌
𝐵′

0
2

+

𝑘
  𝑢′ − 𝑈′ + 𝑔𝛽𝑇 𝑇

′ − 𝑇∞
′      (2) 

𝜕𝑇 ′

𝜕𝑡 ′
+ 𝑣′

𝜕𝑇 ′

𝜕𝑦 ′
=

𝐾

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦 ′2 +
𝜇

𝜌𝑐𝑝
 
𝜕𝑢 ′

𝜕𝑦 ′
 

2

−
𝐾

𝜌𝑐𝑝

𝜕𝑞𝑟
′

𝜕𝑦 ′
                    (3) 

𝜕𝐶 ′

𝜕𝑡 ′
+ 𝑣′

𝜕𝐶 ′

𝜕𝑦 ′
= 𝐷

𝜕2𝐶′

𝜕𝑦 2 − 𝐾𝑟 𝑐 ′ − 𝑐∞
′  +

𝐾𝑇𝐷𝑚

𝑇𝑚

𝜕2𝑇′

𝜕𝑦 ′2         (4) 

With the initial and boundary conditions 

𝑢′ = 0   𝑇 ′ = 𝑇𝑤
′  ,    𝐶 ′ = 𝐶𝑤

′     𝑜𝑛    𝑦′ = 0 

𝑢′ = 𝑈′ 𝑡 = 𝑣0
′  1 + 𝜀𝑒𝑖𝜔 ′𝑡′  , 𝑇 ′ = 𝑇′∞ , 𝐶 ′ = 𝐶∞  

′  𝑎𝑠  𝑦′ ⟶ ∞      
(5) 

The Rosseland approximation is followed by taking the radiative heat flux in equation (3) 

 as: 

𝑞𝑟 
′ =

−4𝜎∗∇𝑇 ′4

3𝛿
 ,          (6) 

where 𝜎 ∗ is the Stephen – Boltzmann constant, 𝛿 is the mean absorption coefficient. Expanding 𝑇 ′4 in Taylor’s 

series about 𝑇∞
′  (the free stream temperature) with the assumption that the temperature difference between the 

fluid and porous medium is small; also neglecting higher order terms the heat flux is then expressed as follows: 

𝑞𝑟
′ =

−4𝜎∗

3𝛿
∇(4𝑇∞

′3𝑇 ′ − 3𝑇∞
′4)          (7) 

Where  

𝜕𝑞𝑟
′

𝜕𝑦
=

16𝜎∗𝑇∞
′3

3𝛿

𝜕2𝑇′

𝜕𝑦 ′2
          (8) 
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Again, from equation (1) it is clearly shown that 𝑣 ′ is a function of t only and also a constant. We assume   

𝑣 ′ =  −𝑣0(1 + 𝜀𝑒𝜔
′𝑡 ′)          (9) 

Such that 𝜀 ≪ 1 and the negative sign depicts that the suction velocity is toward the porous plate. 

Using the dimensionless quantities as follows: 

𝑦 =
𝑣0
′ 𝑦 ′

𝜗
        ,      𝑢 =

𝑢

𝑈0
      ,      𝜔 =

𝜗

𝑣0
′
2 𝜔′     ,   

𝑡 =
𝑣0
′
2

𝜗
t′        ,         𝑈 =

𝑈′

𝑈0
     ,      𝜃 =

𝑇 ′−𝑇∞
′  

𝑇𝑤
′ −𝑇∞

′       ,      

𝐶 =
𝐶 ′−𝐶∞

′  

𝐶𝑤
′ −𝐶∞

′    ,       𝜗 =
𝜇

𝜌
       ,         𝐾𝑟 =

𝐾𝜏
′

𝑉0
′
2     ,  

 𝑆𝑐 =
𝜗

𝐷
         ,    𝐺𝑟 =

𝜗𝑔𝐵𝑇 (𝑇𝑤
′ −𝑇∞

′ )

𝑈0𝑉0
′
2  ,   𝜒2 =

𝜗2

𝑘𝑣0
′
2                                (10) 

𝐺𝑟𝑚 =
𝜗𝑔𝐵𝑐(𝐶𝑤

′ − 𝐶∞
′ )

𝑈0𝑉0
′
2   ,   𝑀2 =

𝜗2𝛿𝑐  𝐵0
′
2

𝜌𝑣0
′
2  ,  𝑃𝑟 =

𝜇𝐶𝑝

𝑘
   ,     

        

  𝐸𝑐 =
𝑈0

2

𝐶𝑝 (𝑇𝑤
′ −𝑇∞

′ )
  ,   𝑆𝑟 =

𝐷𝑚𝐾𝑇

𝜗𝑇𝑚

(𝑇𝑤
′ −𝑇∞

′ )

𝐶𝑤
′ −𝐶∞

′    

Where 𝐾𝑟 is the chemical reaction, 𝑆𝑐 is the Schmidt number, 𝐺𝑟 is the Grashof number, 𝐺𝑟𝑚 is the Modified 

Grashof number, 𝑀2 is the Magnetic field, 𝑃𝑟 is the Prandtl number, 𝜒2 is the Porosity, 𝐸𝑐 is the Eckert 

number, 𝑆𝑐 is the Soret number, equations (1) – (5) are reduced, thereby generating a system of nonlinear partial 

differential equations.: 

 
𝜕𝑢

𝜕𝑡
−  1 + 𝜀𝑒𝑖𝜔𝑡  

𝜕𝑢

𝜕𝑦
=

𝜕2𝑢

𝜕𝑦2 +
𝜕𝑈

𝜕𝑡
−  𝑀2 + 𝛾2  𝑢 − 𝑈 + 𝐺𝑟𝜃 + 𝐺𝑟𝑚𝐶                      (11)   

 𝑃𝑟
𝜕𝜃

𝜕𝑡
− 𝑃𝑟 1 + 𝜀𝑒𝑖𝜔𝑡  

𝜕𝜃

𝜕𝑦
= 𝑃𝑟𝐸𝑐  

𝜕𝑢

𝜕𝑦
 

2

+ (1 + 𝑅2)
𝜕2𝜃

𝜕𝑦2                                      (12)    

𝜕𝐶

𝜕𝑡
−  1 + 𝜀𝑒𝑖𝜔𝑡  

𝜕𝐶

𝜕𝑦
=

1

𝑆𝑐

𝜕2𝐶

𝜕𝑦2 − 𝐾𝑟𝐶 + 𝑆𝑟
𝜕2𝜃

𝜕𝑦2                                                                           (13)   

With the corresponding dimensionless initial and boundary conditions: 

𝑢 = 0 ,      𝜃 = 1 , 𝐶 = 1        𝑎𝑡  𝑦 = 0               

𝑢 =  1 + 𝜀𝑒𝑖𝜔𝑡  , 𝜃 = 0, 𝐶 = 0     𝑎𝑠  𝑦 → ∞                               (14) 

 

Method of Solution 

Using regular perturbation method, the nonlinear partial differential equations are reduced to ordinary 

differential equations, since they cannot be solved in closed forms. We assume that the solutions of the 

equations can be expanded using Taylor’s expansion in 𝜀. 

𝑢 𝑦, 𝑡 = 𝑢𝑜 𝑦 + 𝜀𝑒𝑖𝜔𝑡 𝑢1 𝑦 + 𝑂(𝜀2) 

𝜃 𝑦, 𝑡 = 𝜃𝑜 𝑦 + 𝜀𝑒𝑖𝜔𝑡 𝜃1 𝑦 + 𝑂(𝜀2)                  (15) 

𝐶 𝑦, 𝑡 = 𝐶𝑜 𝑦 + 𝜀𝑒𝑖𝜔𝑡𝐶1 𝑦 + 𝑂(𝜀2) 

Substituting equation (15) into the set of equations (11) - (14), equating nonharmonic, harmonic terms and 

neglecting the higher order terms of 𝑂(𝜀2), the following set of approximations are obtained. 

𝑢0
′′ + 𝑢0

′ −  𝑀2 + 𝜒2 𝑢0 = − 𝑀2 + 𝜒2 − 𝐺𝑟𝜃0 − 𝐺𝑚𝐶0                                               (16)         

𝑢1
′′ + 𝑢1

′ −   𝑀2 + 𝜒2 + 𝑖𝜔 𝑢1 = −𝑢0
′ − [ 𝑀2 + 𝜒2 + 𝑖𝜔] − 𝐺𝑟𝜃1 − 𝐺𝑚𝐶1              (17)   

 1 + 𝑅2 𝜃0
′′ + 𝑃𝑟𝜃0

′ = −𝑃𝑟𝐸𝑐𝑢0
′
2
                   (18)  

 1 + 𝑅2 𝜃1
′′ + 𝑃𝑟𝜃1

′ − 𝑃𝑟𝑖𝜔𝜃1 = −𝑃𝑟𝜃0
′ − 2𝑃𝑟𝐸𝑐𝑢0

′ 𝑢1
′                        (19) 

𝐶0
′′ + 𝐶0

′ − 𝐾𝑟𝑆𝑐𝐶0 = −𝑆𝑐𝑆𝑟𝜃0
′′                    (20) 

𝐶1
′′ + 𝑆𝑐𝐶1

′ − 𝑆𝑐(𝑖𝜔 + 𝐾𝑟)𝐶1 = −𝑆𝑐𝐶0
′ − 𝑆𝑐𝑆𝑟𝜃1

′′                        (21) 

The corresponding boundary conditions are: 

𝑢0 = 0, 𝑢1 = 0, 𝜃0 = 1, 𝜃1 = 0, 𝐶0 = 1, 𝐶1 = 0   𝑎𝑡 𝑦 = 0                               (22)  

𝑢0 → 1,   𝑢1 → 1,     𝜃0 → 0,   𝜃1 → 0,   𝐶0 → 0,    𝐶1 → 0                𝑎𝑠 𝑦 → ∞   

For O (𝜀) equations. 
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The O (𝜀) equations (17) – (21) are still coupled non-linear equations, and exact solutions are still impossible to 

obtain. Therefore by expanding 𝑢0, 𝑢1, 𝜃0, 𝜃1 ,   𝐶0  𝑎𝑛𝑑 𝐶1 around the Eckert number (Ec<<1) we have: 

𝑢0 𝑦 = 𝑢01 𝑦 + 𝐸𝑐𝑢02 𝑦                                                                                       

𝑢1 𝑦 = 𝑢11 𝑦 + 𝐸𝑐𝑢12 𝑦       

𝜃0 𝑦 = 𝜃01 𝑦 + 𝐸𝑐𝜃02 𝑦          

𝜃1 𝑦 = 𝜃11 𝑦 + 𝐸𝑐𝜃12 𝑦         (23) 

𝐶0 𝑦 = 𝐶01 𝑦 + 𝐸𝑐𝐶02 𝑦          

𝐶1 𝑦 = 𝐶11 𝑦 + 𝐸𝑐𝐶12 𝑦          

Substituting (23) into the set of equations (18) – (22), the following equations are obtained. 

u01
′′ + u01

′ − δ1u01 = −δ1 − Grθ01 − GmC01       (24)  

 1 + R2 θ01
′′ + Prθ01

′ = 0         (25) 

C01
′′ + ScC01

′ − KrScC01 =  −ScSrθ01
′′

       (26) 

u02
′′ + u02

′ − δ1u02 = −Grθ02 − GmC02                   (27) 

C02
′′ + ScC02

′ − KrScC02 = −ScSrθ02
′′

       (28) 

 1 + R2 θ02
′′ + Prθ02

′ = −Pru01
′
2

                              (29) 

where  δ1 = M2 + χ2  

subject to the boundary conditions: 

u01 = 0 =  u02 , θ01 = 1, θ02 = 0, C01 = 1, C02 = 0        at y = 0               (30) 

u01 = 1, u02 = 0, θ01 = 0 = θ02 , C01 = 0 = C02         as y → ∞    

for O (1) equations and    

u11
′′ + u11

′ − δ2u11 = −u01
′ − δ2 − Grθ11 − GmC11                       (31) 

 1 + R2 θ11
′′ + Prθ11

′ − Priωθ1 = −Prθ01
′

                  (32) 

C11
′′ + ScC11

′ − δ3ScC11 = −ScC01
′ − ScSrθ11

′′
                 (33) 

u12
′′ + u12

′ − δ2u12 = −u02
′ − δ2 − Grθ12 − GmC12                  (34) 

 1 + R2 θ12
′′ + Prθ12

′ − Priωθ12 = −Prθ02
′ − 2Pru01

′ u11
′                 (35) 

C12
′′ + ScC12

′ − δ3ScC12 = −ScC02
′ − ScSrθ12

′′
                (36) 

subject to the boundary conditions: 

u11 = 0 =  u12 , θ11 = 0 = θ12 , C11 = 0 = C12       at y = 0      

u11 = 1, u12 = 0, θ11 = 0 = θ12 , C11 = 0 = C12        as y → ∞               (37)  

for O (Ec) equations, where; δ2 =  M2 + χ2 + iω , δ3 =  iω + Kr   . 

Solving equations (24) – (29) satisfying the boundary conditions equation (30) and also solving equations (31) – 

(36) with boundary conditions equation (37). Then, substituting the solutions into equation (23) and also using 

equation (15). The following solutions for velocity, temperature and species concentration profiles are obtained: 

u y, t = A1em3y + α2 − α3em 1y − α4em2y + Ec(A4em3y + α18 em1y + α19em2y + α20 e2m1y

+ α21e2m2y +α22 e2m3y + α23e(m1+m2)y  

+ α24e(m1+m3)y + α25 e(m2+m 3)y ) + εeiωt(A7em6y + α30em1y + α31 em2y + α32 em3y + α33 em 4y + α34em5y +

α35 + Ec A10em6y + α70 em1y + α71 em2y + α72 em3y + α73em4y + α74em5y + α75 e2m1y + α76 e2m2y +

α77 e2m3y + α78e(m1+m2)y + α79e(m1+m3)y + α80e(m1+m4)yα81 e(m1+m5)y + α82 e(m1+m6)y + α83 e(m2+m3)y +

α84 e(m2+m4)y + α85e(m2+m5)y + α86e(m2+m6)y + α87e(m3+m4)y + α88 e(m3+m5)y + α89e(m3+m 6)y      

𝜃 𝑦, 𝑡 = 𝑒𝑚1𝑦 + 𝐸𝑐(𝐴2𝑒
𝑚1𝑦 + 𝛼5𝑒

2𝑚1𝑦 + 𝛼6𝑒
2𝑚2𝑦+𝛼7𝑒

2𝑚3𝑦 + 𝛼8𝑒
(𝑚1+𝑚2)𝑦 + 𝛼9𝑒

(𝑚1+𝑚3)𝑦 +

  𝛼10𝑒
(𝑚2+𝑚3)𝑦) + 𝜀𝑒𝑖𝜔𝑡 (𝐴5𝑒

𝑚1𝑦 + 𝛼26𝑒
𝑚4𝑦 + 𝐸𝑐 𝐴8𝑒

𝑚4𝑦 + 𝛼36𝑒
𝑚1𝑦 + 𝛼37𝑒

2𝑚1𝑦 + 𝛼38𝑒
2𝑚2𝑦 +

𝛼39𝑒
2𝑚3𝑦 + 𝛼40𝑒

(𝑚1+𝑚2)𝑦 + 𝛼41𝑒
(𝑚1+𝑚3)𝑦 + 𝛼42𝑒

(𝑚1+𝑚4)𝑦 + 𝛼43𝑒
(𝑚1+𝑚5)𝑦 + 𝛼44𝑒

(𝑚1+𝑚6)𝑦 +

𝛼45𝑒
(𝑚2+𝑚3)𝑦 + 𝛼46𝑒

(𝑚2+𝑚4)𝑦 + 𝛼47𝑒
(𝑚2+𝑚5)𝑦 + 𝛼48𝑒

(𝑚2+𝑚6)𝑦 + 𝛼49𝑒
(𝑚3+𝑚4)𝑦 +

𝛼50𝑒
(𝑚3+𝑚5)𝑦 + 𝛼51𝑒

(𝑚3+𝑚6)𝑦 ) 

                         

𝐶 𝑦, 𝑡 =  1 − 𝛼1 𝑒
𝑚2𝑦 + 𝛼1𝑒

𝑚1𝑦 + 𝐸𝑐(𝐴3𝑒
𝑚2𝑦 + 𝛼11𝑒

𝑚1𝑦 + 𝛼12𝑒
2𝑚1𝑦 + 𝛼13𝑒

2𝑚2𝑦 +

𝛼14𝑒
2𝑚3𝑦 + 𝛼15𝑒

(𝑚1+𝑚2)𝑦 +  𝛼16𝑒
(𝑚1+𝑚3)𝑦 + 𝛼17𝑒

(𝑚2+𝑚3)𝑦) + 𝜀𝑒𝑖𝜔𝑡 (𝐴6𝑒
𝑚5𝑦 + 𝛼27𝑒

𝑚1𝑦 +

(38) 

(39) 

(40) 
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𝛼28𝑒
𝑚2𝑦 + 𝛼29𝑒

𝑚4𝑦 + 𝐸𝑐 𝐴9𝑒
𝑚5𝑦 + 𝛼52𝑒

𝑚1𝑦 + 𝛼53𝑒
𝑚2𝑦 + 𝛼54𝑒

𝑚4𝑦 + 𝛼55𝑒
2𝑚1𝑦 + 𝛼56𝑒

2𝑚2𝑦 + 𝛼57𝑒
2𝑚3𝑦 +

𝛼58𝑒
 𝑚1+𝑚2 𝑦 + 𝛼59𝑒

 𝑚1+𝑚3 𝑦 + 𝛼60𝑒
 𝑚1+𝑚4 𝑦 + 𝛼61𝑒

 𝑚1+𝑚5 𝑦 + 𝛼62𝑒
 𝑚1+𝑚6 𝑦 + 𝛼63𝑒

 𝑚2+𝑚3 𝑦 +

𝛼64𝑒
 𝑚2+𝑚4 𝑦 + 𝛼65𝑒

 𝑚2+𝑚5 𝑦 + 𝛼66𝑒
 𝑚2+𝑚6 𝑦 + 𝛼67𝑒

 𝑚3+𝑚4 𝑦 + 𝛼68𝑒
 𝑚3+𝑚5 𝑦 + 𝛼69𝑒

 𝑚3+𝑚6 𝑦 ) 

 

Result and Discussion 

On this study, we have performed perturbation analysis on the effect of thermal radiation and magnetic field on 

free convection time-dependent flow with chemical reaction. Our computed results have been done with 

relevant physical parameters and are revealed on graphs to show the influence of the governing parameters of 

the flow. Most especially the influence of radiation R, magnetic field M, chemical reaction Kr, on temperature 

𝜃(𝑦, 𝑡), velocity U(y,t), and concentration C(y,t). The various graphical results are discussed below as follows: 

In Figure 4.1 it is observed that the velocity increases with increasing radiation parameters. Physically, the 

velocity increases because increase in radiation leads to increased dominance of conduction over radiation 

which increases the buoyancy force of the boundary layer. figure 4.2 illustrates the effect of magnetic field on 

the velocity distribution of the fluid. The profile shows that velocity decreases with increase in magnetic field 

parameter, M. This observation showcases the action of the Lorentz force which has the tendency of condensing 

the momentum boundary layer thereby retarding the flow. Far from the plate where the effect of the magnetic 

field is not felt, the velocity assumes the free stream flow. The effects of the thermal buoyancy force, Gr on the 

velocity distribution is shown in Figure 4.3; depicting that increase in the Grashof number Gr increases the 

velocity. This is because of the increase in the convection current. Figure 4.4 shows the effect of chemical 

reaction on the velocity distribution. The profile reveals that the velocity decreases with increase in chemical 

reaction parameter, due to the presence of viscous dissipation. We notice that near the plate there is a rise in the 

velocity profile and far from the plate it assumes the free stream velocity. The effect of the Eckert number on the 

velocity profile is illustrated in Figure 4.5. The effect is significant close to the plate. It simply shows that the 

velocity at the boundary layer increases as a result of increase in the Eckert number. The velocity is enhanced 

because of the heat energy stored in fluid. Figure 4.6 depicts the velocity increases with increase in the values of 

Soret. There is more pronouncement of that in the vicinity of the plate than in the free stream. Physically, this is 

true as increase in Soret increases the driving force for mass diffusion. The influence of thermal radiation on the 

temperature distribution is very significant in Figure 4.7. The profile indicates that the fluid temperature 

increases as the thermal radiation is increased. In the real sense it is true as the addition of thermal radiation 

enhances the further diffusion of energy. The effect of increasing magnetic field on the temperature profile is 

illustrated in Figure 4.8. It is observed that increase in magnetic field increases temperature of the distribution. 

The effect is more significant at higher values of the magnetic field. The magnetic field applied heats up the 

fluid, thereby increasing the temperature. Figure 4.9 illustrates the effect of chemical reaction Kr on the 

concentration. The profile shows that increase in chemical reaction decreases the concentration. This is because 

increase in the chemical reaction parameter leads to decrease in the concentration of species in the boundary 

layer and increases mass transfer. Also chemical process reduces concentration profile at the boundary layer. 

The influence of magnetic field on the concentration distribution is illustrated in Figure 4.10. Increase in the 

magnetic field parameter M, results in decrease in the concentration profile. It can be seen that the effect is 

significant at M= 1,3 compared to lower values. This observation is true physically as the magnetic force greatly 

reduce the concentration at the boundary layer. Figure 4.11 represents the effect of radiation parameter R on the 

concentration profiles. It is found that the concentration increases with increase in the radiation parameter. The 

trend in figure 4.12 shows that the concentration increases with increase in Soret. This effect is very significant 

at higher values of Soret. This physically shows that the ratio of thermal diffusion is increased. 
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Conclusion 

In conclusion, the effects of thermal radiation on MHD free convection reactive flow with time-dependent 

suction have great imparts as increase in the values of radiation, Grashof, Eckert and Soret numbers lead to 

increase in velocity profiles but experience decline for different parameters values for magnetic field and 

chemical reaction. In addition, temperature rapidly increases for the increased values of radiation and magnetic 

field parameters. The applied magnetic field heats up the fluid thereby retarding the velocity flow due to Lorentz 

force which opposes the fluid motion. In the case of chemical reaction and magnetic field, it is discovered that 

they played a good role in specie concentration since increase in both parameters reduce the concentration in the 

boundary layer but increase in radiation increases the concentration. 
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Appendix 

𝑚1 = − 
𝑃𝑟

1+𝑅2 ;   𝑚2 =  
− 1+ 𝑆𝑐+4𝑆𝑐𝐾𝑟   

2
;         𝑚3 =

− 1+ 1+4𝛿1   

2
;                    

 𝑚4 = −
(𝑃𝑟+ 𝑃𝑟 2+4 1+𝑅2 (𝑃𝑟𝑖𝜔 ))

2 1+𝑅2 
;                                           𝑚5 = −

1

2
 1 +  1 + 4𝛿2 ; 

 𝑚6 =
−1

2
 1 +  1 + 4𝛿2 ;    𝛼1 = −

𝑆𝑐𝑆𝑟𝑚1
2

𝑚1
2+𝑆𝑐𝑚1−𝑆𝑐𝐾𝑟

; 𝛼2 = 1;      𝛼3 =
𝐺𝑟+𝐺𝑚𝛼1

𝑚1
2+𝑚1−𝛿1

;     

 𝛼4 =
𝐺𝑚(1−𝛼1)

𝑚1
2+𝑚1−𝛿1

;                     𝛼5 =
−𝑃𝑟𝑚1  

2 𝛼3  
2

4 1+𝑅2 𝑚1  
2 +2𝑃𝑟𝑚1

;                 𝛼6 =
−𝑃𝑟𝑚2  

2 𝛼4  
2

4 1+𝑅2 𝑚2  
2 +2𝑃𝑟𝑚2

; 

 𝛼7 =
−𝑃𝑟𝑚3  

2 𝐴1 
2

4 1+𝑅2 𝑚3  
2 +2𝑃𝑟𝑚3

;                                                       𝛼8 =
−2𝑃𝑟𝑚1𝑚2𝛼3𝛼4

 1+𝑅2 (𝑚1+𝑚2)2+Pr⁡(𝑚1+𝑚2)
; 

𝛼9 =
2𝑃𝑟𝑚1𝑚3𝛼3𝐴1

 1+𝑅2 (𝑚1+𝑚3)2+Pr⁡(𝑚1+𝑚3)
;                                         𝛼10 =

2𝑃𝑟𝑚2𝑚3𝛼4𝐴1

 1+𝑅2 (𝑚2+𝑚3)2+Pr⁡(𝑚2+𝑚3)
; 

𝛼11 =
−𝑆𝑐𝑆𝑟𝑚 1

2𝐴2

𝑚1
2+𝑆𝑐𝑚1−𝑆𝑐𝐾𝑟

;                 𝛼12 =
−4𝑆𝑐𝑆𝑟𝑚1

2𝛼5

4𝑚1
2+2𝑆𝑐𝑚 1−𝑆𝑐𝐾𝑟

;                   𝛼13 =
−4𝑆𝑐𝑆𝑟𝑚1

2𝛼6

4𝑚2
2+2𝑆𝑐𝑚2−𝑆𝑐𝐾𝑟

;   

𝛼14 =
−4𝑆𝑐𝑚1

2𝛼7

4𝑚3
2+2𝑚3−𝐾𝑟

;                                                               𝛼15 =
−𝑆𝑐𝑆𝑟 𝑚1+𝑚2 

2𝛼8

 𝑚1+𝑚2 
2+𝑆𝑐(𝑚1+𝑚2)−𝑆𝑐𝐾𝑟

;  

𝛼16 =
−𝑆𝑐𝑆𝑟  𝑚1+𝑚3 

2𝛼9

 𝑚1+𝑚3 
2+(𝑚1+𝑚3)𝑆𝑐−𝑆𝑐𝐾𝑟

;                                       𝛼17 =
−𝑆𝑐𝑆𝑐  𝑚2+𝑚3 

2𝛼10

 𝑚2+𝑚3 
2+(𝑚2+𝑚3)𝑆𝑐−𝑆𝑐𝐾𝑟

; 

𝛼18 =
−(𝐺𝑟𝐴2+𝐺𝑚𝛼11 )

𝑚1
2+𝑚1−𝛿1

;                𝛼19 =
−𝐺𝑚𝐴3

𝑚2
2+𝑚2−𝛿1

;       𝛼20 =
−(𝐺𝑟𝛼5+𝐺𝑚𝛼12 )

4𝑚1
2+2𝑚1−𝛿1

;  

 𝛼21 =
−(𝐺𝑟𝛼6+𝐺𝑚𝛼13 )

4𝑚2
2+2𝑚2−𝛿1

;              𝛼22 =
−(𝐺𝑟𝛼7+𝐺𝑚𝛼14 )

4𝑚3
2+2𝑚3−𝛿1

;       𝛼23 =
−(𝐺𝑟𝛼8+𝐺𝑚𝛼15 )

 𝑚1+𝑚2 
2+ 𝑚1+𝑚2 −𝛿1

;   

 𝛼24 =
−(𝐺𝑟𝛼9+𝐺𝑚𝛼16 )

 𝑚1+𝑚3 
2+(𝑚1+𝑚3)−𝛿1

;  𝛼25 =
−(𝐺𝑟𝛼10 +𝐺𝑚𝛼17 )

 𝑚2+𝑚3 
2+(𝑚2+𝑚3)−𝛿1

;        𝛼26 =
−Pr𝑚1

 1+𝑅2 𝑚1
2+Pr𝑚1−𝑃𝑟𝑖𝜔

; 

𝛼27 =
−𝑆𝑐(𝑚1𝛼1+𝑆𝑐𝑚1

2𝐴5)

𝑚1
2+𝑆𝑐𝑚 1−𝛿3𝑆𝑐

;         𝛼28 =
−𝑚2𝑆𝑐(1−𝛼1)

𝑚2
2+𝑆𝑐𝑚 2−𝛿3𝑆𝑐

;                     𝛼29 =
−(𝑆𝑐𝑆𝑟𝑚4

2𝛼26 )

𝑚4
2+𝑆𝑐𝑚4−𝛿3𝑆𝑐

; 

𝛼30 =
 𝑚1𝛼3−𝐺𝑟𝐴5−𝐺𝑚𝛼27 

𝑚1
2+𝑚1−𝛿2

;      𝛼31 =
 𝑚3𝛼4−𝐺𝑚𝛼28 

𝑚2
2+𝑚2−𝛿2

;                      𝛼32 =
−𝑚3𝐴1

𝑚3
2+𝑚3−𝛿2

;  

 𝛼33 =
− 𝐺𝑟𝛼26 +𝐺𝑚𝛼29 

𝑚4
2+𝑚4−𝛿2

;                 𝛼34 =
− 𝐺𝑚𝐴6 

𝑚5
2+𝑚5−𝛿2

;          𝛼35 = −1;  

𝛼36 =
−Pr𝑚1𝐴2

 1+𝑅2 𝑚1
2+𝑚1−𝑃𝑟𝑖𝜔

;   𝛼37 =
2 Pr 𝑚1

2𝛼3𝛼30−𝑚1𝛼5 

4 1+𝑅2 𝑚1
2+2𝑃𝑟𝑚1−𝑃𝑟𝑖𝜔

;       𝛼38 =
2𝑃𝑟 𝑚2

2𝛼4𝛼31−𝑚2𝛼6 

4 1+𝑅2 𝑚2
2+2𝑃𝑟𝑚2−𝑃𝑟𝑖𝜔

;  

𝛼39 =
−2𝑃𝑟 𝑚3

2𝐴1𝛼32 +𝑚3𝛼7 

4 1+𝑅2 𝑚3
2+2𝑃𝑟𝑚3−𝑃𝑟𝑖𝜔

;                                   𝛼40 =
Pr  2𝑚1𝑚2 𝛼3𝛼31 +𝛼4𝛼30 −(𝑚1+𝑚2)𝛼8 

 1+𝑅2  𝑚1+𝑚2 
2+Pr 𝑚1+𝑚2 −𝑃𝑟𝑖𝜔

;                 

𝛼41 =
−Pr 2𝑚1𝑚3 𝐴1𝛼30 +𝛼3𝛼32 +(𝑚1+𝑚3)𝛼9 

 1+𝑅2  𝑚1+𝑚3 
2+Pr 𝑚1+𝑚3 −𝑃𝑟𝑖𝜔

;              𝛼42 =
2𝑃𝑟𝑚1𝑚4𝛼3𝛼33

 1+𝑅2 (𝑚1+𝑚4)2+𝑃𝑟(𝑚1+𝑚4)−𝑃𝑟𝑖𝜔
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𝛼43 =
2𝑃𝑟𝑚1𝑚5𝛼3𝛼34

 1+𝑅2 (𝑚1+𝑚5)2+𝑃𝑟(𝑚1+𝑚5)−𝑃𝑟𝑖𝜔
;                   𝛼44  =

2𝑃𝑟𝑚1𝑚6𝐴7𝛼3

 1+𝑅2 (𝑚1+𝑚6)2+𝑃𝑟 𝑚1+𝑚6 −𝑃𝑟𝑖𝜔
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𝛼45 =
−Pr⁡(2𝑚2𝑚3 𝐴1𝛼31−𝛼4𝛼32 +  (𝑚2+𝑚3) 𝛼10 )

 1+𝑅2 (𝑚2+𝑚3)2+𝑃𝑟(𝑚2+𝑚3)−𝑃𝑟𝑖𝜔
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2𝑃𝑟𝑚2𝑚4𝛼4𝛼33

 1+𝑅2 (𝑚2+𝑚4)2+𝑃𝑟(𝑚2+𝑚4)−𝑃𝑟𝑖𝜔
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𝛼47 =
2𝑃𝑟𝑚2𝑚5𝛼4𝛼34

 1+𝑅2 (𝑚2+𝑚5)2+𝑃𝑟(𝑚2+𝑚5)−𝑃𝑟𝑖𝜔
;                  𝛼48 =

2𝑃𝑟𝑚 2𝑚6𝐴7𝛼4

 1+𝑅2 (𝑚2+𝑚6)2+𝑃𝑟(𝑚2+𝑚6)−𝑃𝑟𝑖𝜔
; 

𝛼49 =
−2𝑃𝑟𝑚3𝑚4𝐴1𝛼33

 1+𝑅2  𝑚3+𝑚4 
2+Pr 𝑚3+𝑚4 −𝑃𝑟𝑖𝜔

;                 𝛼50 =
−2𝑃𝑟𝑚3𝑚5𝐴1𝛼34

 1+𝑅2 (𝑚3+𝑚5)2+𝑃𝑟(𝑚3+𝑚5)−𝑃𝑟𝑖𝜔
; 

𝛼51 =
−2𝑃𝑟𝑚3𝑚6𝐴1𝐴7

 1+𝑅2 (𝑚3+𝑚6)2+𝑃𝑟(𝑚3+𝑚6)−𝑃𝑟𝑖𝜔
;               𝛼52 =

−𝑆𝑐(𝑆𝑟𝑚 1
2𝛼36 +𝑚1𝛼11 )

𝑚1
2+𝑆𝑐𝑚 1−𝑆𝑐𝛿3

; 

 𝛼53 =
−𝑚2𝐴3𝑆𝑐

𝑚2
2+𝑆𝑐𝑚2−𝑆𝑐𝛿3

;       𝛼54 =
−𝑆𝑐𝑆𝑟𝑚4

2𝐴8

𝑚4
2+𝑆𝑐𝑚 4−𝑆𝑐𝛿3

;                   𝛼55 =
−𝑆𝑐 4𝑆𝑟𝑚1

2𝛼37 +2𝑚1𝛼12 

4𝑚1
2+2𝑆𝑐𝑚1−𝑆𝑐𝛿3

; 

𝛼56 =
−𝑆𝑐(4𝑆𝑟𝑚 2

2𝛼38 +2𝑚2𝛼13 )

4𝑚2
2+2𝑆𝑐𝑚2−𝑆𝑐𝛿3

;                               𝛼57 =
−𝑆𝑐(4𝑆𝑟𝑚 3

2𝛼39 +2𝑚2𝛼14 )

4𝑚3
2+2𝑆𝑐𝑚3−𝑆𝑐𝛿3

;                     

𝛼58 =
−𝑆𝑐(𝑆𝑟(𝑚1+𝑚2)2𝛼40 +(𝑚1+𝑚2)𝛼15 )

(𝑚1+𝑚2)2+𝑆𝑐(𝑚1+𝑚2)−𝑆𝑐𝛿3
;               𝛼59 =

−𝑆𝑐(𝑆𝑟(𝑚1+𝑚3)2𝛼41 +(𝑚1+𝑚3)𝛼16 )

(𝑚1+𝑚3)2+𝑆𝑐(𝑚1+𝑚3)−𝑆𝑐𝑇3
; 

𝛼60 =
−𝑆𝑐𝑆𝑟 (𝑚1+𝑚4)2𝛼42

(𝑚1+𝑚4)2+𝑆𝑐(𝑚1+𝑚4)−𝑆𝑐𝛿3
;                       𝛼61 =

−𝑆𝑐𝑆𝑟 (𝑚1+𝑚5)2𝛼43

(𝑚1+𝑚5)2+𝑆𝑐(𝑚1+𝑚5)−𝑆𝑐𝛿3
; 

𝛼62 =
−𝑆𝑐𝑆𝑟 (𝑚1+𝑚6)2𝛼44

(𝑚1+𝑚6)2+𝑆𝑐(𝑚1+𝑚6)−𝑆𝑐𝛿3
;                      𝛼63 =

−𝑆𝑐(𝑆𝑟(𝑚2+𝑚3)2𝛼45 +(𝑚2+𝑚3)𝛼17 )

(𝑚2+𝑚3)2+𝑆𝑐(𝑚2+𝑚3)−𝑆𝑐𝛿3
; 

𝛼64 =
−𝑆𝑐𝑆𝑟 (𝑚2+𝑚4)2𝛼46 )

(𝑚2+𝑚4)2+𝑆𝑐(𝑚2+𝑚4)−𝑆𝑐𝛿3
;                     𝛼65 =

−𝑆𝑐𝑆𝑟 (𝑚2+𝑚5)2𝛼47

(𝑚2+𝑚5)2+𝑆𝑐(𝑚2+𝑚5)−𝑆𝑐𝛿3
; 

 𝛼66 =
−𝑆𝑐𝑆𝑟 (𝑚2+𝑚6)2𝛼48

(𝑚2+𝑚6)2+𝑆𝑐(𝑚2+𝑚6)−𝑆𝑐𝛿3
;                     𝛼67 =

−𝑆𝑐𝑆𝑟 (𝑚3+𝑚4)2𝛼49

(𝑚3+𝑚4)2+𝑆𝑐(𝑚3+𝑚4)−𝑆𝑐𝛿3
;  

𝛼68 =
𝑆𝑐𝑆𝑟 (𝑚3+𝑚5)2𝛼50

(𝑚3+𝑚5)2+𝑆𝑐(𝑚3+𝑚5)−𝑆𝑐𝛿3
;                       𝛼69 =

𝑆𝑐𝑆𝑟 (𝑚3+𝑚6)2𝛼51

(𝑚3+𝑚6)2+𝑆𝑐(𝑚3+𝑚6)−𝑆𝑐𝛿3
; 

𝛼70 =
−(𝑚1𝛼18 +𝐺𝑟𝛼36 +𝐺𝑚𝛼52 )

𝑚1
2+𝑚1−𝛿2

;       𝛼71 =
−(𝑚2𝛼19 +𝐺𝑚𝛼53 )

𝑚2
2+𝑚2−𝛿2

;         𝛼72 =
−𝑚3𝐴4

𝑚3
2+𝑚3−𝛿2

;  

𝛼73 =
− 𝐺𝑟𝐴8+𝐺𝑚𝛼54 

𝑚4
2+𝑚4−𝛿2

;                    𝛼74 =
−𝐺𝑚𝐴9

𝑚5
2+𝑚5−𝛿2

;            𝛼75 =
− 2𝑚1𝛼20 +𝐺𝑟𝛼37 +𝐺𝑚𝛼55 

4𝑚1
2+2𝑚1−𝛿2

;  

𝛼76 =
− 2𝑚2𝛼21 +𝐺𝑟𝛼38 +𝐺𝑚𝛼56 

4𝑚2
2+2𝑚2−𝛿2

;                                                    𝛼77 =
− 2𝑚3𝛼22 +𝐺𝑟𝛼39 +𝐺𝑚𝛼57 

4𝑚3
2+2𝑚3−𝛿2

;                                                      

𝛼78 =
− (𝑚1+𝑚2 𝛼23 +𝐺𝑟𝛼40 +𝐺𝑚𝛼 58 )

(𝑚1+𝑚2)2+ 𝑚1+𝑚2 −𝛿2
                                       𝛼79 =

− (𝑚1+𝑚3 𝛼24 +𝐺𝑟𝛼41 +𝐺𝑚𝛼 59 )

(𝑚1+𝑚3)2+ 𝑚1+𝑚3 −𝛿2
; 

𝛼80 =
− 𝐺𝑟𝛼42 +𝐺𝑚𝛼 60  

(𝑚1+𝑚4)2+ 𝑚1+𝑚4 −𝛿2
;                                             𝛼81 =

−(𝐺𝑟𝛼43 +𝐺𝑚𝛼 61 )

(𝑚1+𝑚5)2+ 𝑚1+𝑚5 −𝛿2
;   

𝛼82 =
−(𝐺𝑟𝛼44 +𝐺𝑚𝛼 62 )

(𝑚1+𝑚6)2+ 𝑚1+𝑚6 −𝛿2
;                                        𝛼83 =

− (𝑚2+𝑚3 𝛼25 +𝐺𝑟𝛼45 +𝐺𝑚𝛼 63 )

 𝑚2+𝑚3 
2+ 𝑚2+𝑚3 −𝛿2

 ;    

𝛼84 =
−(𝐺𝑟𝛼46 +𝐺𝑚𝛼 64 )

(𝑚2+𝑚4)2+ 𝑚2+𝑚4 −𝛿2
;      𝛼85 =

−(𝐺𝑟𝛼47 +𝐺𝑚𝛼 65 )

(𝑚2+𝑚5)2+ 𝑚2+𝑚5 −𝛿2
;   𝛼86 =

−(𝐺𝑟𝛼48 +𝐺𝑚𝛼 66 )

(𝑚2+𝑚6)2+ 𝑚2+𝑚6 −𝛿2
; 

 𝛼87 =
−(𝐺𝑟𝛼49 +𝐺𝑚𝛼 67 ) 

(𝑚3+𝑚4)2+ 𝑚3+𝑚4 −𝛿2
;    𝛼88 =

−(𝐺𝑟𝛼50 +𝐺𝑚𝛼 68 )

(𝑚3+𝑚5)2+ 𝑚3+𝑚5 −𝛿2
;   𝛼89 =

−(𝐺𝑟𝛼51 +𝐺𝑚𝛼 69 )

(𝑚3+𝑚6)2+ 𝑚3+𝑚6 −𝛿2
;  

 𝛼90 = −1;             𝐴1 = 𝛼3 + 𝛼4 − 1;                      𝐴2 = − 𝛼5 + 𝛼6 + 𝛼7 + 𝛼8 + 𝛼9 + 𝛼10 ;          

𝐴3 = − 𝛼11 + 𝛼12 + 𝛼13 + 𝛼14 + 𝛼15 + 𝛼16 + 𝛼17 ;                  

 𝐴4 = −(𝛼18 + 𝛼19 + 𝛼20 + 𝛼21 + 𝛼22 + 𝛼23 + 𝛼24 + 𝛼25);                              𝐴5 = −𝛼26 ; 

𝐴6 = − 𝛼27 + 𝛼28+𝛼29 ;                              𝐴7 = − 𝛼30 + 𝛼31 + 𝛼32 + 𝛼33 + 𝛼34 + 𝛼35 ;  

𝐴8 = − 𝛼36 + 𝛼37 + 𝛼38 + 𝛼39 + 𝛼40 + 𝛼41 + 𝛼42 + 𝛼43 + 𝛼44 + 𝛼45 + 𝛼46 + 𝛼47 + 𝛼48 + 𝛼49 + 𝛼50 +

𝛼51;   

𝐴9 = − 𝛼52 + 𝛼53 + 𝛼54 + 𝛼55 + 𝛼56 + 𝛼57 + 𝛼58 + 𝛼59 + 𝛼60 + 𝛼61 + 𝛼62 + 𝛼63 + 𝛼64 + 𝛼65 + 𝛼66 + 𝛼67

+ 𝛼68 + 𝛼69 ; 

𝐴10 = − 𝛼70 + 𝛼71 + 𝛼72 + 𝛼73 + 𝛼74 + 𝛼75 + 𝛼76 + 𝛼77 + 𝛼78 + 𝛼79 + 𝛼80 + 𝛼81 + 𝛼82 + 𝛼83 + 𝛼84 + 𝛼85

+ 𝛼86 + 𝛼87 + 𝛼88 + 𝛼89 + 𝛼90 ; 


