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Abstract In this paper, we use the existing conclusions of unitary invariant norm inequalities to present some 

inequalities under certain conditions of the Frobenius norm of the complex matrix, at the same time, we extend 

the corresponding results. 
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1. Introduction 

For a complex number ibax  , where ba,  are all real, we write ,Re ax  bx Im , as usual , let 
nmC 

 

be the set of nm  complex matrices, nU  be the set of all nn  unitary matrices, A  be an nn  matrix, 

denote the eigenvalues of A  by  Ai , the singular values of A  by  Ai , the trace of A  by trA , the 

associate matrix of A  by 
HA  , and the Frobenius norm of m n  complex matrix by 

  ,
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,
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A great deal of work on the topic has been done by a number of authors  2 6 , in 1979, Marshall and Olkin  

gave the following inequality  3  

                    
EE

BAUVBA  *
                       (1.1) 

Where BA,  are complex matrices， , ,U V  are unitary matrices and   *** VABUAB  ． 

In1999，Wang boying extended the (1.1), made it also valid in unitary invariant norm
 4

, and got the equality 

  
uiuiui

BAUBVABA                    (1.2) 

Where BA,  are complex matrices， ,U V are unitary matrices , 
ui

  is the unitary invariant norm． 

The purpose of this paper is to use the existing conclusions to present some inequalities under certain conditions 

of the Frobenius norm of the complex matrix, and extend the results of Wang boying. 

 

2. Main Results 

Theorem 1.  Let A  and B  be nn  complex matrices, and C  be mm  complex matrix，W  be nm  

complex matrix, 
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(1) If    0Re  WCWBAtr HHH
and

FF

H BCWW  ，then 
F

H

F
CWWABA  ； 

(2) If    0Re  WCWBAtr HHH
and

FF

H BCWW  ，then 
F

H

F
CWWABA  ； 

(3) If    0Re  WCWBAtr HHH
and

FF

H BCWW  ，then 
F

H

F
CWWABA  ． 

Proof. We first show (1). 

 ( ) 0 2 ( ) ( )H H H H H HRe tr A B W C W Re tr AB Re tr AW C W     

                        ( ) ( )H H H H H Htr AB B A tr AW C W A W CW     

( ) ( ) ( )H H H H H

FF
W CW B tr W CW W CW tr B B      

( ) ( )H H H Htr W C WW CW tr B B   

Thus, we have 

2

( ) ( )H H H H

F
A W CW tr A W CW A W CW     

( )H H H H H H H Htr A A W C WW CW A W CW AW C W     

( )H H H Htr A A B B AB B A     

( ) ( )Htr A B A B  
2

F
A B  . 

Then we show (2). 

 ( ) 0 2 ( ) ( )H H H H H HRe tr A B W C W Re tr AB Re tr AW C W     

( ) ( )H H H H H Htr AB B A tr AW C W A W CW     

( ) ( ) ( )H H H H H

FF
W CW B tr W CW W CW tr B B      

( ) ( )H H H Htr W C WW CW tr B B   

Thus, we have 

2

( ) ( )H H H H

F
A W CW tr A W CW A W CW     

( )H H H H H H H Htr A A W C WW CW A W CW AW C W     

( )H H H Htr A A B B AB B A     

( ) ( )Htr A B A B  
2

F
A B  . 

The (1) and (2) yield the right of (3). The proof is completed. 

If W is any unitary matrix , and its Frobenius  norm is unitary invariant norm, then, 

H

F FF
W CW C B  , it satisfy the conditions of Theorem1, thus, the following result holds.  

Corollary 1.  Let A , B and C  be nn  complex matrices，W  be nn  unitary matrix, then  

(1)     If    ( ) 0HRe tr A B W CW      and    
F F

C B ，    then 

H

F F
A B A W CW   ； 

(2)     If    ( ) 0HRe tr A B W CW     and    
F F

C B ，   then 

H

F F
A B A W CW   ； 
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(3)     If   ( ) 0HRe tr A B W CW        and    
F F

C B ,    then 

H

F F
A B A W CW   ． 

Remark 1.  If C B  in Corollary1 ，it is easy to see the following inequalities  hold. 

(1)  If  ( ) 0HRe tr A B W BW  ，then  

H

F F
A B A W CW   ；                      (2.1) 

(2)  If  ( ) 0HRe tr A B W BW  ，then  

H

F F
A B A W CW   ；                     (2.2) 

(3)  If  ( ) 0HRe tr A B W BW  ，then 

                         
H

F F
A B A W CW   ．                                (2.3) 

The (2.1) is the inequality of the theorem 2.4 in [5]. 

Theorem 2. Let A , B and C  be nn  complex matrices，W  be nn  unitary matrix, if

  0H H HRe tr AW C W A B  and 
F F

C B ，then       

H

FF
A W CW A B   ．                      (2.4) 

Proof.     ( ) ( )H H

F F
C B tr C C tr B B   , 

( ) 0H H HRe tr AW C W A B  ( ) 0H H H H H Htr AW C W A W CW A B B A      

( ) ( )H H H H H Htr A B B A tr AW C W A W CW      

thus 

2

( ) ( )H H H H

F
A W CW tr A W CW A W CW     

( )H H H H H H Htr A A W C CW A W CW AW C W     

( ) ( )H H H H H Htr A A C C tr A W CW AW C W     

( )H H H Htr A A B B A B B A     

( ) ( )Htr A B A B  
2

F
A B  . 

The proof is completed． 

Corollary 2 Let A  and B  be positive semidefinite matrices, W  be any unitary matrix, then 

 
H

FF
A W BW A B   ．                       (2.5) 

Proof.  For 0A  ， 0B  ，notice that 0HW BW  ，then 

1

( ) ( )
n

H H

i

i

tr AW BW AW BW


 1

1

( ) ( )
n

H

i n i

i

W BW A   



  

1

1

( ) ( ) 0
n

i n i

i

B A   



  , 

1

( ) ( ) ( )
n

H

i

i

tr A B tr AB AB


  1

1

( ) ( ) 0
n

i n i

i

A B   



  , 
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Hence, we get 

( ) ( ) ( ) 0H H H H HRe tr AW C W A B tr AW BW tr A B    . 

Particularly, for C B , by Theorem2, the inequality(2.5) is completed． 

Remark 2. The Theorem2 in [4] point that : If ,A B are complex matrices, 

1 2( ( ) , ( ) , , ( ))nA diag A A A     ， 1 2( ( ) , ( ) , , ( ))nB diag B B B     ,where 

1 1( ) ( ) 0 ( ) ( ) 0.n nA A B B         ，  Let ,U V are unitary matrices, then 

A VBU A B    ， 

Where   is the unitary invariant norm． 

Particularly, let unitary invariant norm be Frobenius norm such that 
HV U ，then, we get 

H

FF
A U BU A B               (2.6) 

if A and B are diagonal and positive semidefinite matrices, then ,there is an unitary matrix P  , leads to 

1

HP AP   ,
2

HP BP   , w h e r e
1 21 ( ( ) , ( ) , , ( ))

nj j jdiag A A A     , 

1 22 ( ( ) , ( ) , , ( ))
nk k kdiag B B B     . 

So by Theorem 2, we get 

22
( )H

F F
A B P A B P    

1 1

2

(( ( ) ( )) ( ( ) ( )) )
i ij k j k

F
diag A B A B         

2

1 2 F
   2

1

( ( ) ( ))
i i

n

j k

i

A B 


   

2 2

1 1 1

( ) ( ) 2 ( ) ( )
i i i i

n n n

j k j k

i i i

A B A B   
  

      

2 2

1 1 1

( ) ( ) 2 ( ) ( )
n n n

i i i i

i i i

A B A B   
  

      

22

1

( ( ) ( ) )
n

i i F
i

A B A B  


    , 

Thus, 

H

F FF
A U BU A B A B      . 

Obviously, the Corollary2 extended the conclusions of [4]. 
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