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Abstract OEMs have begun manufacturing multiple portable de- vices for different consumer usages 

(smartphones, e-Book readers, web browsers), all while running the same OS. Motorola Droid and Xoom run 

the same Android OS for different purposes, but share the same user interface, ap- plications, and data to some 

extent. Same is the case with Apple iPhone and iPad (iOS), and the Samsung Galaxy Mobile and Tablet. Each 

device maintains its own user interface, application collections, and data. It would be beneficial if a complete 

OS could be shared or synchronized on these devices for a multitude of reasons in which we will discuss in this 

paper. 

We demonstrate a secure mobile VM Suspend & Resume functionality by building SyncOS, a kernel using 

OKL4 as a basic building block for storing our VM state in the cloud. OKL4 is a mobile VMM (hypervisor) 

pro- viding virtualization for mobile devices. The OKL4 architecture allows for running multiple guest OSes on 

the mobile devices whilst providing security and isolation in a cross-platform manner. VM Suspend & Resume 

is used heavily in desktop/server hypervisors and extensively in cloud computing environments. Its usefulness 

arises for such purposes as OS backups, live VM migration, sandbox testing, automatic failovers, standardized 

enterprise OS deployments, and secure OS delivery for the private sector. 

 

Keywords Cloud-enabled, VM State Manager 

1. Introduction  

Mobile operating systems should offer more portability as manufacturers are continually refreshing the 

hardware chipsets and form factors. Without the ability to keep our OSes synchronized on different devices, we 

must install the same native applications on each device OS we own. We are proposing the process could be 

make simpler by providing a means of state management using a snapshotted VM from another mobile device 

running SyncOS. SyncOS relies on geographically distributed cloud data centers for remote checkpoint image 

storage to avoid docking your device or using native storage for state transfers. SyncOS will allow you to 

resume your smartphone environment directly on your tablet, slate, or larger form factor devices, or possibly 

even to an upgraded smartphone. Al- though in some cases, this state management could be useful for a 

multitude of other benefits such as sharing your customized environment with a friend or colleague. 

Existing VMM products do not address secure check- pointing across mobile device platforms without using 

native storage (SD Card, USB Drive) and physically wired network connections (USB, Ethernet) for state 

transfer. Commercial VMMs, such as Hyper-V, XenServer, KVM, vSphere, and Virtual Box rely on State 

Managers for their guest OSs. Current mobile operating systems only sup- port state management of 

applications (tombstoning) and not checkpointing the entire OS. This is primarily driven from the limitation of 

local storage on the mobile devices and potential complexities during system resume. Storing VMs to the cloud 

instead a local SAN or NAS has also been studied, but only as it relates to servers [18, 41]. Using thin clients, 

such as VNC to access remote machine environments suffers from network latency and jitter [39]. Thin clients 

also don’t provide the same rich interaction a na- tive VM could provide. OpenISR supports VM migration to a 
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remote server, but not do a geographically distributed cloud data center [37]. ISR also only supports Linux and 

other monolithic kernels - not the security-minded OKL4. 

Mobile devices are resource constrained by network bandwidth and local storage size. Sharing mobile OS state 

with public storage places a risk for data interception with- out a secure transfer process. Current mobile 

devices, such as iOS will not enable snapshots of their state without docking directly to a workstation. With the 

often small device storage support for smartphones, there generally isn’t anywhere locally to store the large 

image a mobile device could potentially consume. Limited network band- width also presents challenges if you 

want to store guest OS state remotely with smartphone devices reaching 16GB and tablets storage now growing 

as high as 64GB. Mobile OSs don’t currently have an easy way to persist state or snapshot their current 

workload, as well as resume from a past checkpoint. 

SyncOS supports securely addressable VM images us- ing cloud storage (with shared access signatures) and a 

se- cure microkernel-based guest OS checkpointing applica- tion. Mobile VM management is important for 

purposes of a remote backup facility, VM image sharing, standard- ized enterprise deployments, secure 

government VMs [12], synchronized OS across platforms (Android, iOS), as well  

 
Figure 1: SyncOS - Environment Overview. Migration between devices using wireless communication. 

 

as same platform synchronization (Droid vs. Xoom). Our implementation approach uses OKL4 microvisor to 

host the guest OS (OK:Android) and SyncOS VMs. We plan to snapshot the guest VM image, and persist the 

captured snapshot remotely to cloud storage where it can be accessi- ble via a secured URI. At some point later, 

we can use the same URI to download and resume the checkpointed VM image on another device running 

SyncOS. 

We anticipate that we can capture the state of multiple VM guest OSes running SyncOS such as OKL4:Android 

and OKL4:Linux. We initially plan to capture state locally and resume from the OKL4 desktop emulator 

(QEMU). As time permits, we plan to extend this local VM storage model into the cloud by using existing cloud 

REST APIs for storage and retrieval. Once implemented, we would like to demo SyncOS on real Android-based 

devices. 

The rest of this paper is organized as follows. Section 2 discusses the challenges and design principles of 

SyncOS. Section 3 describes the SyncOS system design. Section 4 covers the implementation of the SyncOS 

system. Section 5 discusses the evaluation of SyncOS. Section 6 explains some of the related work done in this 

area. Section 7 de- scribes the conclusion and some of the future work. 
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2. Challenges & Design Principles 

Our goals for SyncOS are to make migration easier across device boundaries. In this section we will cover some 

of the challenges in greater depth before diving into the de- tailed system design. Figure 1 above depicts the 

environ- ment capabilities we wish to achieve. 

2.1 Challenges 

Capturing state on mobile devices introduces new chal- lenges due to the constraints imposed on battery power, 

device size, and storage size. Most mobile devices today only run a single native OS. To support mobile OS 

snap- shots, we will need some way to manage the OS state. The common way for desktops and servers to 

achieve this is by using a hypervisor layer, or VMM, to manage the Guest OS state. Hypervisor layers will also 

enable concurrent OS execution - something we expect to be more common in the future.  

With concurrent OS execution on the same platform (as VMs), we would like to guarantee secure data and 

process isolation between each OS instance. Our basic approach to this challenge is to use a microkernel 

hypervisor to guar- antee that no running thread can access another running threads data without explicit IPC 

commands. Microker- nels small kernel size also reduce the TCB, ensuring that security vulnerabilities are 

minimized. 

After securing our running VMs above a microkernel, we would like to store the OS snapshot data somewhere it 

can be shared with another SyncOS-aware device. Since mobile device storage is typically limited, we need a 

cloud provider that we can persist our VM state to and then re- trieve it using a secure channel. There are no 

guarantees the device we are transferring state to are line-of-sight or within Bluetooth range to easily 

communicate with them. By using a remote cloud facility, we introduce network la- tency and increased power 

consumption, but provide data redundancy and secure storage and retrieval to offset the cost. Our cloud storage 

approach also avoids Bluetooth pairing, device docking, or infrared state transmissions.  

Another important problem occurs if our state backups exist locally on the physical device. If the device 

becomes lost or stolen, or possibly ruined by hardware failures - there may be no way to retreive state from the 

local storage. Our cloud model also covers this gap by keeping a history of checkpoints from previous state 

captures (similar to Mi- crosoft Windows System Restore history) and stores them remotely. Using this 

approach covers us in the event of device failure or misplacement. 

Once we have achieve state storage, we need to sup- port resuming VM state using another device. This can be 

achieved only if the receiving device knows where the state resides and also has a shared hypervisor core to 

understand how the VM can be natively resumed. 

2.2 Design Principles 

2.2.1 OKL4 Microvisor 

Open Kernel Labs [35] has developed an open source mo- bile hypervisor called OKL4 Microvisor. OKL4 

Microvi- sor is a microkernel [25] and hypervisor that provides a ro- bust, secure and scalable architecture 

called Secure Hyper- Cell technology shown in Figure 2. This technology is for hosting multiple unprivileged 

(user) mode isolated envi- ronments (cells) that contain applications, virtual machines and subsystems. OKL4 

Microvisor also provides fast IPC communication between environments (cells). OKL4 Mi- crovisor hardware 

support includes popular processor ar- chitecture ARM, MIPS, and Intel. OKL4 Microvisor cur- rently does not 

provide a service for managing guest OS states. 

2.2.2 Cloud Storage Providers 

Cloud Storage Providers exist for both public and private clouds. An enterprise environment may find value in 

host- ing their own cloud depending on how their devices need to interact, but in most cases we see the 

economic value of public clouds to be more feasible. We only need an HTTP BLOB storage API to consume 

since we are strictly deal- ing with VM state data storage and retrieval, but ideally, 
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Figure 2: OKL4 Secure HyperCell Technology. 

 

we would have a reusable service layer to handle this in- terfacing. Using Microsoft Azure, we can strictly rely 

on an HTTP REST-style interface without the need for a com- plex user-level libary embedded within the 

kernel. 

 

3. SyncOS Design 

Our design for SyncOS was to take the OKL4 Microvisor and add two secure cells. The first hypercell contains 

the guest OS OK:Android and the second contains SyncOS. The OKL4 microvisor already has support for 

display, stor- age, and networking drivers which we will leverage using synchronous IPC calls. Figure 3 depicts 

the structure de- scribed. The SyncOS cell is responsible for suspending and resuming the VM state as well as 

cloud data storage and retrieval. 

 
Figure 3: SyncOS - secure checkpoint and resume for portable devices using cloud data storage. 

 

3.1 SyncOS Hypercell 

SyncOS will contain two primary independent segments - the Cloud Storage application and 

Checkpoint/Resume ap plication. SyncOS is essentially a patched OK:Linux ker- nel. We prefered to use 

OK:Linux for simplicity, and even- tually it will be shrink to reduce the TCB for the unneces- sary components. 

While ckeckpointing, the cloud storage application will take the image from the kernel and upload it to the 

server with some security. During the resume, the storage application will download the image from the server 

and notify it to resume application. The Check- point/Resume application will trigger the checkpointing or 

restore operation of the guest os on the OKL4 kernel. The kernel is responsible for performing the actual 

checkpoint- ing and restore operation.  

3.2 Guest OS Hypercell 

OK:Android was our targeted guest OS used for check- pointing the system state. Our plan is to have a user 

man- aged application trigger the checkpointing or resume pro- cess. Once the checkpoint request has been 

initiated by a user, an IPC message will be sent to the SyncOS Check- point application. The Checkpoint 

application will respond with a confirmation and guest OS shutdown request. The OK:Android kernel state will 

be captured and simultane- ously trigger the Cloud Storage application for persisting the capture state. Our 

Cloud Storage application will write locally to disk during our initial development. Once the lo- cal state has 
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been capture, the cloud storage API will be in- serted and consume the network drivers and TCP/IP stack for 

managing the guest OS snapshot state remotely. 

 
Figure 4: SyncOS - Development Environment. Control flow for building SyncOS ELF image to execution 

 

3.3 OKL4 Kernel 

The OKL4 Kernel will implement the two new system calls in order to accept the request for snapshot or restore 

from the SyncOS application. These two system calls will es- sentially trigger the checkpoint or restore 

algorithm. The algorithms will be implemented in the kernel space be- cause it is easier to access the guest OS 

information from kernel. Since the OKL4 doesn’t support any direct commu- nication and data sharing between 

kernel and cell, the cap- tured image has to be stores on some physical media(e.g. Flash). In order to store the 

captured image, the kernel has to be modified to support the some sort of file system. The device driver for the 

flash media will be added inside the kernel to read and write the image data. 

3.4 Cloud Provider Integration 

Utilizing a public cloud provider does present some secu- rity concerns for user privacy. Since user data is being 

per- sisted remotely, users want to know how their data is being protected from prying eyes and that it cannot be 

compro- mised. Microsoft Azure provides a content delivery pro- cess that enables us to share blob data using 

URIs that are tied to SAS (shared access signatures) [32] which can only be used until a specified lease expires 

access to a given data stream. Essentially, this protection provides a way for users to share their state with 

friends indefinitely, never, or only for a short period of time (say 2 hours) to limit the op- portunity for attackers 

to compromise the URI in the event that it is discovered or intercepted. 

A typical Azure blob endpoint URI will be formatted as 

http://syncos.blob.core.windows.net/captures/oklinux.sync? st=2011-05-10&se=2011-05-11&sr=c&sp=r& 

si=YWJjZGVmZw&sig=dD80ih...Bh5jf. In this ex- ample, the st (start time) and se (expiry time) defines how 

long the lease is valid, while the sig (signature) parameter defines a cryptographic hash of the querystring 

parameters using a private key. The signature prevents attackers from simply altering the URI lease to extend its 

validity. 

Another concern for users is data interception during transmission. A potential solution is to encrypt the VM 

state data prior to data transfer and decrypting prior to restoring the VM state. This approach would require 

some sort of trusted certificate publisher, but could handle data while in transit. HTTP SSL could also provide 

another layer of protection while communicating with the Azure APIs. 

3.5 Design Alternatives  
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We also looked at other implementation approaches that involve capturing process state from two devices 

running that same OKL4 merged ELF image. CRAK [8] is a ker- nel module for Linux 2.6 that supports 

suspend/resume of user-level processes. This project provided inspiration for our state capture and resume. 

However, it did not capture kernel state and thus did not provide enough capabilities for our needs. 

 

4. Implementation 

The OKL4 Microvisor provides the building block for our SyncOS solution. The prototype system will con- tain 

two paravirtualized OKL4 Guest OSes (OK:Linux and OK:Android). 

4.1 OKL4 Environment Setup 

The OKL4 development environment was intensive to setup. Some of the build requirements for various 

workarounds - such as specific GCC requirements (version 3.4) and Python which made installing it on the 

latest linux distros quite cumbersome. Here we detail the steps we took to create a mock environment for our 

SyncOS system as described in Figure 4. 

We first downloaded the OKL4 source and attempted to build the OKL4 Microvisor for OK:Linux, as we had 

some issues with compiling OK:Android. We compiled the OKL4 3.0 kernel image and built it using OK-Labs 

custom GNU toolchain and EABI. Once the ELF image was built, we ran the OK kernel in the QEMU emulator 

on Ubuntu 10.04 to simulate ARM versatile platform. QEMU handles the cross-compilation of various 

architectures (x86 and ARM). For the OK:Linux compilation, a specific ker- nel patch had to be applied. The 

custom environment also required Python 2.4, path configuration changes, and mod- ification of OKL4 build 

python scripts for your local envi- ronment. 

We ran into issues with Ubuntu 10.04 not displaying a login prompt after bootup (possibly a GDM linking 

issue). We did find a reboot workaround, but we suspect a con- flict with the Python or GNU toolchain/EABI 

dependen- cies. We had this same issue occur for both physical and virtual Ubuntu environments. The potential 

workarounds we discovered invovle enabling auto-login for the user ac- count and installing Python using the 

”altinstall” option. The combination of these two items seemed to have en- abled a reboot to not permanently 

disable the demo envi- ronment. 

4.2 OKL4 Kernel Modifications  

In order to implement the checkpoint and restore algo- rithm, after the research on OKL4 kernel, it was easier to 

implement those in the OKL4 kernel itself. OKL4 ker- nel itself has the knowledge of all the cells it initialized, 

it knows the exact memory space allocated for each cell. It is easier to implement the core checkpointing and 

restore algorithm in kernel and provide the interfaces to the appli- cation to invoke the algorithm. 

The application or cells in OKL4 can communicate with the kernel only via a system calls. Inorder to send the 

re- quest for checkpoint or restore from application we had to add two new system calls, Checkpoint Request 

and Re- store Request. Whenever SyncOS triggers the Checkpoint System Call, the OKL4 kernel will take a 

snapshot of the requested guest OS cell. Similarly, when SyncOS triggers the Restore System Call, the OKL4 

will record the restore request and trigger the reboot. 

The exact functioning of the Checkpoint and Restore operation is explained using the Message Sequence Chart 

shown in Figure 5 & 6. 

 
Figure 5: SyncOS - message sequencing for VM bootup and checkpoint operations. 

 

Figure 5 depicts the initial boot process and checkpoint operation. When the device boots, OKL4 is initialized 

which creates all the cells which are linked at the build time. Along with those cells, our SyncOS cell will also 
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be initialized. When the user triggers the Checkpoint re- quest to SyncOS, the SyncOS will issue the Checkpoint 

Request System Call to OKL4 and OKL4 will snapshot the requested OS. Once the snapshot is done, it will then 

send the image back to SyncOS. Now the SyncOS will upload the image on the server. 

 
Figure 6: SyncOS - message sequencing for VM restore operation. 

 

Figure 6 explains the restore operation. When the user triggers the Restore Request to SyncOS, the SyncOS will 

download the image from the server and will save it lo- cally to be shared with the kernel. Once the download is 

complete, it will issue the Restore Request System Call. The OKL4 kernel will record the restore request for the 

desired cell (guest OS) and reboot the device. At the time of initializing the cells, OKL4 will check for the 

restore request and if the restore is requested, it will initialized the stack, registers and globals based on the local 

image saved earlier. This way the saved image will be restored on the same device or other device. 

4.3 Storing Guest OS States To The Cloud 

Our implementation goal was modify the capture and re- store daemon processes to use cloud (virtual) storage 

[18] to access the Guest OS mementos/parcels (file images). We planned to use the Microsoft Azure Storage 

API web ser- vices to safely interact with user storage accounts.Due to time constraints we were not able to fully 

implement this portion of the project. 

 

5. Experimental Evaluation 

This section describes our evaluation of SyncOS. We dis- cuss our experimental results based upon system 

expec- tations and typical usage scenarios for SyncOS as dis- cussed in Section 4.1. We also look at the 

migration approach, storage mechanism, overall performance, and lessons learned. 

5.1 Migration Time Estimates 

Below are the graphs relating to the downtime of a device which is being captured and then restored to another 

de- vice using a cloud provider as an intermediary. Depend- ing upon device state size, which varies by user, we 

chart various state sizes for comparison of downtime. We used average cellular upload and download speeds 

available on the web [38]. Each chart depicts the assumptions relating to network speed. 

5.1.1 Migration Time - Stop & Copy Suspend 

The VM capture size varies based upon kernel state size and user data. Our demonstration environment 

averaged a capture size of 10MB for OK:Linux without any user apps (using BusyBox utility). The capture time 

is based on upload speed to cloud provider which is determined by wireless connection type (WiFi - 802.11 or 

Cellular 3G). As cellular speeds increase, the capture time should shrink proportionately. Since our base state 

size was 10MB, we plot increasing state sizes 5x, 10x, and 20x the base to present some likely scenarios in 

Figure 7 to demonstrate real-world usage. 

 
Figure 7: SyncOS - Capturing VM state, expected down- time for a stop-and-copy migration approach. 
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5.1.2 Migration Time - Stop & Copy Resume  

The VM restore time is based on download speed to cloud provider and system reboot time which depends on 

device boot configuration and hardware. Using our emulator as a baseline since we haven’t deployed to an 

actual device, we are assuming an average boot time of 10 seconds based upon the QEMU emulator 

environment we created in Sec- tion 4.1. In Figure 8, we share our approximate restoration time which should 

typically be faster given that download speeds often exceed upload speeds on the network. We also use the 5x, 

10x, and 20x multipliers to show how state size affects the restore time of the VM state across device 

boundaries. 

 
Figure 8: SyncOS - Restoring VM state, expected down- time for a stop-and-copy migration approach. 

 

5.1.3 Migration Time - Full Stop & Copy 

In Figure 9 we combine both VM Checkpoint & Restore costs to provide a central view of the downtime 

involved when a user triggers the device to device state transfer. De- pending on how SyncOS is utilized, the 

entire migration time may or may not be a factor. If the user only wishes to provide a fault-tolerant backup of 

their device state into the cloud, we don’t incur the resume downtime overhead, only the suspend costs. 

 
Figure 9: SyncOS - full VM state transfer, expected down- time for a stop-and-copy migration approach. 

 

5.2 Migration Approach 

Our SyncOS snapshot strategy of stop-and-copy provides a quick win as it relates to a proof of concept model. 

However, it would be nice to minimize any downtime in- curred by the user by performing live or pre-copy 

migra- tions which we discuss in Section 7.2. The SyncOS archi- tecture is at the mercy of wireless networks, 

but one of our goals is to make the migration process easy for the users who are on the go and don’t want to 

have to dock their de- vice each time they want to switch contexts. We think our migration strategy will become 

better adopted as the net- work speeds continue to increase and bandwidth catches up with our on-demand 

device state sharing. 

5.3 Storage Mechanism 

Microsoft Azure allows us to store entire state image as a single blob (1TB max file size). Azure Blob Storage 

also provides redundancies by copying blob data across 3 nodes to embrace failed hardware or software issues. 

This strat- egy helps prevent corruption if we were only writing the state locally which could not provide this 

level of data pro- tection. We can also pick our data center region to be ge- ographically local to where we 

physically are to minimize network latency. 
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Current Azure APIs require cloud accounts, but using this model we have developed, our SyncOS platform 

could be sold as an add-on service by cellular providers or soft- ware OS vendors. The cloud provider could 

easily be swapped in or out to meet the needs of the public sector, private sector, or standard home user. 

5.4 Overall Performance 

An important questions we have to ask is whether we could potentially reach a usable system state that con- 

sumers would actually utilize - given some of the above charts depicting snapshot capture & restore time. We 

re- alize this research has opened up new ideas and we hope that others can use our findings to continue to open 

new avenues of research with mobile VMMs and device state sharing. Regardless of what’s currently possible, 

we are looking to the future of mobile computing and what values we can bring without regard to the present 

infrastructure or hardware limits. 

5.5 Lessons Learned 

5.5.1 Ubuntu - Logon Reboot Issue (autologin, python alt-install option) 

As described in the above section, our development and validation environment is based on Ubuntu v 10.1. In 

or- der to get the base environment establish we had to resolve the lot of dependencies about the packages on 

Ubuntu. Be- cause of lack of documentation, we learned and resolve these one by one. At Out of all the 

dependent packages, the certain version GCC and Python has to be installed. Once we install all the packages, 

we faced the login issue after reboot. This was caused by some Python conflict. We could overcome this 

problem by installing the version of Python as alternate package and making the Ubuntu as autologin. 

5.5.2 Micro vs. Nano OKL4 Versions (multicell capabilities) 

OKL4 can be built with the capabilities of Nano Kernel or Micro Kernel. The choice of kernel to be built is 

speci- fied at the build time. The Nano Kernel provides the sub- set of the features of Micro Kernel. Since our 

experiment required the Multicell capability of the kernel in order to support the guest OS and SyncOS at the 

same time, we learned that we needed the Micro kernel. It took us a while to figure out how to compile the 

whole kernel with micro kernel capabilities. Once we got the micro kernel compiled and linked, we could create 

the multicells which helped us to understand the internals of the OKL4 

5.5.3 OK:Linux -IRQ issues, Build System Tweaks 

Once we got the multicell working, the next thing was to compile the Linux on OKL4. The documentation was 

not sufficient to get the Linux successfully compiled and run with OKL4 on the ARM target. There were lot of 

build system tweaks we had to do in order to get Linux compile. Once we got the Linux running on OKL4, the 

next thing for us was to get two instances of guest OS running on OKL4. For this we choose to run two 

instances of Linux itself. The original intentions were to have Linux and An- droid OS running as guest OS on 

OKL4 and use Linux as our SyncOS. In the interest of time we decided to use two instances of Linux for the 

experiment. In order to build and link two instances of Linux as two different cells, we had to modify the project 

build setting quiet a lot. With the right modifications and setting, we got the two instances of Linux linked 

together in one binary. But when we tried to run the image on QEMU, we faced the problem of shared IRQ 

conflict. Because of lack of time we could not re- solve the conflict and decided to perform the experiment with 

simple multicell example. With OKL4v3.0 we real- ized that, we really cannot toggle between the two guest 

OSes even if we could resolve the IRQ issue. 

 

6. Related Work 

Current open-source (Xen, KVM) and commercial (Par- allels, VMware, Microsoft) VMMs provide support for 

state management through a technique called Live Migra- tion [7, 29]. Live Migration is the process of 

transition- ing the state of a virtual machine from one virtual machine monitor (VMM) to another, often between 

distinct physi- cal machines without halting the guest operating system. Live Migration captures the state of an 

entire OS and all of its applications as one unit which avoids many of the difficulties faced by migrating finer 

grained entities such as processes and local resources (file descriptors and net- work resources). The migration is 

usually managed by a daemon/agent process that runs outside of the VMM. 

Self Migration [19, 15] is another state management technique that can be used to migrate an entire OS. The mi- 

gration is managed by a process that runs inside the source and destination OSes. The NomadBIOS [17] 

prototype vir- tualization system was built on top of a L4 microkernel and uses pre-copy migration to reduce 
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downtime. The system keeps the Guest OS running at the originating host while migrating, tracking changes to 

its address apace and send- ing updates containing the changes to the original image or a number of iterations.  

Studies [9] have been done on the cost of migrating to the cloud using the Pre-Copy live migration strategy and 

the non-trival trade-off between minimizing the copy phase duration and maintaining an acceptable QoS 

(Quality of Service). These studies provide a model for optimizing the live migration Pre-Copy process. The 

task of migrat- ing pages consumes resources and can degrade further if live migration is performed in-band 

(using the same net- work bandwidth that is being used by the migration pro- cess). Fixed bandwidth migration 

is a model where the bandwidth used during the Pre-Copy phase remains con- stant. This model attempts to 

minimize the total cost of in-band migration and the number of pages that should be copied in the copy phase. 

The variable bandwidth migra- tion model is used for migration over time and requires an algorithm to decide 

before each phase home much band- width to use. These bandwidth model algorithms attempt to execute the 

Pre-Copy live migration strategy with a min- imal cost. 

Other research involves using [41] case studies to evalu- ate the cost of live migration performance on modern 

inter- net applications. These applications contain features such as social networking which are different from 

traditional static data. These features introduce a specific workload and client/server communication patterns 

that are difficult to test and evaluate. This research concentrates on quanti- fying the effects on live VM 

migration. 

SyncOS uses some of the standard memory and local resource migration strategies defined by Live and Self Mi- 

gration to capture and restore guest OS states hosted by the OLK4 Microvisor to cloud storage. 

 

7. Conclusion & Future Work 

Our research into OKL4 has provided many hurdles for us, but also stepping stones into the possibilities of 

device to device migration without having to be tethered to another machine for state transfer. We did not close 

in all the gaps in our initial design for SyncOS, but along the way discov- ered interesting challenges and 

unintended benefits during our implementation. By following others research in ar- eas of VM migration as 

discussed in Section 6, we applied these same techniques to mobile hypervisor above OKL4, a microkernel used 

by multiple cell phone vendors (Qual- comm, ST-Ericsson, Motorola, and others [26]). 

Using a cloud provider for blob storage we should easily overcome the shortcomings of local data persistence 

limits while also enabling data protection and fault tolerance. We hope our contributions to VM state 

management for mo- bile devices continues development work in the field. We would like to thank OK:Labs for 

their source code, videos, newsgroup, and various resources used to refine our under- standing of OKL4 and aid 

in our creation of SyncOS. 

7.1 Implementation Discoveries 

While implementing the checkpointing algorithm based on CRAK [8] in the OKL4 kernel, we realized that, the 

OKL4 kernel itself doesn’t support any kind of file system. So it was not possible to create the image file and 

store it on to the physical media. Moreover, the kernel doesn’t have ac- cess to the device driver of the physical 

media (e.g. Flash). Lack of file system support within the Kernel lead us to two options, either write the flash 

device driver to store the image locally or send the image file to guest OS which has support for file systems. 

We tried to explore the second option, since that is exactly what we needed. We tried to explore the IPC 

functionality of OKL4 but didn’t solve our problem since the IPC is for sharing data between the cells and not 

from Kernel to Cell. Parallelly we tried to explore the OKL4FS which is built in with OKL4, this also didn’t 

help to solve our problem. OKL4FS provides the support to send large amount of data to be shared between 

Linux guest OS and other cells. This again doesn’t support to share the data from Kernel to Cell. With this 

discovery and due to lack of time, we decided to keep this issue to be resolved in future. 

While implementing the restore algorithm based on CRAK [8] again in the OKL4 kernel, we discovered that, 

the OKL4 kernel doesn’t support the dynamic cell load- ing. Meaning, we cannot create the cells dynamically at 

the runtime once the OKL4 is booted up. OKL4 creates the cell, which are linked at build time, during boot pro- 

cess. This limitation made us to make a design choice to have local storage to store at least one guest OS image. 

This local storage space has to be shared between the ker- nel and cell, so that while checkpointing kernel can 

write to this shared storage and SyncOS can read it and upload it to server. While restore, the same shared 
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storage will be used by SyncOS to write the image downloaded from server and kernel will read the data from 

the shared loca- tion and initialize the cell accordingly during power up. 

7.2 Future Works 

Future work will focus on implementing additional Live Migration strategies and porting additional OSes to 

Syn- cOS and OKL4. Live Migration strategies such as Pre- Copy can provide performance improvements over 

Stop- and-Copy for mobile device constraints and cloud network latency. Pre-Copy is the process iteratively 

copying the state of a VM without stopping the execution of the VM being migrated. The migration process may 

take several iterations and will continuously transfer the dirty (memory pages) or delta state as smaller packets 

which can be trans- fered easier over a network to the Cloud. We will use the fixed or variable bandwidth 

migration strategies discussed by Breitgand et al. in his research into the cost of live mi- gration to the cloud [9]. 

Other SyncOS work will also provide some support for capturing the state of other OKL4 OSes such as 

OK:Symbian, and OK:Windows Mobile. These OSes will also run in the OKL4 Microvisor using the Secure 

Hy- perCell Technology. Additional OS support may concen- trate on porting other open source OSes such as 

BADA to the OKL4 Microvisor/Secure HyperCell Technology plat- form. 
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