Journal of Scientific and Engineering Research, 2018, 5(1):222-224

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

On Maximal Injective Subalgebras of Tensor Products of Real W*-Algebras

Nurillaev Muzaffar Eshnazarovich

Tashkent State Pedagogical University after Nizami, The faculty of physics-mathematics, the department of General mathematics

AbstractLet R_1 be an injective real W*-algebra and R_2 be a real W*-algebra with separable predual. It is proven that if Q_2 is a maximal injective real W*-subalgebra of R_2 , then $R_1 \otimes Q_2$ is a maximal injective real W*-subalgebra of R_2 , then $R_1 \otimes Q_2$ is a maximal injective real W*-subalgebra of $R_1 \otimes R_2$. This partly answers a question of Popa for real W*-algebras.

Keywordsreal W*-algebras, injective W*-algebras, tensor product of W*-algebras.

1. Introduction

Let H be a complex Hilbert space and B(H) be the algebra of all bounded linear operators on H. A complex *-subalgebra $M \subset B(H)$ with the identity 1 is called a W^* -algebra, if it is weakly closed. A real *-subalgebra $R \subset B(H)$ with 1 is called areal W^* -algebra, if it is weakly closed and $R \cap iR = \{0\}$. A complex or real W^* -algebra A is called *injective*, if there is a projection $P: B(H) \rightarrow A$ such that ||P|| = 1 and P(1) = 1 (see [1], [2] for complex case and [3] for real case). In the present time complex and real injective factors have been investigated wellenough. Compare with injective factors, non-injective factors are far from being understood. A standard method of investigation in the study of general factors is to study the injective subalgberas of these factors. Along this line, we have R. Kadison's question (Problem 7, [4]): does each self-adjoint operator in a II_1 factor lie in some hyperfinitesubfactor? Recall that a complex or real W*-algebra A is called *hyperfinite*, if there is an increasing sequence $\{A_n\}$ of finite dimensional W*-algebra is generated by a single self-adjoint operator, Kadison's question has an equivalent form: is each separable abelian W*-algebra of a II_1 factor contained in some hyperfinitesubfactor? In 1983, SorinPopa gave a negative answer. He built an example, in which an abelian W*-algebra can be embedded in a factor of type II_1 as a maximal injective W*-subalgebra, i.e. it is not an embedding as a hyperfinitesubfactor. Recall that a complex or real W*-subalgebra is called *maximal injective*

In [5] S.Popa formulated the following two problems, connecting with this problem: 1) does each II_1 -factor contain a hyperfinite subfactor as a maximal injective W*-subalgebra? 2) if $N_1 \subset M_1$ and $N_2 \subset M_2$ are maximal injective W*-subalgebras, is $N_1 \otimes N_2$ maximal injective W*-subalgebra in $M_1 \otimes M_2$? In the present paper we answer the second question of Popa for real W*-algebras and it was obtained as a result in the following particular case: if R_1 is an injective real W*-algebra, R_2 is a real W*-algebra with separable predual

if it is injective and if it is maximal with respect to inclusion in the set of all injective W*-subalgebras.

and Q_2 is a maximal injective real W*-subalgebra of R_2 , then $R_1 \otimes Q_2$ is a maximal injective real W*subalgebra of $R_1 \otimes R_2$. Moreover, we prove the real analogue Ge-Kadison's splitting theorem for finite case.

2. Real Analogue of Ge-Kadison's Splitting Theorem

Firstly, we prove some auxiliary results.

Lemma 2.1. Let *R* be a real W*-algebra and *F*, *Q* be real W*-subalgebras of *R*, such that $F \subset Q$. If *E* is a conditional expectation from *R* onto *Q* (i.e. it is positive, linear mapping with E(abc) = aE(b)c, for all $a, c \in Q$, $b \in R$), then *E* induces a conditional expectation from $F' \cap R$ onto $F' \cap Q$. Proof. Let $x \in F' \cap R$ and $y \in F$. Then xy = yx and apply the conditional expectation *E* to both sides of xy = yx. Since $F \subset Q$, then E(x)y = yE(x). Thus $E(x) \in F' \cap Q$. According to $F' \cap Q \subset F' \cap R$, *E* is a conditional expectation from $F' \cap R$ onto $F' \cap Q \subset F' \cap R$, *E* is a conditional expectation from $F' \cap R$ onto $F' \cap Q \subset F' \cap R$, *E* is a conditional expectation from $F' \cap R$ onto $F' \cap Q$. According to $F' \cap Q \subset F' \cap R$, *E* is a conditional expectation from $F' \cap R$ onto $F' \cap Q$ when *E* is restricted on $F' \cap R$. \Box Lemma 2.2. Let F_i , i = 1, 2 be a real W*-algebra, acting on a complex Hilbert space H_i and S_i be a real W*-subalgebra of F_i , i = 1, 2. Let *F* be a real W*-algebra such that $S_1 \otimes S_2 \subset F \subset F_1 \otimes F_2$. If there is a conditional expectation $E: F_1 \otimes F_2 \to F$, then *E* induces a conditional expectation from $(S_1' \cap F_1) \otimes F_2$ onto $((S_1' \cap F_1) \otimes F_2) \cap F$.

Proof.By Lemma 1.7 in [6] we have

$$(U(F_1)\overline{\otimes}U(F_2)) \cap (U(S_1)\overline{\otimes}\Box \ 1)' = (U(F_1)\overline{\otimes}U(F_2)) \cap (U(S_1)'\overline{\otimes}B(K)) =$$

= $(U(S_1)' \cap U(F_1))\overline{\otimes}U(F_2),$

where $U(\circ)$ is the enveloping W*-algebra of the real W*-algebra " \circ ". Since

$$U(\circ_1 \overline{\otimes} \circ_2) = U(\circ_1) \overline{\otimes} U(\circ_2)$$
(2.1)

then we obtain $(F_1 \otimes F_2) \cap (S_1 \otimes \Box \ 1)' = (S_1' \cap F_1) \otimes F_2$. By Lemma 2.1, *E* induces a conditional expectation from $(S_1' \cap F_1) \otimes F_2$ onto $((S_1' \cap F_1) \otimes F_2) \cap F$. \Box

From Lemma 2.2 we obtain the following corollary.

Corollary 2.3. Assume the conditions of Lemma 2.2 and $S'_1 \cap F_1 = \Box 1$. Let

 $L_2 = \{x \in F_2 : 1 \otimes x \in F\}$. Then *E* induces a conditional expectation from F_2 onto L_2 .

Now using Lemma 2.2 and Corollary 2.3 we prove the real analogue of Ge-Kadison's splitting theorem for finite real W*-algebras.

Theorem 2.4. If R_1 is a finite real factor and R_2 is a finite realW*-algebra, and R is a real W*subalgebra of $R_1 \otimes R_2$ which contains $R_1 \otimes \mathbf{R} \cdot \mathbf{1}$, then $R = R_1 \otimes Q_2$ for some Q_2 , a real W*-subalgebra of R_2

Proof.Let Q be a realW*-algebra such that $R_1 \boxtimes \Box \ 1 \subset Q \subset R_1 \boxtimes R_2$. Since R_1 and R_2 are finite, then there is a normal conditional expectation E from $R_1 \boxtimes R_2$ onto Q. By Corollary 2.3 E induces a conditional expectation, denoted by E_2 from R_2 onto $Q_2 \coloneqq \{T \in R_2 : 1 \otimes T \in Q\}$. Now for any $x \in R_1$, $y \in R_2$, we have

$$E(x \otimes y) = x \otimes E_2(y) \in R_1 \overline{\otimes} Q_2.$$

Since E is normal, $Q = E(R_1 \otimes R_2) \subset R_1 \otimes Q_2$. Since $Q \supset R_1 \otimes Q_2$, $Q = R_1 \otimes Q_2$.

3. Maximal Injective Subalgebras of Tensor Product of Real W*-Algebras.

Now we shall prove one more auxiliary result.

Lemma 3.1. Let A be an abelian real W*-algebra and F_2 be a minimal injective real W*-algebra extension of real W*-algebra Q. Suppose F_2 has separable predual. If F is an injective real W*-algebra such that

$$A \ \overline{\otimes} Q \subset F \subset A \ \overline{\otimes} F_2 \tag{3.1}$$

then $F = A \otimes \overline{K}_2$.

Proof.By (2.1) and (3.1) we have $U(A) \overline{\otimes} U(Q) \subset U(F) \subset U(A) \overline{\otimes} U(F_2)$. By Lemma 2.4 in [6], we have got $U(F) = U(A) \overline{\otimes} U(F_2)$.

Since $U(A)\overline{\otimes}U(F_2) = U(A\overline{\otimes}F_2)$ and $A \subset F \subset F_2$, then from $U(F) = U(A\overline{\otimes}F_2)$ we can obtain $F = A \overline{\otimes}F_2$. \Box

The main result of the work is the following theorem.

Theorem 3.2. Let R_1 be an injective real W*-algebra and R_2 be a real W*-algebra with separable

predual. If Q_2 is a maximal injective real W*-subalgebra of R_2 , then $R_1 \otimes Q_2$ is a maximal injective real W*-subalgebra of $R_1 \otimes R_2$.

Proof. We can assume that R_1 and R_2 are real W*-algebras, acting on complex Hilbert spaces H and K, respectively. Then K is a separable Hilbert space. Let A be the center of R_1 . Suppose Q is an injective real W*-algebra such that $Q'_2 \supset Q \supset R'_1 \otimes R'_2$. Since Q' is an injective real W*-subalgebra of $R'_1 \otimes Q'_2$, then there is a conditional expectation E from $R'_1 \otimes Q'_2$ onto Q'. By Lemma 2.2, E induces a conditional expectation from $A \otimes Q'_2$ onto $F := (A \otimes Q'_2) \cap Q'$. So, F is an injective real W*-algebra such that $A \otimes Q'_2 \supset F \supset A \otimes R'_2$. Since Q_2 is a maximal injective real W*-subalgebra of R_2 , then Q'_2 is a minimal injective real W*-subalgebraic extension of R'_2 . By Lemma 3.1 we have $F = A \otimes Q'_2$. Thus $\Box \ 1 \otimes Q'_2 \subset F \subset Q'$. So, $Q' = R'_1 \otimes Q'_2$ and $Q = R_1 \otimes Q_2$. \Box

References

- Loebl R. I. (1974). Injective von Neumann algebras. American Mathematical Society. Vol. 44, no. 1. 46-48.
- [2]. Hakeda J. and Tomiyama J. (1967). On some extension properties of von Neumann algebras. Tohoku Math. J. Vol. 19. 315-323.
- [3]. Ayupov, Sh. A., Rakhimov A. A. and Usmanov Sh. M. (1997). Jordan, Real and Lie Structures in Operator Algebras. The Book: Kluwer Academic Publishers, MAIA, Vol. 418. 235.
- [4]. Kadison R. Problems on von Neumann algebras in: Baton Rouge Conference, unpublished.
- [5]. Popa S. (1983). Maximal injective subalgebras in factors associated with free groups Adv. Math.Vol. 50. 27-48.
- [6]. Fang J. (2007). On maximal injective subalgebras of tensor products of von Neumann algebras. Journal of Functional Analysis. Vol. 244. 277-288.