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Abstract The aim of this work is the study of the effect of stratification on homogeneous sheared turbulence 

through a second order modeling. The Gibson-Launder model is retained for modeling the time evolution 

equations either for the kinematic and scalar fields. The asymptotic behavior of the dimensionless kinematic and 

scalar parameters is numerically studied. Governing equations are castled in dimensionless form by introducing 

components bij of the anisotropic tensor of Reynolds for kinematic field and the components Fi of dimensionless 

scalar flux. A numerical approach consists on integrating non linear system of seven differential equations using 

the fourth order Runge-Kutta method. The gradient Richardson number Ri is used to describe the importance of 

stratification on turbulence evolution. The results of the Direct Numerical Simulation of Jacobitz and other 

numerical second order models are retained for comparing with the obtained results. Through numerical 

approach, asymptotic behavior of the principal component b12 of anisotropy as function of stratification has been 

observed. The evolution of the non dimensional anisotropy b11 is affected by stratification. The nondimensional 

scalar flux F1 is greatly affected on the Richardson number Ri. 
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1. Introduction 

Turbulence is a problem often of importance in atmosphere and in many Engineering applications. Perhaps 

geophysical and turbomachinery are among the principal turbulent flows dominated by stratification effect [1]. 

The effect of body forces associated with density stratification is important in a wide variety of turbulent flows. 

Thus, it has been the subject of a numerous experimental and numerical investigations. 

The turbulence of classical fluids is an everyday phenomenon, which can be readily observed in the flow of a 

stream or river. Recent experiments and numerical simulations have coordinated highlighting between 

turbulence in quantum fluids and turbulence in ordinary fluids (classical turbulence) [2]. The term quantum 

turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose-

Einstein Condensates [3]. Thus in classical fluid turbulence, energy is dissipated through viscosity. 

Stratified flows are found widely in the ocean, atmospheric boundary layers, and some lakes and rivers on the 

lands. They are one of the most important flows in the geophysical research. Owing to the increasing interest in 

environmental problems, the case with pure stratification has been reported by numerical approach [4, 5] and 

experimental studies [6, 7]. 

Occurring to many experimental difficulties, numerical approaches seem to be the principal direction of 

investigation for turbulence researches. Recently, second order models have been used by Khaleghi et al [8] to 

study complex configurations of turbulent flows. Bouzaiane et al [9] have also used numerical approaches to 
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study the effect of stratification in homogeneous sheared turbulence. The effect of the dimensionless gradient 

Richardson number 
i

R  on stratification was widely analyzed by Rohr et al [10]. 

A numerical study of this flow was investigated by Susan Friedlander [11] and Howard et al [12]. Surrounded 

by the first-class foremost laboratory experiments are those of Piccirillo and Van Atta [13] and Rohr et al [14]. 

On the understudy assign, numerical simulations of such flows have been performed by Gerz et al [15], Holt et 

al [16], Kaltenbach [17], Jacobitz et al [18], Jacobitz and Sarkar [19-21], Jacobitz [22, 23]. In actuality, 

equilibrium states of several examples of homogeneous shear flows have been used in the analysis of turbulence 

second order models (Speziale et al) [24, 25]. 

The principal objective of this work is to predict asymptotic equilibrium states in homogeneous turbulence 

submitted to stratification using Gibson-Launder second order models. The work is structured as follows. We 

begin in section 2 by presenting general equation of homogeneous sheared turbulence. In section 3, Gibson-

Launder second order model is presented and the evolution equations are modeled. Section 4 is dedicated to 

numerical integration of dimensionless transport equations. The obtained results are analyzed and discussed in 

section 5. A conclusion makes the last part of this work. 

 

Nomenclature 

ijb                                Reynolds stress anisotropy tensor 

impe                      component of permutation tensor 

i
g                          gravitational acceleration (m.s

-2
) 

K                          turbulent kinetic energy (m².s
-2

) 

P                           terms of production due to mean kinematic and scalar gradients 

p                           pressure (N.m
-2

) 

'p                          fluctuation of the pressure (N.m
-2

) 

i
R                          dimensionless Richardson number 

S                           shear rate (s
-1

) 

ijS                          mean rate of strain (s
-1

) 

TS                          mean scalar gradient (°C.m
-1

) 

T                            temperature (°C) 

'
iu                           i-th component of the fluctuating velocity (m.s

-1
) 

iU                         i-th component of mean velocity (m.s
-1

) 

'
j

'
iuu                      Reynolds stress tensor (m².s

-2
) 

'iu                        turbulent scalar flux (m°C.s
-1

) 

ijW                        mean vorticity tensor (s
-1

) 

ix                          component of an orthonormal Cartesian coordinate system (m) 

Greek Symbols 

                           thermal diffusivity of fluid (m².s
-1

) 

                           thermal expansion coefficient (K
-2

) 

ij                          Kronecker Symbol 

                            terms of dissipation due to molecular effects (m².s
-3

) 

                            non dimensional time 

                            fluctuation of the scalar (°C) 

²                          temperature variance (°C²) 

                            dynamic viscosity (kg.m
-1

.s
-1

) 
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                            kinematic viscosity (m².s
-1

) 

0                          reference density of the fluid (kg.m
-3

) 

ij                         terms of pressure-strain correlation (m².s
-3

) 

i                        terms of pressure-temperature gradient correlation (°C.m.s
-2

) 

 

2. Mathematical Consideration 

A stratified homogeneous shear flow of an incompressible fluid in a rotating system is considered in this work. 

The velocity  0,0,1UU   is according to 1x  and has a constant gradient 21 xUS   according to 2x . A 

scalar field, with a constant mean gradient 2xTST   according to 2x . 

 
Figure 1: Draft according to stratified homogeneous turbulent flow  

From the basic equation of continuity, momentum and energy conservation equations, for a steady state 

incompressible turbulent flow [26, 27], the transport equations for the components '
j

'
i
uu , 'iu , K and 2  

describing the considered flow are derived  and given by : 

                                                                     
ijijijij

'

j

'

i
GPuu

dt

d
                                                                        (1) 

Here 

k

k x
U

tdt

d









  is the total time derivative.  

                                                          



iiii

'

i
GPu

dt

d
                                                                        (2) 

If we contract the indices i and j in Eq.1 [28], then we obtain: 

                                                               GP
dt

dK
                                                                                             (3) 

Where 
'
i

u'
i

u
2

1
K   

                                                                     

  P2

dt

d 2                                                                               (4) 

With the goal of obtaining a closed system of differential equations, the turbulence modeling remains an 

important approach retained by several authors [27]. The second order modeling is retained here and consists to 

model the pressure-strain and pressure-temperature gradient correlations. The Gibson and Launder (GL) model 

is retained here for these terms which are written in the following forms:                                                                                                                                                                                                                  

     

.
ijkk

G
3

1

ij
G

5
c

ik
W

jk
b

jk
W

ik
bK

4
c

ijmn
S

mn
b

3

2

ki
S

jk
b

kj
S

ik
bK

3
c

ij
KS

2
c

ij
b

1
c

ij

































       (5) 
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   

.gc

x

T
uucWuccSuccu

k
c

i

2

5

k

'

k

'

i4ik

'

k32ik

'

k32

'

i1i



















                   (6) 

                                                               
 

.u
K

c
K

c
K

GP
c

dt

d '

ii3

2

21











                                        (7) 

                                                                                .
K

.
r

2 


                                                                                          (8) 

Where 
i

C  , 
i

C


and 
i

C


  are the numerical constants of model: 

6.3c
1
 , 8.0c

2
 , 2.1cc

43
 , 5.0c

5
 , 45.1c

1



, 9.1c

2



, 0.1c

3



, 31 c , 33.0c

2



 

043   cc , 33.0c
5



and 8.0r  . 

With the purpose of acquisition the dimensionless equations, basic equations (1)-(4) and (7) are deposited in 

dimensionless form by laying on the dimensionless time St , the kinematic components 

   3K2uub
ij

'

j

'

iij
  [29] and  SK [20], and  the scalar component     KSugF '

i0i
  and 

   KSgF 22



  [30].  

                                                                .KF
SK

b2
d

dK *

212

*














                                                                (9) 
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  .F
3

2
FF

2

1C
S

3

2

2

C
WbWb

2

2C

Sb
3

2
SbSb

2

2C
b

SK

GP
1

2

C

d

bd

ij2kk2ij2ji
5*
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2*

ikjk
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jkik
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*
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1ij





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
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





 














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

 










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





 
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










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

 







                 (10) 

     .
SK

uc1C
GP

1C
SKd

d
2

'

i

i

321 




















 








 










 
                                                                                    (11) 
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               .F
SK

r21
GP

FR2
d

dF
2kki 

 
























                                                                                          (13)                                                              

Where 2

Ti
SSgR   is the gradient Richardson number. 

The dimensionless quantities are: 

St , 
0

* KKK  , SSS
ij

*
ij
 , SWW

ij
*
ij
 ,    '

ii
uKSgF   and   








 KSgF 22 


.               (14)                                            

At this step, a numerical integration of the differential equations is started. Obtained results will be discussed in 

the following sections. 

 

3. Numerical Integration and Results  

3.1. Asymptotic Equilibrium States 

Study of asymptotic equilibrium states in homogeneous sheared turbulence has been essentially developed by 

Speziale and Mhuiris [31] to evaluate several second order models of 
ij

  and time evolution equation of 
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dissipation rate [32, 33]. More recently, authors are interested in predictions of equilibrium states in homogeneous 

sheared turbulence affected by stratification [34, 35]. However, to our knowledge, no previous work is interested in 

the prediction of equilibrium states by the Gibson Launder second order models. This creates the aim of this part of 

our work. 

A fourth order Runge-Kutta method is retained for the numerical integration of differential non-linear system 

submitted to the initial condition of the direct numerical simulation of Jacobitz [23]. At long time evolution, the 

dimensionless parameters reach asymptotic equilibrium values noted respectively:  

 
11

b ,  
22

b ,   ,b
12 

   ,SK   
0

KK ,   ,F
1 

  
2

F ,  


F .   

Table 1 and table 2 give a summary of the asymptotic equilibrium states for dimensionless kinematic and scalar 

parameters. 

Table 1: Equilibrium values predicted for kinematic parameters 

i
R  0 0.1 0.2 0.5 0.6 

 
11

b  0.344 0.341 0.337 0.323 0.317 

 
22

b  0.089 0.091 0.092 0.101 0.104 

 
12

b  -0.153 -0.144 -0.135 -0.108 -0.098 

 SK  0.278 0.264 0.249 0.207 0.194 

 

Table 2: Asymptotic equilibrium states of scalar parameters 

i
R  0 0.1 0.2 0.5 0.6 

 
1

F  0.0196
 

0.075 0.130 0.281 0.326 

 


F  -0.0392 0.052 0.145 0.441 0.546 

It is necessary here to mark that asymptotic equilibrium values obtained by GL model for the kinematic field are 

functions of the Richardson number
i

R . 

Asymptotic equilibrium states have been reached for several values of 
i

R . We show that the equilibrium values 

 
11

b  and  
SK  decrease when

i
R  increases, whereas the equilibrium values  

22
b  and  

12
b  increase 

with the increase of Richardson number
i

R . From Table 2, we note that stratification affects not only the kinematic 

fields but also the scalar field. We remark that the asymptotic equilibrium values of scalar dimensionless parameters 

change with 
i

R . The equilibrium values  
1

F  and  


F  increase with the increase of 
i

R  from 0 to 0.6.  

The effect of several parameters such as the gradient Richardson number 
i

R  on turbulence evolution will be 

studied on the next section of our work.  

The effect of Richardson number is firstly studied on the following subsection.  

 

3.2. Influence of the Richardson number on kinematic fields  

Now, dimensionless kinematics and scalar parameters versus dimensionless time (growing to 200) are presented for 

the values 1.0R
i
 , 6.0R

i
 , 1R

i
  and 2R

i
 . 

In figure 2, time evolutions of the dimensionless shear number  SK  according to dimensionless time   and for 

different gradient Richardson number 
i

R  are exhibited. A fast decrease observed for a dimensionless time   less 

than 20, which is followed by a slight increase for 0R
i
 , 1.0R

i
  and 6.0R

i
  and a rapid tendency to 

equilibrium states at 100  for the two first values of 
i

R .  
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For 1R
i
  and 2R

i
  and for 20 , the dimensionless number  SK  continues to decrease  without 

reaching asymptotic equilibrium states for 200 . However, general tendency to asymptotic equilibrium values 

 
SK  for 200  only in the case 0R

i
  and 1.0R

i
  is obtained. 

In these cases, asymptotic equilibrium states are reached for 100 . The asymptotic value  
SK  decreases 

strongly when the gradient Richardson number 
i

R  is increased as presented on the previous tables. 

 

Figure 2: Time evolution of  SK  for several values of 
i

R . 

Now, a comparison between our obtained results and those obtained by several models will be proposed. 

In figure 3, time evolution of non dimensional shear number  SK  according to the three models of Gibson 

Launder (GL) [36], Craft and Launder (CL) [28] and Shih and Lumley (SL) [37] models in the case 6.0R
i
  of 

Richardson number are displayed. We note that the best agreement between the prediction of the GL model and the 

values of CL model as well as SL model is observed for the value of  
SK  for 50 . 

 

Figure 3: Time evolution of  SK  for three models for 6.0R
i
  . 

Figure 4 shows time evolution of  SK  according to two models of Launder Reece Rodi (LRR) [38] and GL 

models for the value 2.0R
i
  of Richardson number. On this figure, an asymptotic equilibrium behavior is 

observed for both models. 

The result presented is in contradiction with the result of LRR model. No agreement between predictions of GL 

model and values of LRR model has been observed for the value 0.2 of 
i

R  for dimensionless time   less than 50. 
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Figure 4: Time evolution of  SK  for two models in the case 2.0R
i
  . 

Figure 5 shows time evolution of the component of anisotropy 
11

b  for several values of gradient Richardson 

number 
i

R . A fast decrease is observed for 10 , which is followed by a strong growth in the cases 0R
i
 , 

1.0R
i
  and 6.0R

i
 .  

A moderate growth is observed for 10  in the case 1R
i
  and a weak growth of 

11
b  is observed in the case 

2R
i
 . In fact, the equilibrium values predicted for 

11
b  have been observed for 

i
R  in the larger interval 

2R0
i
 . Asymptotic equilibrium states are reached at 60  and for 1R0

i
 . We note that the 

equilibrium value is reached for 1.0R
i
  more quickly than the case of 2R

i
 . 

The same asymptotic equilibrium behavior is also observed for each value of Richardson number between 0 and 1. 

The equilibrium value of anisotropy 
11

b  decreases with increasing Richardson number 
i

R  from 0 to 2. 

 

Figure 5: Time evolution of 
11

b  according to
i

R . 

Figure 6 shows time evolution of the component of anisotropy 
11

b  according to GL model as function of 
i

R . In 

comparison to values of the DNS data of Jacobitz [18] for which asymptotic equilibrium states are obtained for 

different values of the Richardson number 
i

R . In Figure 6, a good agreement between the prediction of the GL 

model and the values of DNS data of Jacobitz is observed for the value of  
11

b  for 5.0R2.0
i
 . 
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Figure 6: Evolution of  
11

b  as function of 
i

R   

In Figure 7, time evolutions of the component of anisotropy 
22

b  for five different values of the gradient Richardson 

number 
i

R  are displayed. A steady evolution of 
22

b  for 8 , which is followed by a strong decrease to reach 

asymptotic equilibrium states has been observed. We note that the asymptotic equilibrium state  
22

b  for 2R
i
  

is reached more quickly at 125  than in the case of weak stratification ( 1.0R
i
 ) which predicts an 

equilibrium state at 150 . 

 

Figure 7 Time evolution of 
22

b  for several values of 
i

R  

Figure 8 shows the evolution of the principal component of anisotropy 
12

b  obtained by GL model for different 

values of the gradient Richardson number as a function of the dimensionless time St . 

A fast decrease, for 40 , which reaches a minimum moving to the left as the Richardson number 
i

R  increases. 

The evolution of  
12

b  for 40  is followed by a slight increase to reach the asymptotic equilibrium states. This 

evolution confirms the existence of asymptotic equilibrium states for the component 
12

b  in the case 0R
i
  and 

1.0R
i
 . It also indicates that  

12
b  grows with 

i
R  growing from neutral stratification  0R

i
  to strong 

stratification  2R
i
 . This result is in concordance with our previous results [9]. The equilibrium value is 

achieved in the cases 0R
i
  and 1.0R

i
  more quickly than the case of 2R

i
 .  
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Figure 8: Time evolution of 
12

b  in different cases of 
i

R  

Figure 9 shows time evolution of the component of anisotropy 
12

b  according to the GL model for the case 

2.0R
i
  of Richardson number for an intermediate band of  , in the range  50,0 . In this figure, the GL model 

shows a good agreement with the asymptotic value of the component of anisotropy  
12

b  of DNS data of Jacobitz 

for the value 2.0R
i
  of the Richardson number when   is greater than 30. The equilibrium state is achieved for 

a low non dimensional time 10  for DNS data of Jacobitz. 

 

Figure 9: Time evolution of  
12

b  for two models for 2.0R
i
 . 

Table 3 summarizes the asymptotic equilibrium values obtained by several models for the case of neutral 

stratification. 

We see that the GL model indicates the best agreement with the prediction of Speziale Sarkar and Gatski (SSG) 

[39], Rotta-Kolmogorov (RK) [40], Large-Eddy Simulations (LES) [41], Fu,Launder and Tselepidakis (FLT) [42] 

models, in comparison with the Launder Reece and Rodi (LRR) model [38], for the asymptotic value of the 

component of  anisotropy  
12

b . 

 Table 3: Equilibrium values predicted for 12b  parameter for different models 

Equilibrium values GL 

 model 

LRR  

model 

SSG  

model 

RK  

model 

LES  

model 

FLT  

model 

 
12

b    -0.153 -0.185 -0.156    -0.169 -0.15 -0.144 
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3.3. Influence of the Richardson number on scalar field 

Stratification affects not only the kinematic fields but also the scalar field. It is the turbulent flux rate 
i

F  that is the 

most one affected by the stratification effects. Then the evolution of dimensionless rates for the scalar field is 

explained. 

Figure 10 shows the influence of gradient Richardson number on 
1

F . A weak increase observed for 5 , which 

is followed by a slight decrease for 2R
i
  and a moderate decrease for the other cases of 

i
R  to reach a minimum. 

Then a fast increase is observed and a rapid tendency to equilibrium states at 50  for the four first values 

0R
i
 , 1.0R

i
 , 6.0R

i
  and 1R

i
 . For 2R

i
 ,  

1
F  is reached for 90 . Hence stratification has a 

great effect on the non dimensional turbulent flux 
1

F . The asymptotic equilibrium value of the turbulent flux rate 

1
F  increases with the increase of the Richardson number 

i
R . 

 

Figure 10: Time evolution of 
1

F  for different values of 
i

R . 

The time evolution of 


F  is shown on Figure 11 for different values of Richardson number 
i

R . The values of 


F  

decrease to a minimum at 10  after a slight increase and then increase to achieve the equilibrium state. A 

general tendency to asymptotic equilibrium behavior is also observed for each value of 
i

R . The asymptotic 

equilibrium values increase with increasing Richardson number. This result is coherent with the physical 

phenomena. A growth of scalar gradient conducts to an increase of the scalar variance. 

Asymptotic equilibrium states have been obtained for different cases. Essentially for 1R
i
  of the Richardson 

number, an equilibrium states are quickly reached. 

 

Figure 11: Time evolution of 


F  as function of 
i

R .  

4. Conclusion  

A turbulent shear flow submitted to stratification is studied through the Gibson-Launder second order model.   

The study of asymptotic equilibrium states of dimensionless parameters was the principal objective of this work. 

The dimensionless evolution equations of kinematic and scalar parameters are written and integrated using the 

fourth order Runge-Kutta method. 
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The first part of this work is dedicated to the general transport equation of turbulent parameters. It is followed by 

the modeling of transport equations by the GL second order model and it is justified that non dimensional 

parameters can substitute the turbulent parameters for the kinematic and scalar fields. 

The main results obtained from this study can be summarized as follows: 

The Gibson Launder model is one of the most commonly used ensuring the closure of the evolution equation of the 

kinematic field and the scalar field. 

- The GL model predicts time evolution of kinematic and scalar fields for the stratified homogeneous shear. The 

asymptotic equilibrium values obtained for  SK , 
11

b , 
22

b  and 
12

b  are seriously affected by several values of 

the gradient Richardson number 
i

R . We also add that stratification has a great effect on nondimensional turbulent 

flux 
1

F   and 


F . 

- For the influence of 
i

R  on equilibrium state of  SK , the best agreement between the results of the three 

models of GL, CL and SL is obtained. However, no agreement between predictions of GL models and values of 

LRR model has been observed. 

- In comparison to values of the DNS data of Jacobitz, a qualitative agreement is observed for the values of 

equilibrium state of 
11

b  and 
22

b  obtained using the GL model. 

- Asymptotic equilibrium behavior of dimensionless kinematic and scalar parameters depends on the 

stratification through the gradient Richardson number 
i

R . The effect of variation of 
i

R  on the time evolution of 

the kinematic and scalar dimensionless parameters is observed. 

- The stratification effects dominate the evolution of  SK , 
12

b  and 
1

F . 

- The evolution of the non dimensional anisotropy 
11

b  is affected by the stratification. 

To improve prediction of GL model taking into account effect of stratification, corrections can be introduced in 

model coefficient. The study of the analogy of rotation effect and stratification effect through dimensionless 

parameters 
i

R  and  S  can also make an extension of this work and be an interesting future investigation. 

 

References 

[1]. Mazaheri. K., N, Chaharlang Kiani. K., Karimi. M., (2017)  A modified turbulent heat-flux model for 

predicting heat transfer in separating-reattaching flows and film cooling applications, Applied Thermal 

Engineering, vol. 110, pp. 1609-1623.  

[2]. Skrbek. J., and Sreenivasan. K. R., (2012) Developed quantum turbulence and its decay, Physics of Fluids, 

vol. 24, pp. 011301. 

[3]. Skrbek, L., (2011) Quantum turbulence. Journal of Physics: 13
th

 European Turbulence Conference 

(ETC13). 

[4]. Herring. J. R., Q Métais. O., (1989) Numerical experiments in forced stably stratified turbulence, Journal 

of Fluid Mechanics, vol. 202, pp. 97-115. 

[5]. Smith. M. L., and Waleffe. F., (2002) Generation of slow large scales in forced rotating stratified 

turbulence, Journal of Fluid Mechanics, vol. 451, pp. 145-168. 

[6]. Fincham. A. M., Maxworthy. T., and Spedding. G. R., (1996) Energy dissipation and vortex structure in 

freely-decaying, stratified grid turbulence, Dynamics of Atmospheres and Oceans, Vol. 23, pp. 155-169. 

[7]. Praud. O., Sommeria. J., Fincham. A. M., (2006) Decaying grid turbulence in a rotating stratified fluid, 

Journal of Fluid Mechanics, Cambridge University Press (CUP), vol. 547, pp. 389-412.  

[8]. Khaleghi. E., Lin. Y.-S., Meyers. M. A., & Olevsky. E.A., (2010) Spark plasma sintering of Tantalum 

carbide. Scripta Materialia, vol. 63, Issue. 6, pp. 577-580. 

[9]. Bouzaiane. M., Ben Abdallah. H., and Lili. T., (2003) A stably on the asymptotic behaviors of 

dimensionneless parameters in a stably homogeneous sheared turbulence. Journal of turbulence, Volume 4, 

Issue 1, pp. 002. 



NAIFER S & BOUZAIANE M               Journal of Scientific and Engineering Research, 2018, 5(1):184-196 

 

Journal of Scientific and Engineering Research 

195 

 

[10]. Rohr. J. J., Itsweire. E. C., Helland. K. N., Van Atta. C. W., (1988a) Growth and decay of turbulence in a 

stably stratified shear flow, Journal of Fluid Mechanics, vol.195, pp 65-77. 

[11]. Susan Friedlander (1976), Quasi-steady flows of a rotating stratified fluid in a sphere, Journal of Fluid 

Mechanics, vol.76, pp. 209-228.  

[12]. Howard. L. N., Siegmann. W. L., (1969) On the initial value problem for rotating stratified flow, Studies in 

applied Mathematics, vol.  48, Issue 2, pp. 153-169. 

[13]. Piccirillo. P. S., and Van Atta. C. W., (1997) The evolution of a uniformly sheared thermally stratified 

turbulent flow, Journal of Fluid Mechanics, vol. 334, pp. 61-86. 

[14]. Rohr.  J. J., Itsweire. E. C., Helland. K. N., Van Atta. C. W., (1988b) An investigation of the growth of 

turbulence in a uniform mean-shear-flow, Journal of Fluid Mechanics, vol. 187, pp.1-33. 

[15]. Gerz. T., Shumann. U., Elghobachi. S., (1989) Direct numerical simulation of stratified homogeneous 

turbulent shear flow, Journal of Fluid Mechanics, vol. 200, pp.563-594. 

[16]. Holt. S. F., Koseff. J. R, Ferziger. J. H., (1992) A numerical study of the   evolution and structure of 

homogeneous stably stratified sheared turbulence, Journal of Fluid Mechanic, vol. 237, pp.499-539. 

[17]. Kaltenbach. H. J., (1993) Large-Eddy simulation of flow in a plane, asymmetric diffuser. Annual Research 

Briefs. Center for Turbulence Research, NASA Ames/Stanford Univ., , pp. 175-184. 

[18]. Jacobitz. F. G., Sarkar. S., and Van Atta. C. W., (1997) Direct numerical simulations of turbulence 

evolution in a uniformly sheared and stably stratified flow. Journal of Fluid Mechanics, vol. 342, pp. 231-

261. 

[19]. Jacobitz. F. G., and Sarkar. S., (1998) The Effect of non vertical shear on turbulence in a stably Stratified 

Medium, Physics of Fluids, vol. 10, No.5, pp. 1158-1168. 

[20]. Jacobitz.. F., Sarkar. S., (1999) On the shear number effect in stratified shear flow, Theoretical and 

computational fluid dynamics, vol. 13, pp. 171-188. 

[21]. Jacobitz. F. G., and Sarkar. S., (2000) Turbulent Mixing in a Vertically Stably Stratified Fluid with 

Uniform Horizontal Shear, Flow, Turbulence and Combustion, vol. 63, pp. 343-360. 

[22]. Jacobitz. F. G., (2000) Scalar transport and mixing in turbulent stratified shear flow, International Journal 

of  Heat and Fluid flow, vol. 21, pp. 535-541. 

[23]. Jacobitz. F. G., (2002) A comparison of the turbulence evolution in a stratified fluid with vertical or 

horizontal shear, Journal of Turbulence, vol. 3, pp. 1-16. 

[24]. Speziale. C. G., Sarkar. S., Gatski. T. B., (1991) Modeling the pressure-strain correlation of turbulence: an 

invariant dynamical system approach, Journal of Fluid Mechanics, vol. 227, pp. 245-272. 

[25]. Speziale. C. G., and. Gatski. T. B., (1997) Analysis and modeling of anisotropies in the dissipation rate of 

turbulence. Journal Fluid Mechanics, vol.  344, pp. 15-180. 

[26]. Takahiro MIURA, Koji MATSUBARA and Atsushi SAKURAI, (2012) Turbulent-Heat-Flux and 

Temperature-Variance Budgets in a Single-Rib Mounting Channel*, Journal of Thermal Science and 

Technology, Vol. 7, No. 1, pp. 120-134.  

[27]. Fatima MADI AROUS, (2016) Numerical simulation with a Reynolds stress turbulence model of flow and 

heat transfer in rectangular cavities with different aspect ratios, Journal of Thermal Science and 

Technology, Vol.11, No.1, pp. 1-13.   

[28]. Craft. T. J., Launder. B. E., (1989) A new model for the pressure/scalar-gradient correlation and its 

application to homogeneous and inhomogeneous free shear flows, Paper 17-1, Proc. Seventh Symposium 

on Turbulent Shear Flows, Stanford, California. 

[29]. Schiestel. R., and Elena. L., (1997) Modeling of anisotropic turbulence in rapid rotation, Aerospace 

Science and Technology, vol. 1, Issue. 7, pp. 441-451. 

[30]. Petterson. A., Reif. B., Ooi. A., and Durbin. P. A., (2000) On stably stratified shear flows subjected to 

rotation. Center for turbulence Research Proceeding of the Summer Program. 

[31]. Speziale. C. G., and Mhuiris. N. M. G., (1989b) On the prediction of equilibrium states in homogeneous 

turbulence, Journal Fluid Mechanic, vol.  209, pp. 591-615. 



NAIFER S & BOUZAIANE M               Journal of Scientific and Engineering Research, 2018, 5(1):184-196 

 

Journal of Scientific and Engineering Research 

196 

 

[32]. Chebbi. B., Bouzaiane. M. and Lili. T., (2009) Prediction of equilibrium states of kinematic and thermal 

fields in homogeneous turbulence submitted to the rotation, International Symposium on Convective Heat 

and Mass Transfer in Sustainable Energy, Vol. 200, pp. 376-379. 

[33]. Naffouti. L. T., Bouzaiane. M., Lili. T., (2012) A study of equilibrium states of homogeneous turbulence 

submitted to an inclined shear, International Journal of Computer Science Engineering, vol.1, No 2, pp. 

126-139. 

[34]. Kirilli. G., Shatwell. T., (2016) Generalized scaling of seasonal thermal stratification in lakes, Earth-

Science Reviews, vol. 161, pp. 179-190. 

[35]. Xian-Xiang Li, Rex Britter, Leslie K. Norford, (2016) Effect of stable stratification on dispersion within 

urban street canyons: A large-eddy simulation. Atmospheric Environment, vol.144, pp. 47-59. 

[36]. Gibson. M. M., Launder. B. E., (1978) Ground effects on pressure fluctuations in the atmospheric 

boundary layer. Journal of Fluid Mechanics 86 (03), pp. 491-511. 

[37]. Launder. B. E., Tselepidakis. S. Fu., (1987) Accommodating the effects of high strain rates in the modeling 

the pressure strain correlation, The University of Manchester of Science and Technology. March 

T.F.D/87/5/. 

[38]. Launder, B. E., Reece, G., and Rodi, W., (1975) Progress in the development of a Reynolds stress closure. 

Journal Fluid Mechanic, vol. 68, pp. 537-576. 

[39]. Speziale. C. G., Sarkar. S., and Gatski, T. B., (1990) Modeling the rapid pressure-strain correlation of 

turbulence, ICASE Report no 90-5, Contract Nas-18605. 

[40]. Speziale. C. G., Gatski. T. B., Mhuiris. N. M. G., (1989a) A critical comparison of turbulence models for 

homogeneous shear flows in a rotating frame. NASA Contractor Report 181864. ICASE Report No. 89-43.  

[41]. Yang Zhiyin, (2015) Large-Eddy simulation: Past, present and the future, Chinese Journal of Aeronautics, 

vol. 28, pp. 11-24. 

[42]. Fu. S., Launder. B. E., and Tselepidakis. D. P., (1987) Accommodating the Effects of High Strain Rates 

in Modeling the Pressure-Strain Correlation, UMIST Mech. Engng Dept Rep. TFD/87/5. 

 


