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Abstract This paper deals with the estimation of the stress-strength model, when stress and strength are
independent and follow modified exponential distribution. The maximum likelihood estimator and the uniformly
minimum variance unbiased estimator are obtained for the stress-strength model. Based on the exact and the
asymptotic distributions of the maximum likelihood estimator, an exact and an asymptotic confidence intervals
of the reliability has been obtained. Bayes estimates of the reliability and the associated credible intervals are
also derived under the assumptions of independent conjugate gamma and non-informative priors. An extensive
computer simulation is used to compare the performance of the proposed estimators. Finally, data analysis is
considered.
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1. Introduction

The reliability of systems or components can be defined by the stress-strength model as R = P(X < Y), where
X and Y represent the stress and the strength random variables, respectively. In various practical problems, R is
of great interest, since it provides a general measure of the difference between two populations. For instance, R
may be used in treatment comparisons .Thus, stress-strength model has many applications in engineering
concepts, deterioration of rocket motors, fatigue of ceramic components and fatigue of aircraft structure are
some of its applications. A great deal of the literature has been published for evaluating the reliability R, its
computation and its estimation under many statistical parametric and non-parametric assumptions on the model.
See, for example: Downton [7], Beg and Singh [4], Constantine et al. [5], Ivshin and Lumelskii [10], Maiti [15],
Mokhlis [16], Kundu and Gupta [13], Rao [18] and Al-Mutairi et al. [1].

The modified exponential distribution (MED) with two parameters is mentioned in Elbatal and Aryal [8] as a
special case of the transmuted family, see also Das [6] and Khan [11]. The cumulative distribution function (cdf)
of MED is defined for T>0 as:

—(a+A)t

F{aAd)=1-¢ , a,A>0 (1.1)
Therefore, the corresponding probability distribution function (pdf) is
f(ta,2)=(a+4)e' (1.2)

where & and 1 are scale parameters. Notice that either ¢ =0 orA =0, leads to the usual negative
exponential distribution (ED).

The main purpose of this paper is to develop the inference on R = P(X < Y), where X and Y are independent
modified exponential distribution with different scale parameters (e, 4,) and («r,, A, ), respectively. The
paper is organized as follows: in Section 2, the stress-strength model, R, is derived for the modified exponential
distributions. In Section 3, different estimators of R are discussed, namely, maximum likelihood estimator
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(MLE), uniformly minimum variance unbiased estimator (UMVUE) and Bayesian estimators corresponding to
two different priors which are conjugate and non-informative priors. In Section 4, exact and asymptotic
confidence intervals (ACI) for the stress-strength model are constructed. In addition, Bayesian credible intervals
with respect to conjugate and non-informative priors are derived. In Section 5, a simulation study is performed
to compare the different estimators (MLE, UMVUE and Bayes) of R. Finally, the procedures are illustrated by
analyzing a real data set in Section 6..

2. Stress-Strength Model

If X and Y are independent where X ~ ME(ey,, 4,) andY ~ ME(«,, 4,)- Let@ = (e, A4, 2y, A,)
be a vector of unknown parameters, then the stress-strength model, R, can be derived as

R(0)=P(X <Y):0[+2‘1:21+/12 2.1)

Notice that equation (2.1) can be rewritten as

R a, +4 N R :051+ﬂ1
o+ L+a,+4, 1-R a,+4,

22)

3. Point Estimation of R
Here, we derive the current the MLE, UMVUE and Bayes estimators of stress-strength model for the MED.
3.1. Maximum Likelihood Estimator of R

Suppose X = (Xl, X9y an) and Y = (Yl,YZ,...,YnZ) are independent random samples where
X ~ ME(e,, 4, ) andY ~ ME(a,, A, ). Then, the likelihood function becomes

L} M n2 n2
—o Y X =M K= Y~ hp )Y
LO)= (o + ) (e + 2 )7 = 7 (31)
Then, the MLEs of the parameters are obtained by maximizing the log-likelihood function with respect to the
parameters as following

j=1 j=1

dinL _n —nzlx_ 0 32) oinL _n —nZzy_ 0 34)
o, (a,+4) i7" oa, (a,+4,) 2

olnL _n —nlei 0 33) olnL o n _nzzyi 0 35)
o4 (a+4) = 02, (+4,) i3

Then, the MLE of R is given be

R-—ath Y (36)
o+ M+a,+4, X+Y
Notice that R1 can be expressed by
ER_L1 X 37
R, R, Y

Next we prove the following interesting results.

Theorem 1: If X =(X1, ) ST an) and Y =(Y1,Y2,...,Yn2) are independent random samples where
X ~ ME(e,, 4,) andY ~ ME(a,, 4, ). Then,
1. T, =nX ~Gamma(n, &, + 4) ana T, =n,Y ~ Gamma(n,,a, + 1, ) (3.8)
2. 20, (@, + 4 )X ~ gy and 20, (@, + 4, N ~ b ). (3.9)
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3. F = M ~ F(2n,,2n,). (3.10)

(az +4, )Y
Proof:

The moment generating function of X ~ ME(al, Al) is given by

Mx(t):Tem(al+Al)e‘“1x‘“dx:L1— aliﬂj

Therefore,

M, (t)=(M(@®)" =(1_ . iﬂj]-m

Thus, Ty = nl)? ~ Gamma(nl,al +/11) which yields to 2n1(oz1 +21)>7 ~ ;((22,]1)). Similarly, if

Y ~ ME(«,, 4, ). Then, T, = HZY_ ~ Gamma(nz,az + /12) and 2n2(0:2 +12)\7 ~ ;((22,]2)). Now, if

we define | as following

F _ (al + ﬂ'l)x

= 5=
(e, +2,)Y

which is distributed as F, with (2n,,2n, ) degrees of freedom.

3.2. Uniformly Minimum Variance Unbiased Estimator of R
Let X = (Xl’ Xz,..., an) and Y = (Yl,Yg,...,Ynz) be two independent random samples where
X ~ ME(e, 4, ) andY ~ ME(a,, A, ). Then, the likelihood function becomes

L=(cr, +4,)" (e, + 4,) "€ E B (3.11)

By Factorization Theorem (see Kotz et al. [12]), we get

Ny Ny

1. Ty = Z X; and Ty, = Z Y, are sufficient statistics for X and Y.
i=1 i=1

2. The indicator T = 1(X, <, ) is an unbiased estimator of R.

A

Using Rao-Blackwell and Lehman-Sheffes” Theorems, see Mood et al. [17], the UMV UE, RZ, of R is given by
R, = E(T Ty, Ty )= [ [t £lx,v: It,.t, Hixdy,

X1 Y1

where f(Xi, Yi |tx,ty) is the conditional pdf of X,,Y, giventhat T, , T, .

Notice that X, and Y, , are independent modified exponential random variables with parameters (al, A, )and
(az,;tz), respectively. Recall that from Theorem 1, T, and T, are independent gamma random variables
with parameters (n, e, +4,) and (n,,a, + A, ), respectively. Therefore, T, — X, and T, —Y, are
independent gamma random variables with parameters (n, —1, e, +4,) and (n, —La, +4,),
respectively. Moreover T, — X, and X, are independent, as well as T, —Y, and Y, are also independent.
We obtain that

=
ﬁg;"‘-"\‘\“
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2 TnllTnz—l

. ) RS

- yl )nz N dyldxl

X Y1

Then, the R, is derived as follows

n, —1fn, Tl .
(Tnl_l)(Tnz_l [ oy ) dydx,  if T, <T,
_ 0%
2 TY Vi
n, —1pn, nl .
T”l‘l)(T 2~ j | X2 -y dxdy, i T, <T,
00
Using formula (3.11) in Gradshteyn and Ryzhik [9], the F\32 can be written as
T .
ZFl(l,—(nz—l), nl;T—XJ , if T, <T,
R, = ; (3.12)
1_2F1(1’_(n1_1)1n2;-|-_Yj ! if TY STX
X

where , F, (a, 5.7 z) is Gauss hypergeometric function given by

Fl(ayﬂ,7;2)=1+a—’glz+ Ot(a+1)ﬂ(,8+1)22
7.

Yy +1)1.2 (313
Thus, the UMVUE of R can be rewritten as
oo T)r,) (1) :
>(-1) L2l | X if T, <T,
Fiz — i=0 r(nl - ')F(nz + I)kTY (3.14)

l—n_zz_:l(_l)i 1—‘(n1i)1—‘ nz) . (TY Ji , if T, <T,

3.3. Bayesian Estimators of R

Here, the Bayes estimators of R with respect to conjugate and non-informative prior distributions are obtained.
We show that the Bayes estimator of R with respect to non-informative prior distribution is superior to that with
respect to conjugate distribution.

3.3.1. Bayes Estimator with Conjugate Prior of R
Let X = (Xl’ Xy, an) and Y = (YliYZ'---’Ynz) be two independent random samples drawn from the

modified exponential distributions with parameters (cr,, A,) and(er,, A, ). respectively. Assuming that
0 =(oy,y,a5,,) are independent, having conjugate gamma prior distributions, with parameters

(:811 2 )- (ﬁz 10, )’ (ﬁs 103 ) and (184 0, ) , respectively. Then,

- a1[51+ixi ]— 11{52 +ixi ]— a, [53+iyj ]— A, [54+§: Yi ]
m(01X,Y)e

Thus, the posterior distributions of 051,}1,052 and ﬂvz are gamma with parameters

(71’ m )’ (72 1, )’ (7/3 ’ 773) and (7/4 M ) respectively, where

lgfi(

O
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71:n1+ﬂ1_k1’ 771:51+§Xi' V2 =P, + Ky, 772:52+§Xi
73:n2+ﬂ3_k21 773=53+_Zzlyj, 74:ﬁ4+k2, 774=54+Zzly,- (3.15)
i i=

when kl :Ol"lnll k2 :01"'1n2.ThUS,

m o

771 772 ’]3 774 -1 73—l —1 - = M- QM= Ay
mey, A ey Ay | X,Y) al A ! TR o, Aoy, Ay >0
i ? klz;szZ: 71)F 72)r(73)r(74) 1 2

The Bayes estimator of R with respect to the mean squared error loss function, R3 , 1S
R, =E(R|X,Y)
After making suitable transformations and simplifications and using Formula 3.197.3 in Gradshteyn and Ryzhik

[9], we get, if 77y <7]3

ntr 1

- ) ~(mtrtrst)
R=YY T [Z—i] IRWZ(l—R)W“'l[l—[l—ﬂjRJ R (3.16)

k=0k,=0 B(71+72’73+74 0 Uk

non n ntr.
:ZZ [ nT j(ﬂj 25[71"’72"’73"’74171"’72+1:71+72+73+74+1; —ﬂj (3.17)
K0k \ V172 Vst 74 )\l i

Equation (3.16) can also be written as

non 1 73tre 1 ~(n+r2473474)
R,i=Y.2. [ﬁj JRe (- R)“*“‘l[l-[1—”—3](1— R)] 0R

’ k=Ok, =0 B(}’1+72:73+74) U 0 h

Using the transformation R* =1— R, we obtain, if 73 <7);

n, n, 1 7 Va+tVa 1 . (1 +72+73+7s)
R, = 3J 3*“ 1 R ““[1—[1——3}{*} drR”
P k;:okzZ:O B(71+7/2:73+7/4) [ [‘; m

non V3tVs
LM +
=ZZ[ 71 }/2 ][ﬁj 2F1(}/1+7/2+]/3+7/417/3+}/4171+72+73+}/4+1; 1_£j (3.18)
k=0k,=0 7/1+72+73+74 m m

If 77, =113, we get

N N, Ny ~ +7/
R, = R/ (1 R)Y**"**dR = N2 (319)
’ k;kz:o B(71+72,73+74) I kZ:‘)kZ% ViHVa+Vs+7,
Combining (3.17), (3.18) and (3.19), we obtain
y +}/ T] ntr
H(lj F(?ﬁ"'?/z+73+74’71+72+l71+72+73+74+11 j if 7, <1,
B Vit Vot 7tV Ul 3 (3.20)

737

k=0k,=0 + i

M(%j 2F1[71+72+73+74:73+74:71+72+73+74+1;1_773]' if 13 <
N7tV 7\ !

Based on Lindley [14] and Awad and Gharraf [2], we could use the means of an empirical Bayes procedure to
estimate the parameters of the prior distributions of (al, 4,) and (ex,, A, ) in (3.20) as follows:

{yii
\
A Journal of Scientific and Engineering Research

510



Alghamdi SA et al Journal of Scientific and Engineering Research, 2017, 4(9):506-519

Let X :(Xl, Xg ey an) and Y = (Yl,Yz,---,Ynz) be two independent random samples drawn from

modified exponential distributions with parameters (al,zl) and (052,/12), respectively. Then, the likelihood
function of each sample will be, respectively,

1ZX Z’ﬁ My —azzyl—izzyj
L(X |y, 4,) Za”l “Ae T T and LY @y d,) o D ap e aye
k=1 k,=1

Notice that L(X | ey, 4,) is a function of @ and ﬂl which are gamma densities with parameters

(nl -k, +1, inzllxij and (kl +1, inéxi j Thus, it is proposed to estimate the prior parameters (,Bl, 51) and

(B,,5,) from the samples by (nl —k, +1, %xij and (kl +1,%xij, respectively. Similarly, @, and
i=1 i=1

12 could be estimated from the samples by (nz - k2 +1 22: y_j and (kz +1, ZZ: y j Therefore, from
=1’ !
(3.15), we get
7;1 =2n, -2k, +1, = Z%Xi ' 7;2 =2k, +1, M, = 2nixi k =01..,n,
i=1 i
=, -2k, +1 po=23y L 7a=2K+1 =23y L k=010, @a
=

j=1 i
The Bayes estimator of R in (3.20) could be given as

2n;+2
M Pl Rl +n, +2)2n 4320 + 20, 45 12X | i T, <T,
A n+n,+2( T, T,
R3 - 2n,+2 (3.22)
N PN e o+, +2)2(n, +1)2n, + 20, 51— |, T, <T,
n+n,+2\ T, Ty

where Ty = nl)z and Ty = nzY_.

3.3.2. Bayes Estimator with Non-Informative Prior of R

Suppose X = (Xl, X s an) and Y = (Yl,YZ,...,YnZ) be two independent random samples drawn from
MED with parameters (al,ﬂ*l) and (az,ﬂvz), respectively. Then, the Jeffrey’s priors of the parameters

051,/11,052 and /12 are obtained, respectively, as follows:

1 1 1
; A oo —— - A )oc——
) 7722( 1)°C ) 72'23(052)0C a, + 4, and 7724( 2)°C o, + 4,

7721(051)OC

The posterior joint distribution of independent (051 , j'1) and (052 , ﬂz) will be

n,—2n, -2 ) ok (o +4 )ixi —(a2+lz)iyj
7[2(“1,/’{1,&2,/’{2 | X,Y Z Z n1 1= 1 ;z— 2= //{22 e ey =t
Ky =1k, =1

s

=/
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Thus, the posterior distributions of & /11, a, and /12 are gamma with parameters (71 T ), (72 11T, ), (73 ) 773)

and (7/4 114 ) , respectively, where
7l:n1_k1_1, Ulzéxi' 7/2 :kl +1, 772=§Xi

n, _ n,
y3=n, -k, -1, 773:_21)’1’ 7’4—k2+1, 774:_Zlyj (3.23)
i= i=
Then, the Bayes estimators of R corresponding to the Jeffrey’s priors is obtained as follows:

1 n+r 1 ~(r+ra+rs+rs)
(EJ I R”*“(l—R)’““_l(l—(l—ﬁjRJ dR, if <7,

B +707+7) \m) 4 7
47 ~(n+r2+73t7s)
1 m]y y 1RW 1 R%*“‘l[1 [1 ’73]1 R] dR, if
L v ] -[1-5 |2~ Lifp<n
By, + 7,75 +74) (771 ! -R) 771( ) o

Using the Formula 3.197.3 in Gradshteyn and Ryzhik [9], we get the Bayes estimator of R with respect to
Jeffrey’s priors as follows

>

(Dol R[n e etnen 1o | T, <T,
n+n,\ T, T,

2>
<
Il

(3.24)

n (T_Yj 2F1(n1+n21n2,n1+n2+1; 1_T_Yja if T, <Ty,
n +n,{ Ty Ty

Notice that, in this section, we have no need to estimate the prior parameters such as in the previous section.

This approach also overcomes the sensitivity of R3to the parameters of the prior distributions.

4. Interval Estimation of R

Two different confidence intervals of R are derived in this section, based on the exact and asymptotic
distributions of the maximum likelihood estimator of R.

4.1. Exact Confidence Interval for R

Let Xl, X2 ey Xn and Yl,Yz,---,Yn be two independent random samples drawn from modified exponential
1 2

with parameters (051 , ﬂ«l) and (052 , ﬂz ) respectively.
Using (3.7) and (3.10), we get

Ry = (1+ \):;J_l _ (1+% Fl}—l
( +2,)X

where F, = ———“— is an F distributed random variable with (an,znz) degrees of freedom. From (2.4)

(0(2 +4, )Y
and (3.7), F1 can be written as
R
1-R
which is used as a pivotal quantity. Hence, the (1— < )100% confidence interval for R is obtained as

(4.1)

<|| x|

I:l

“E
E:E’ N
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< ¢
cl, - 1 (2n1 2n,) - 2,(2n1,2nz) - (4.2)
Y Y

%,(an,an)

1—%,(2n1,2n2 )

where Fa (b, C) is the (]-— a)th quantile of an F distributed random variable with (b, C)degrees of freedom.

4.2. Asymptotic Confidence Interval for R
Since, the MLEs g = (071,51,072122) have approximately normally distribution and according to Kotz et al.

[12], the MLE él is approximately normally distributed given by

R < N(R,AZA) 43)
oR OR OR OR
da, 04, dar, 04,
(1— é/)]-OO% Cl for R can be obtained as

where A={ } and L is the variance-covariance matrix. Therefore, the asymptotic

Cl,=| =——= AE‘lA
X+Y 1—5

Zl_ N A’Z‘lAJ (4.4)
2

4.3. Bayesian Credible Intervals
4.3.1 Bayes Estimator with Conjugate Prior of R

We conclude from Section 3.3.1 that the posterior distributions of &1 and 2«1 corresponding to gamma priors
are gamma with parameters (2n1 -2k, +1.2n1)z> and (Zkl +1,2n1)z), respectively. Similarly, the
posterior distributions of &, and 12 corresponding to gamma priors are gamma with parameters
(2n2 —2k2 +1.2n2Y_) and (Zk +12n Y_) respectively. Thus,

4n X(al +ﬂ1) 7(4 (ns1) and 4N Y(az +4 ) Zf(nzﬂ)

Define, F2 as
nl(nz +1)(0(1 + /11)>z
F, = —
n, (nl +1)(a2 + /12)Y
Since (051 il il) = R , then F2 can be rewritten as
(a, +2,) (A-R)

n(n, +1)X R
n,(n, +1Y (1-R)

which is distributed as Fa(ns1).4(ne1))° Using F2 in (4.5) as a pivotal quantity, we get (1_ {)100% Bayes

F,= (4.5)

credible interval for R as follows

lgfi(

O
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F . F.
—_ 15 (4(n+1).4(n +1) 5:(4(n+1).4(n; +1)) (4.6)
e n, (n, +1)>T’F L M, +1)X
1—%,(4(n1+1 (n,+1)) (n +1)Y 4(ny+1),4(n,+1)) (n —|—1)Y

4.3.2. Bayesian Interval with Non-Informative Prior for R
We have seen in Section 3.3.2 that, assuming independence and non-informative prior distributions for

051,/11,0!2 and Ay, the posterior distributions  of 051,/11,0!2 and /12 are gamma with parameters
n n ) n,
(nl -k, -1, Zl X j,(kl +1,Z1 X j n, — kz -1 ZYJ , and kz +1, ZYJ_ , respectively. Thus,
' =L i= =1

i=1
2 2 va 2
nl(al +/11)X ~ Xon, and 2n2(a2 +/12)Y ~ Xon,
Therefore, if we define F3 as

(0‘2+/12)Y_
F,=-—"2"2_~F
e e

M:(l

and since — —11, then F3 can be rewritten as
(al + /11) R

F, = i(i—lj (4.7)
X R

which is distributed as F(2n2,2n1)- Using F3 in (4.7) as a pivotal quantity, we get (1— é/)]-OO% Bayes

credible interval for R as follows:

Cl, = >Z<R< (4.8)
1+F —=
Y

%(an 2n,)

which is the same as the exact confidence interval CI

5. Simulation
In this section, we introduce a simulation study to compare between the estimators of the stress-strength model

for the modified exponential distribution, namely Iil, IQZ, |R33 and I§4, and the corresponding confidence
intervals using two different methods. The mean squared errors (MSE) of the estimators of R and the average
lengths (AL) of the intervals of these estimators are discussed in this comparison. The cases when R = 0.5,
R=06, R=0.7, R=0.8, R=0.9 and R=0.97 are studied. Without loss of generality, we take the

case when a1 =4; =4 and different values of a9 =4, =0.1,0.4,11.5,2.53.5 with the sample sizes

n1 = n2 = 5,10,20,30,50 The results of this simulation is denoted in the Appendix (Tables 6 & 7).

5.1. Mean Squared Errors Estimators
From Table 1, we conclude that there are five different cases, which are given as following:

1- MSE(R, )< MSE(R; )< MSE(R, )< MSE(R, ):
lir‘“

O
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when Ny =Ny, =5 for @ =1, =2.5,3.5
n,=n, =10 for &, =1, =1.5,2535
N, =n, =20 for ¢y =2, =25.
2o MSE(R, )< MSE(R, )< MSE(R; )< MSE(R, ):
when N, =N, =S for ap = A, =15
n, =N, =20 for &, =4, =1.53.5
n, =n, =3,50 for ap =4, =1.5,2.535.
3 MSE(R, )< MSE(R, )< MSE(R; )< MSE(R, ):
when N, =N, =520 for ar, = 4, =1
n, =N, =350 for ¢, =1, =0.1,0.41.
4~ MSE(R, )< MSE(R, )< MSE(R; )< MSE(R, ):
when n, =n, =5,20 for ¢, =1, =0.1,04.
MSE(R, )< MSE (R, )< MSE(R, )< MSE(R, ):

a1
1

when Ny =N, =10 for o, =4, =0.1,0.4.1.
In another way, we can compare between the estimators of R by the value of R as follows:
1- If R=0.5and R=0.6:
when (n1 =0, ) <30, MSE(I§4) is the smallest, otherwise MSE(IQl )
2- IfR=0.7and R=0.8:

when N, =N, =10 MSE(|§4) is the smallest, otherwise MSE(IQl).
3- IfR=0.7and R=0.8:

when (n1 = n2)< 30, MSE(IQZ) is the smallest, otherwise MSE(ﬁl).

Therefore, we can conclude that the MLE of R, Rl, is the best estimate of R when the sample size is greater
than 30 for different values of R and also when the sample size is less than 30 for 0.6 < R < 0.9. On the other
hand, if the sample size is less than 30, the BE with Jeffrey’s prior, R 4, is a better estimator of R than the other

estimators for R<0.6. In contrast, R,, the UMVUE of R, is the best estimator if R<0.6 when
(n, =n,)<30.
We also observe that the mean squared errors of the four estimates decrease as the sample sizes and/or R

increase. When R is large, R = 0.9, 0.97, the differences between the mean squared errors of the four estimates
are very small.

5.2. Using Average Length of the Intervals
The exact, asymptotic confidence intervals and the confidence intervals of the posterior prior distribution for the

Bayes estimators of R, namely Cl;, Cl,, Cl, and CI,, respectively.

5 |
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As with the earlier numerical illustration, taking ¢ = 0.05, the average length of each of the intervals is obtained
and calculated for 1000 simulation runs for various sample sizes (n, =n, =5, 10, ,20, 30, 50) and for the

caseswhenR=0.5,R=0.6,R=0.7,R=0.8,R=0.9,and R = 0.97.

From Table 2, we notice that the average lengths of CI  are the shortest average lengths. Moreover, in general,

if the sample sizes larger than 20, the average lengths of Cl , smaller than the average lengths of CI, and vice

versa. However, the differences in average lengths are small. The average lengths of all intervals decrease as
n, = n, increases. Therefore, we conclude that the Bayes estimator of R with conjugate prior has the smallest

confidence intervals.

Table 1: R Estimators for MED when a; = 4, = 4.

m=n, a,=4, R R, MSE R, MSE Rs MSE R, MSE
5 0.525511 0.022102 0.522178 0.027702 0.519529 0.021597 0.518679 0.019816
10 0.52919 0.012049 0.537108 0.013727 0.534711 0.011986 0.533926 0.011446
20 35 0.53 0.530934 0.005897 0.532657 0.006573 0.531518 0.006126 0.531143 0.005983
30 0.535688 0.003971 0.533445 0.004378 0.532653 0.004176 0.532391 0.00411
50 0.533739 0.002161 0.532825 0.002452 0.532347 0.002383 0.532189  0.00236
5 0.600885 0.020884 0.604676 0.025679 0.592568 0.020779 0.588646 0.019366
10 0.607606 0.011293 0.618733 0.012363 0.611328 0.010996 0.608886 0.01058
20 2.5 0.62 0.611239 0.003787 0.614669 0.003969 0.610846 0.003855 0.609582  0.00382
30 0.61638 0.003078 0.615435 0.003232 0.61282 0.003169 0.611953 0.003149
50 0.615092 0.002275 0.614917 0.002423 0.613324 0.002395 0.612795 0.002387
5 0.706363 0.016641 0.71817 0.019098 0.695839 0.017252 0.688286 0.016806
10 0.716092 0.008683 0.729848 0.008709 0.717479 0.008259 0.713277 0.008156
20 15 0.73 0.721603 0.003987 0.726592 0.004226 0.720157 0.004144 0.717988 0.004132
30 0.72668 0.002548 0.727256 0.002784 0.722893 0.002748 0.721427 0.002743
50 0.726248 0.00139 0.726898 0.001571 0.724244 0.001561 0.723355 0.001561
5 0.777895 0.012335 0.792568 0.013154 0.767002 0.013322 0.757897 0.013566
10 0.7883 0.006181 0.800214 0.00583 0.786687 0.005932 0.781939 0.006029
20 1 0.8 0.794223 0.002705 0.799411 0.002772 0.792435 0.002828 0.790037 0.002866
30 0.798762 0.001684 0.799958 0.001819 0.795259 0.001844 0.793659 0.001861
50 0.79876  0.000915 0.799705 0.001028 0.796859 0.001039 0.795897 0.001046
5 0.892682 0.004416  0.9051  0.004055 0.884248 0.005316 0.875716 0.005991
10 0.900659 0.00201 0.910073 0.001546 0.899949 0.001838 0.896093 0.001993
20 0.4 0.91 0.905116 0.000784 0.908759 0.000751 0.90366 0.000834 0.901829 0.000875
30 0.907848 0.000466 0.909049 0.00049  0.90566 0.000525 0.90447 0.000543
50 0.908125 0.00025 0.908944 0.000277 0.906909 0.00029 0.906209 0.000296
5 0.969719 0.00048 0.974387 0.000404 0.966366 0.000688 0.962476  0.00087
10 0.972674 0.000199 0.975891 0.00013  0.97231 0.000177 0.970832 0.000205
20 0.1 0.98 0.974278 0.000069 0.97551 0.000063 0.973752 0.000075 0.973096 0.000081
30 0.975142 0.000039 0.975594 0.000041 0.974438 0.000046 0.974022 0.000048
50 0.975273 0.000021 0.975568 0.000023 0.974879 0.000025 0.974639 0.000026
Table 2: AL of the Intervals when &; = 4; = 4and £ =0.05.
a, = A, R n,=n, AL(CL,ClL) AL(CL) AL(CL)
5 0.537909 0.468571  0.380794
10 0.404345 0.342223  0.286508
35 0.53 20 0.296776 0.238015  0.210207
30 0.245103 0.194291 0.17353
50 0.19213 0.145736  0.135972
5 0.523399 0.450825  0.368792
25 0.62 10 0.389885 0.38087 0.275382
20 0.284497 0.227294  0.201129
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30 0.233854 0.184612 0.165332

50 0.183178 0.138668  0.129523

5 0.471778 0.390091  0.326928

10 0.341361 0.280573  0.238548

15 0.73 20 0.244293 0.192408  0.171635
30 0.198654 0.15498 0.139823

50 0.154879 0.116471  0.109209

5 0.412298 0.325089  0.280201

10 0.288547 0.230848  0.199277

1 0.8 20 0.202058 0.156684  0.141024
30 0.162639 0.125389  0.113948

50 0.126099 0.094182 0.088664

5 0.259462 0.180519  0.167312

10 0.165979 0.124374  0.111405

0.4 0.91 20 0.110143 0.082478  0.075741
30 0.086749 0.065241  0.060179

50 0.066412 0.048896  0.046418

5 0.092336 0.05545 0.055772

10 0.052844 0.037118  0.034465

0.1 0.98 20 0.033168 0.024098  0.022515
30 0.025642 0.018902 0.017643

50 0.019418 0.014135  0.013507

6. Data Analysis
In this section, we discuss the problem of fitting the MED to well-known data sets and compare its goodness-of-
fit with ED using the Kolmogorov-Smirnov (K-S) statistic and the likelihood ratio test.
The present sets of data were reported by Badar and Priest [3] and represent the strength easured in GPA for
single carbon fibers and impregnated 1000-carbon fiber tows. Single fibers were tested under tension at gauge
lengths of 1, 10, 20, and 50 mm. Impregnated tows of 1000 fibers were tested at gauge lengths of 20, 50, 150,
and 300 mm. For illustrative purpose in this section, we consider the single fibers of 20 mm (Data Set I) and 10
mm (Data Set Il) in gauge length, with sample sizes n; = 69 and n, = 63, respectively. This data is presented
in Table 3. We analyze the data by subtracting 1.0 and 1.8 from the first and second data sets, respectively.
These transformed data sets were analyzed by Ragab and Kundu (2005).

Table 3: Carbon-Fiber Data Sets (Badar and Priest [3]).

Data Set I: Gauge lengths of 10 mm. Data Set I1: Gauge lengths of 10 mm.
1312 1.314 1479 1552 1.7 1901 2132 2203 2.228 2257
1.803 1.861 1.865 1.944 1.958 235 2361 2396 2.397 2445
1.966 1.997 2.006 2.021 2.027 2454 2474 2518 2522 2525
2.055 2.063 2.098 214 2.179 2532 2575 2614 2616 2.618
2224 224 2253 227 2272 2624 2659 2675 2738 274
2274 2301 2301 2359 2.382 2.856 2917 2928 2937 2.937
2.382 2426 2434 2435 2478 2977 299 3.03 3125 3.139
249 2511 2514 2535 2.554 3.145 322 3.223 3.235 3.243
2566 2,57 2586 2.629 2.633 3.264 3.272 3.294 3.332 3.346
2.642 2648 2.684 2.697 2.726 3.377 3408 3.435 3.493 3.501
277 2773 238 2.809 2.818 3.537 3554 3562 3.628 3.852
2.821 2.848 2.88 2954 3.012 3.871 3.886 3.971 4.024 4.027
3.067 3.084 3.09 3.096 3.128 4225 4395 5.02

3.233 3.433 3585 3.585
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Table 4 gives MLEs and MMEs of parameters of the MED. The 95% asymptotic confidence intervals (ACI) for
the MLEs and the interval lengths for the two data sets are calculated in Table 7. 3The log-likelihood values, the
Kolmogorov-Smirnov statistics based on the MLEs and the corresponding p-values for the modified exponential
distribution and the exponential distribution are represented in Table 6. Notice that the log-likelihood values are
the same for the ED and the MED. On the other hand, the MED has a smaller K-S statistic than the ED in the
second data set. It is observed that the fitting results for the MED and the ED are almost the same.

The four estimators of reliability parameter R = P(X < Y), when X~MED(a4,4,) and Y~MED (a,,,) are
estimated in Table 7 with the corresponding confidence interval (CI) and interval length (IL). Noticed that the

average lengths of R3 are the shortest average lengths, which is the same result of the simulation.
Table 4: Parameter Estimations for the MED and ED

Data Estimator MED(a, 4) ED(B)
a A B

Setl MLE 0.244511 0.444511 0.689022

MME 0.361464 0.561464 0.851795

SetIl  MLE 0.347045 0.447045 0.794091

MME 0.404399 0.604399 1.017675

Table 5: ACI and IL for MLEs of MED and ED

Data Set MED(«a, 4) ED(B)
a y! B
Setl ACI (0.08193,0.40708) (0.28193,0.60708) (0.52644, 0.85159)
IL 0.32515 0.32515 0.325152
Setll ACI (0.15095, 0.54313) (0.25095, 0.64313) (0.59800, 0.99017)
IL 0.39217 0.39217 0.392173

Table 6: Log-likelihood and K-S statistic for MED and ED
Data Model Log-Likelihood K-S Statistic p-value

Setl MED -94.7013 0.36224 6.96x 10~
ED -94.7013 0.36224 157x 1078
Setll MED  -77.5251 0.23606 0.00011
ED -77.5251 0.27450 0.00011

Table 7: R Estimators, the Cl and IL for MED

R, R, R; R,
R Estimators  0.464578 0.464477 0.464455 0.465014
cl (0.3814, 0.5504)  (0.2946, 0.6344) (0.4057,0.5247) (0.3814, 0.5504)
IL 0.169037 0.339825 0.11894 0.169037
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