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1. Introduction 

The reliability of systems or components can be defined by the stress-strength model as 𝑅 = 𝑃 𝑋 < 𝑌 , where 

X and Y represent the stress and the strength random variables, respectively. In various practical problems, R is 

of great interest, since it provides a general measure of the difference between two populations. For instance, R 

may be used in treatment comparisons  .Thus, stress-strength model has many applications in engineering 

concepts, deterioration of rocket motors, fatigue of ceramic components and fatigue of aircraft structure are 

some of its applications. A great deal of the literature has been published for evaluating the reliability R, its 

computation and its estimation under many statistical parametric and non-parametric assumptions on the model. 

See, for example: Downton [7], Beg and Singh [4], Constantine et al. [5], Ivshin and Lumelskii [10], Maiti [15], 

Mokhlis [16], Kundu and Gupta [13], Rao [18] and Al-Mutairi et al. [1].  

The modified exponential distribution (MED) with two parameters is mentioned in Elbatal and Aryal [8] as a 

special case of the transmuted family, see also Das [6] and Khan [11]. The cumulative distribution function (cdf) 

of MED is defined for T>0 as:  
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Therefore, the corresponding probability distribution function (pdf) is 
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),;(                                                         (1.2) 

where   and   are scale parameters. Notice that either 0  or 0 , leads to the usual negative 

exponential distribution (ED).  

The main purpose of this paper is to develop the inference on 𝑅 = 𝑃 𝑋 < 𝑌 , where X and Y are independent 

modified exponential distribution with different scale parameters  11 ,  and  22 , , respectively. The 

paper is organized as follows: in Section 2, the stress-strength model, R, is derived for the modified exponential 

distributions. In Section 3, different estimators of R are discussed, namely, maximum likelihood estimator 
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(MLE), uniformly minimum variance unbiased estimator (UMVUE) and Bayesian estimators corresponding to 

two different priors which are conjugate and non-informative priors. In Section 4, exact and asymptotic 

confidence intervals (ACI) for the stress-strength model are constructed. In addition, Bayesian credible intervals 

with respect to conjugate and non-informative priors are derived. In Section 5, a simulation study is performed 

to compare the different estimators (MLE, UMVUE and Bayes) of R. Finally, the procedures are illustrated by 

analyzing a real data set in Section 6.. 

 

2. Stress-Strength Model  

If X  and Y  are independent where  11,~ MEX  and  22 ,~ MEY . Let  2211 ,,,    

be a vector of unknown parameters, then the stress-strength model, R, can be derived as 

                           
2211

11









 YXPR                                        (2.1) 

Notice that equation (2.1) can be rewritten as 
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3. Point Estimation of R 

Here, we derive the current the MLE, UMVUE and Bayes estimators of stress-strength model for the MED. 

3.1. Maximum Likelihood Estimator of R 

Suppose  
1

,...,, 21 nXXXX   and  
2

,...,, 21 nYYYY   are independent random samples where 

 11,~ MEX  and  22 ,~ MEY . Then, the likelihood function becomes 
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Then, the MLEs of the parameters are obtained by maximizing the log-likelihood function with respect to the 

parameters as following 
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Then, the MLE of R is given be 
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Notice that 1R̂ can be expressed by  

Y

X
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Next we prove the following interesting results. 

Theorem 1: If  
1

,...,, 21 nXXXX   and  
2

,...,, 21 nYYYY   are independent random samples where 

 11,~ MEX  and  22 ,~ MEY . Then,  

 1.  1111 ,~   nGammaXnTX  and  2222 ,~   nGammaYnTY                 (3.8) 

 2.    
2

)2111 1
~2 nXn    and    

2

)2222 2
~2 nYn   .                                             (3.9) 
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Proof: 

The moment generating function of  11,~ MEX  is given by 
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Thus,  1111 ,~   nGammaXnTX  which yields to    
2

)2111 1
~2 nXn   . Similarly, if 

 22 ,~ MEY . Then,  2222 ,~   nGammaYnTY  and    
2

)2222 2
~2 nYn   . Now, if 

we define 
1F  as following 
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which is distributed as 
1F  with  21 2,2 nn  degrees of freedom. 

 

3.2. Uniformly Minimum Variance Unbiased Estimator of R 

Let  
1

,...,, 21 nXXXX   and  
2

,...,, 21 nYYYY   be two independent random samples where 

 11,~ MEX  and  22 ,~ MEY . Then, the likelihood function becomes 
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By Factorization Theorem (see Kotz et al. [12]), we get  

1. 



1

1

n

i

iX xT and 



2

1

n

i

iY yT  are sufficient statistics for X and Y.  

2. The indicator  11 YXIT   is an unbiased estimator of R. 

Using Rao-Blackwell and Lehman-Sheffes’ Theorems, see Mood et al. [17], the UMVUE, 2R̂ , of R is given by 

    11112

1 1

,|,,|ˆ dydxttyxftTTTER
x y

yxYX    

where  
yx ttyxf ,|, 11  is the conditional pdf of 

11 ,YX  given that 
YX TT , . 

Notice that 
1X  and 

1Y , are independent modified exponential random variables with parameters  11 , and 

 22 , , respectively. Recall that from Theorem 1, 
XT and 

YT  are independent gamma random variables 

with parameters  111,  n  and  222 ,  n , respectively. Therefore, 
1XTX   and 

1YTY   are 

independent gamma random variables with parameters  111 ,1  n  and  222 ,1  n , 

respectively. Moreover 
1XTX   and 

1X  are independent, as well as 
1YTY   and 

1Y  are also independent. 

We obtain that 
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Then, the 2R̂  is derived as follows  
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Using formula (3.11) in Gradshteyn and Ryzhik [9], the 2R̂  can be written as 
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where  zF ;,,12    is Gauss hypergeometric function given by 
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Thus, the UMVUE of R can be rewritten as 
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3.3. Bayesian Estimators of R 

Here, the Bayes estimators of R with respect to conjugate and non-informative prior distributions are obtained. 

We show that the Bayes estimator of R with respect to non-informative prior distribution is superior to that with 

respect to conjugate distribution.  

 

3.3.1. Bayes Estimator with Conjugate Prior of R 

Let  
1

,...,, 21 nXXXX   and  
2

,...,, 21 nYYYY   be two independent random samples drawn from the 

modified exponential distributions with parameters  11,  and  22 , , respectively. Assuming that 

 2211 ,,,    are independent, having conjugate gamma prior distributions, with parameters 

     332211 ,,,,,  and  44 , , respectively. Then, 
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Thus, the posterior distributions of 211 ,,   and 2  are gamma with parameters 

     332211 ,,,,,   and  44 , , respectively, where  
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The Bayes estimator of R with respect to the mean squared error loss function, 3R̂ , is  

 YXRER ,|ˆ
3   

After making suitable transformations and simplifications and using Formula 3.197.3 in Gradshteyn and Ryzhik 

[9], we get, if 31    
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Equation (3.16) can also be written as  
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Using the transformation RR 1*
, we obtain, if 13      
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If ,31    we get 
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Combining (3.17), (3.18) and (3.19), we obtain 
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Based on Lindley [14] and Awad and Gharraf [2], we could use the means of an empirical Bayes procedure to 

estimate the parameters of the prior distributions of  11 ,  and  22 ,  in (3.20) as follows: 
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Let  
1

,...,, 21 nXXXX   and  
2

,...,, 21 nYYYY   be two independent random samples drawn from 

modified exponential distributions with parameters  11,  and  22 , , respectively. Then, the likelihood 

function of each sample will be, respectively,  
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Notice that  11,| XL  is a function of 1  and 1  which are gamma densities with parameters 
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The Bayes estimator of R in (3.20) could be given as 
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where XnTX 1  and YnTY 2 . 

 

 

3.3.2. Bayes Estimator with Non-Informative Prior of R 

Suppose  
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,...,, 21 nXXXX   and  
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MED with parameters  11,  and  22 , , respectively. Then, the Jeffrey’s priors of the parameters 
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Thus, the posterior distributions of 211 ,,   and 2  are gamma with parameters      332211 ,,,,,   

and  44 , , respectively, where  
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Then, the Bayes estimators of R corresponding to the Jeffrey’s priors is obtained as follows: 
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Using the Formula 3.197.3 in Gradshteyn and Ryzhik [9], we get the Bayes estimator of R with respect to 

Jeffrey’s priors as follows 
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Notice that, in this section, we have no need to estimate the prior parameters such as in the previous section. 

This approach also overcomes the sensitivity of 3R̂ to the parameters of the prior distributions. 

 

4. Interval Estimation of R 

Two different confidence intervals of R are derived in this section, based on the exact and asymptotic 

distributions of the maximum likelihood estimator of R.  

4.1. Exact Confidence Interval for R 

Let 
1

,...,, 21 nXXX and 
2

,...,, 21 nYYY be two independent random samples drawn from modified exponential 

with parameters  11,  and  22 , , respectively. 

Using (3.7) and (3.10), we get 
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and (3.7), 1F  can be written as  
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which is used as a pivotal quantity. Hence, the   %1001   confidence interval for R is obtained as 
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where  cbFa ,  is the  a1 th quantile of an F distributed random variable with  cb, degrees of freedom. 

 

4.2. Asymptotic Confidence Interval for R 

Since, the MLEs  2211
ˆ,ˆ,ˆ,ˆˆ    have approximately normally distribution and according to Kotz et al. 

[12], the MLE 1R̂  is approximately normally distributed given by 
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4.3. Bayesian Credible Intervals  

4.3.1 Bayes Estimator with Conjugate Prior of R 

We conclude from Section 3.3.1 that the posterior distributions of 1  and 1  corresponding to gamma priors 
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posterior distributions of 2 and 2  corresponding to gamma priors are gamma with parameters 
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which is distributed as 
    14,14 21  nnF . Using 2F  in (4.5) as a pivotal quantity, we get   %1001   Bayes 

credible interval for R as follows 



Alghamdi SA et al                                    Journal of Scientific and Engineering Research, 2017, 4(9):506-519 

 

Journal of Scientific and Engineering Research 

514 

 

    

    

 
 

    

    

 
  








































Ynn

Xnn
F

F

Ynn

Xnn
F

F

CI

nn

nn

nn

nn

1

1
,

1

1

12

21

14,14,
2

14,14,
2

12

21

14,14,
2

1

14,14,
2

1

3

21

21

21

21









            (4.6) 

 

4.3.2. Bayesian Interval with Non-Informative Prior for R 

We have seen in Section 3.3.2 that, assuming independence and non-informative prior distributions for 

211 ,,  and 2 , the posterior distributions of 211 ,,  and 2 are gamma with parameters 
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which is distributed as  12 2,2 nnF . Using 3F  in (4.7) as a pivotal quantity, we get   %1001   Bayes 

credible interval for R as follows: 
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which is the same as the exact confidence interval 1CI . 

 

5. Simulation 

In this section, we introduce a simulation study to compare between the estimators of the stress-strength model 

for the modified exponential distribution, namely , ,  and , and the corresponding confidence 

intervals using two different methods. The mean squared errors (MSE) of the estimators of R and the average 

lengths (AL) of the intervals of these estimators are discussed in this comparison. The cases when , 

, , ,  and  are studied. Without loss of generality, we take the 

case when  and different values of  with the sample sizes

50,30,20,10,521  nn . The results of this simulation is denoted in the Appendix (Tables 6 & 7). 

 

5.1. Mean Squared Errors Estimators 

From Table 1, we conclude that there are five different cases, which are given as following: 

1- : 

1R̂ 2R̂ 3R̂ 4R̂

5.0R

6.0R 7.0R 8.0R 9.0R 97.0R

411   5.3,5.2,5.1,1,4.0,1.022  

       2134
ˆˆˆˆ RMSERMSERMSERMSE 
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when 521  nn  for  

          1021  nn  for  

          2021  nn  for . 

2- : 

when 521  nn  for  

          2021  nn  for  

          50,321  nn  for . 

3- : 

when 20,521  nn  for  

          50,321  nn  for . 

4- : 

when 20,521  nn  for . 

5- : 

when 1021  nn  for . 

In another way, we can compare between the estimators of R by the value of R as follows: 

1- If and : 

when   3021  nn ,  is the smallest, otherwise . 

2- If and : 

when  1021  nn ,  is the smallest, otherwise . 

3- If and : 

when   3021  nn ,  is the smallest, otherwise . 

Therefore, we can conclude that the MLE of R, , is the best estimate of R when the sample size is greater 

than 30 for different values of R and also when the sample size is less than 30 for . On the other 

hand, if the sample size is less than 30, the BE with Jeffrey’s prior, , is a better estimator of R than the other 

estimators for . In contrast, , the UMVUE of R, is the best estimator if  when 

  3021  nn . 

We also observe that the mean squared errors of the four estimates decrease as the sample sizes and/or R 

increase. When R is large, R = 0.9, 0.97, the differences between the mean squared errors of the four estimates 

are very small. 

 

5.2. Using Average Length of the Intervals  

The exact, asymptotic confidence intervals and the confidence intervals of the posterior prior distribution for the 

Bayes estimators of R, namely 1CI , 
2CI , 

3CI  and 
4CI , respectively. 

5.3,5.222  

5.3,5.2,5.122  

5.222  

       2341
ˆˆˆˆ RMSERMSERMSERMSE 

5.122  

5.3,5.122  

5.3,5.2,5.122  

       4321
ˆˆˆˆ RMSERMSERMSERMSE 

122  

1,4.0,1.022  

       4312
ˆˆˆˆ RMSERMSERMSERMSE 

4.0,1.022  

       1432
ˆˆˆˆ RMSERMSERMSERMSE 

1,4.0,1.022  

5.0R 6.0R

 4R̂MSE  1R̂MSE

7.0R 8.0R

 4R̂MSE  1R̂MSE

7.0R 8.0R

 2R̂MSE  1R̂MSE

1R̂

9.06.0  R

4R̂

6.0R 2R̂ 6.0R
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As with the earlier numerical illustration, taking , the average length of each of the intervals is obtained 

and calculated for 1000 simulation runs for various sample sizes ( 50,30,20,,10,521  nn ) and for the 

cases when R = 0.5, R = 0.6, R = 0.7, R = 0.8, R = 0.9, and R = 0.97. 

 From Table 2, we notice that the average lengths of 
3CI are the shortest average lengths. Moreover, in general, 

if the sample sizes larger than 20, the average lengths of  2CI  smaller than the average lengths of 
1CI and vice 

versa. However, the differences in average lengths are small. The average lengths of all intervals decrease as 

21 nn  increases. Therefore, we conclude that the Bayes estimator of R with conjugate prior has the smallest 

confidence intervals. 

Table 1: R Estimators for MED when 𝛼1 = 𝜆1 = 4. 

n1=n2 𝛼2 = 𝜆2 R 𝑅 1 MSE 𝑅 2 MSE 𝑅 3 MSE 𝑅 4 MSE 

5 

3.5 0.53 

0.525511 0.022102 0.522178 0.027702 0.519529 0.021597 0.518679 0.019816 

10 0.52919 0.012049 0.537108 0.013727 0.534711 0.011986 0.533926 0.011446 

20 0.530934 0.005897 0.532657 0.006573 0.531518 0.006126 0.531143 0.005983 

30 0.535688 0.003971 0.533445 0.004378 0.532653 0.004176 0.532391 0.00411 

50 0.533739 0.002161 0.532825 0.002452 0.532347 0.002383 0.532189 0.00236 

5 

2.5 0.62 

0.600885 0.020884 0.604676 0.025679 0.592568 0.020779 0.588646 0.019366 

10 0.607606 0.011293 0.618733 0.012363 0.611328 0.010996 0.608886 0.01058 

20 0.611239 0.003787 0.614669 0.003969 0.610846 0.003855 0.609582 0.00382 

30 0.61638 0.003078 0.615435 0.003232 0.61282 0.003169 0.611953 0.003149 

50 0.615092 0.002275 0.614917 0.002423 0.613324 0.002395 0.612795 0.002387 

5 

1.5 0.73 

0.706363 0.016641 0.71817 0.019098 0.695839 0.017252 0.688286 0.016806 

10 0.716092 0.008683 0.729848 0.008709 0.717479 0.008259 0.713277 0.008156 

20 0.721603 0.003987 0.726592 0.004226 0.720157 0.004144 0.717988 0.004132 

30 0.72668 0.002548 0.727256 0.002784 0.722893 0.002748 0.721427 0.002743 

50 0.726248 0.00139 0.726898 0.001571 0.724244 0.001561 0.723355 0.001561 

5 

1 0.8 

0.777895 0.012335 0.792568 0.013154 0.767002 0.013322 0.757897 0.013566 

10 0.7883 0.006181 0.800214 0.00583 0.786687 0.005932 0.781939 0.006029 

20 0.794223 0.002705 0.799411 0.002772 0.792435 0.002828 0.790037 0.002866 

30 0.798762 0.001684 0.799958 0.001819 0.795259 0.001844 0.793659 0.001861 

50 0.79876 0.000915 0.799705 0.001028 0.796859 0.001039 0.795897 0.001046 

5 

0.4 0.91 

0.892682 0.004416 0.9051 0.004055 0.884248 0.005316 0.875716 0.005991 

10 0.900659 0.00201 0.910073 0.001546 0.899949 0.001838 0.896093 0.001993 

20 0.905116 0.000784 0.908759 0.000751 0.90366 0.000834 0.901829 0.000875 

30 0.907848 0.000466 0.909049 0.00049 0.90566 0.000525 0.90447 0.000543 

50 0.908125 0.00025 0.908944 0.000277 0.906909 0.00029 0.906209 0.000296 

5 

0.1 0.98 

0.969719 0.00048 0.974387 0.000404 0.966366 0.000688 0.962476 0.00087 

10 0.972674 0.000199 0.975891 0.00013 0.97231 0.000177 0.970832 0.000205 

20 0.974278 0.000069 0.97551 0.000063 0.973752 0.000075 0.973096 0.000081 

30 0.975142 0.000039 0.975594 0.000041 0.974438 0.000046 0.974022 0.000048 

50 0.975273 0.000021 0.975568 0.000023 0.974879 0.000025 0.974639 0.000026 

Table 2: AL of the Intervals when 𝛼1 = 𝜆1 = 4 and 05.0 . 

𝛼2 = 𝜆2 R 𝑛1 = 𝑛2 AL 𝐶𝐼1, 𝐶𝐼4  AL 𝐶𝐼2  AL 𝐶𝐼3  

3.5 0.53 

5 0.537909 0.468571 0.380794 

10 0.404345 0.342223 0.286508 

20 0.296776 0.238015 0.210207 

30 0.245103 0.194291 0.17353 

50 0.19213 0.145736 0.135972 

2.5 0.62 

5 0.523399 0.450825 0.368792 

10 0.389885 0.38087 0.275382 

20 0.284497 0.227294 0.201129 

05.0
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30 0.233854 0.184612 0.165332 

50 0.183178 0.138668 0.129523 

1.5 0.73 

5 0.471778 0.390091 0.326928 

10 0.341361 0.280573 0.238548 

20 0.244293 0.192408 0.171635 

30 0.198654 0.15498 0.139823 

50 0.154879 0.116471 0.109209 

1 0.8 

5 0.412298 0.325089 0.280201 

10 0.288547 0.230848 0.199277 

20 0.202058 0.156684 0.141024 

30 0.162639 0.125389 0.113948 

50 0.126099 0.094182 0.088664 

0.4 0.91 

5 0.259462 0.180519 0.167312 

10 0.165979 0.124374 0.111405 

20 0.110143 0.082478 0.075741 

30 0.086749 0.065241 0.060179 

50 0.066412 0.048896 0.046418 

0.1 0.98 

5 0.092336 0.05545 0.055772 

10 0.052844 0.037118 0.034465 

20 0.033168 0.024098 0.022515 

30 0.025642 0.018902 0.017643 

50 0.019418 0.014135 0.013507 

 

6. Data Analysis 

In this section, we discuss the problem of fitting the MED to well-known data sets and compare its goodness-of-

fit with ED using the Kolmogorov-Smirnov (K-S) statistic and the likelihood ratio test.  

The present sets of data were reported by Badar and Priest [3] and represent the strength easured in GPA for 

single carbon fibers and impregnated 1000-carbon fiber tows. Single fibers were tested under tension at gauge 

lengths of 1, 10, 20, and 50 mm. Impregnated tows of 1000 fibers were tested at gauge lengths of 20, 50, 150, 

and 300 mm. For illustrative purpose in this section, we consider the single fibers of 20 mm (Data Set I) and 10 

mm (Data Set II) in gauge length, with sample sizes 𝑛1 = 69 and 𝑛2 = 63, respectively. This data is presented 

in Table 3. We analyze the data by subtracting 1.0 and 1.8 from the first and second data sets, respectively. 

These transformed data sets were analyzed by Raqab and Kundu (2005). 

Table 3: Carbon-Fiber Data Sets (Badar and Priest [3]). 

Data Set I: Gauge lengths of 10 mm.   Data Set II: Gauge lengths of 10 mm. 

1.312 1.314 1.479 1.552 1.7   1.901 2.132 2.203 2.228 2.257 

1.803 1.861 1.865 1.944 1.958 2.35 2.361 2.396 2.397 2.445 

1.966 1.997 2.006 2.021 2.027 2.454 2.474 2.518 2.522 2.525 

2.055 2.063 2.098 2.14 2.179 2.532 2.575 2.614 2.616 2.618 

2.224 2.24 2.253 2.27 2.272 2.624 2.659 2.675 2.738 2.74 

2.274 2.301 2.301 2.359 2.382 2.856 2.917 2.928 2.937 2.937 

2.382 2.426 2.434 2.435 2.478 2.977 2.996 3.03 3.125 3.139 

2.49 2.511 2.514 2.535 2.554 3.145 3.22 3.223 3.235 3.243 

2.566 2.57 2.586 2.629 2.633 3.264 3.272 3.294 3.332 3.346 

2.642 2.648 2.684 2.697 2.726 3.377 3.408 3.435 3.493 3.501 

2.77 2.773 2.8 2.809 2.818 3.537 3.554 3.562 3.628 3.852 

2.821 2.848 2.88 2.954 3.012   3.871 3.886 3.971 4.024 4.027 

3.067 3.084 3.09 3.096 3.128   4.225 4.395 5.02   

3.233 3.433 3.585 3.585         
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Table 4 gives MLEs and MMEs of parameters of the MED. The 95% asymptotic confidence intervals (ACI) for 

the MLEs and the interval lengths for the two data sets are calculated in Table 7. 3The log-likelihood values, the 

Kolmogorov-Smirnov statistics based on the MLEs and the corresponding p-values for the modified exponential 

distribution and the exponential distribution are represented in Table 6. Notice that the log-likelihood values are 

the same for the ED and the MED. On the other hand, the MED has a smaller K-S statistic than the ED in the 

second data set. It is observed that the fitting results for the MED and the ED are almost the same. 

The four estimators of reliability parameter 𝑅 = 𝑃 𝑋 < 𝑌 , when 𝑋~𝑀𝐸𝐷 𝛼1 , 𝜆1  and 𝑌~𝑀𝐸𝐷 𝛼2, 𝜆2  are 

estimated in Table 7 with the corresponding confidence interval (CI) and interval length (IL). Noticed that the 

average lengths of 3R̂ are the shortest average lengths, which is the same result of the simulation. 

Table 4: Parameter Estimations for the MED and ED 

Data Estimator MED(𝜶, 𝝀) ED(𝜷) 

𝜶 𝝀 𝜷 

Set I MLE 0.244511 0.444511 0.689022 

MME 0.361464 0.561464 0.851795 

Set II MLE 0.347045 0.447045 0.794091 

MME 0.404399 0.604399 1.017675 

 

Table 5: ACI and IL for MLEs of MED and ED 

Data Set MED(𝜶, 𝝀) ED(𝜷) 

𝜶 𝝀 𝜷 

Set I ACI (0.08193, 0.40708) (0.28193, 0.60708) (0.52644, 0.85159) 

IL 0.32515 0.32515 0.325152 

Set II ACI (0.15095, 0.54313) (0.25095, 0.64313) (0.59800, 0.99017) 

IL 0.39217 0.39217 0.392173 

 

Table 6: Log-likelihood and K-S statistic for MED and ED 

Data Model  Log-Likelihood K-S Statistic p-value 

Set I MED -94.7013 0.36224 6.96× 10−11  

ED -94.7013 0.36224 1.57× 10−8 

Set II MED -77.5251 0.23606 0.00011 

ED -77.5251 0.27450 0.00011 

 

Table 7: R Estimators, the CI and IL for MED 

 𝑹 𝟏 𝑹 𝟐 𝑹 𝟑 𝑹 𝟒 

R Estimators 0.464578 0.464477 0.464455 0.465014 

CI (0.3814, 0.5504) (0.2946, 0.6344) (0.4057, 0.5247) (0.3814, 0.5504) 

IL 0.169037 0.339825 0.11894 0.169037 
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