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Abstract In this research, an efficient two-step algorithm is derived for the solution of nonlinear first order 

differential equations. The derivation is carried out with the aid of collocation and interpolation of power series 

basis function. The reliability and applicability of the two-step algorithm derived was established by solving 

some nonlinear differential equations. The results obtained in terms of the point wise absolute errors show that 

the two-step algorithm developed approximates the exact solutions closely. The research further investigated the 

basic properties of the two-step algorithm and found it to be zero-stable, consistent and convergent. 
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1. Introduction 

The problem of deriving efficient algorithms for the solution of differential equations has received a great deal 

of attention in recent years. This is the reason why a wide variety of methods have been proposed. Three 

important factors contribute to the efficiency of any algorithm for solving ordinary differential equations, [1]: 

 the relative ease with which the step-size may be changed, 

 the possibility of using high order, highly stable schemes and 

 the relatively small amount of computational effort required per step given that an efficient differential 

equation integrator must be implicit.  

In this paper, we shall consider first order nonlinear differential equations of the form 

0 0'( ) ( , ), ( )y t f t y y t y           (1)

 where 0: , ,m m mf y y and f    is assumed to satisfy the Lipchitz condition stated 

in the theorem below. 

Theorem 1.1 [2] 

Let ( , )f t y  be defined and continuous for all points ( , )t y  in the region D  defined by 

,a t b y    , a and b  finite, and let there exist a constant L  such that, for every , ,t y y
such 

that ( , ) ( , )t y and t y
are both in D ; 

 ( , ) ( , )f t y f t y L y y            (2) 

Then, if   is any given number, there exists a unique solution ( )y t  of the initial value problem (1), where 

( )y t  is continuous and differentiable for all ( , )t y in D . The requirement (2) is known as a Lipschitz 

condition and the constant L as a Lipschitz constant.  
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Equations of the form (1) find application in areas of engineering, science and social sciences. It is a well known 

fact that some of these problems have proved to be either difficult to solve or cannot be solved analytically, 

hence the necessity of numerical techniques for such problems remains vital [3]. 

A lot of methods have been proposed for the solution of problems of the form (1). Linear Multistep Methods 

(LMMs) have been developed varying from discrete LMMs to continuous ones. Continuous LMMs have greater 

advantages over the discrete methods such that they give better error estimation, provide a simplified form of 

coefficients for further evaluation at different grid points and provide approximate solution at all interior points 

within the interval of integration [4]. These methods are first derivative methods that are implemented in 

predictor-corrector mode and Taylor series expansions are adopted to supply starting values [3]. The setbacks of 

the predictor-corrector methods are that they are very costly to implement, longer computer time, greater human 

effort and reduced order of accuracy which affect the accuracy of the method. 

Scholars latter developed block methods to cater for some setbacks of the predictor-corrector methods 

mentioned above. Block methods generate independent solutions at all selected grid point without overlapping. 

It is less expensive in terms of the number of function evaluation compared to predictor-corrector methods and 

moreover it possesses the properties of Runge-Kutta methods of being self-starting, see [5-7]. The block method 

was modified by   incorporating function evaluation at off-step points to afford the opportunity of circumventing 

the ‘zero stability barrier’ and this made it possible to obtain convergent k-step methods with order 2 1k  up to 

7k  , [8]. Even higher orders are available if two or more offstep points are used. This method was called 

‘hybrid method’. The method is useful in reducing the step number of a method and still remains zero-stable, 

see the works of [9, 10]. 

Definition 1.1: [11] 

A numerical integrator is said to be A-stable if its region of absolute stability R  incorporates the entire left-half 

of the complex plane denoted by C , that is,  : ( ) 0R z C re z    

Definition 1.2: [12] 

A numerical integration scheme is said to be ( )A  -stable for some  0, / 2   if the wedge  

  : ( ) , 0S z Arg z z      

is contained in its region of absolute stability. The largest  max. .i e   is called the angle of absolute 

stability. 

In view of the foregoing, a two-step algorithm shall be derived for the solution of nonlinear differential 

equations of the form (1). 

 

2. Derivation of the Two-Step Algorithm 

A two-step algorithm of the form, 

(0) ( ) ( )m n n mA E hd hb  Y y f y F Y         (3) 

shall be derived for the solution of nonlinear equations of the form (1). In doing this, power series will be 

employed as basis function. The power series is given by, 

1

0

( )
r s

n

n

n

y t a t
 



              (4) 

where  r and s  are the numbers of collocation and interpolation points respectively.  

Let the approximate solution to (1) be given by power series of degree 5, by allowing 1 5r s    in equation 

(4), that is, 

 

5
2 3 4 5

0 1 2 3 4 5

0

( ) n

n

n

y t a t a a t a t a t a t a t


             (5) 

with the first derivative given by, 
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2 3 4

1 2 3 4 5'( ) 2 3 4 5y t a a t a t a t a t            (6) 

Substituting (6) into (1) gives, 

2 3 4

1 2 3 4 5( , ) 2 3 4 5f t y a a t a t a t a t            (7) 

Now, interpolating (5) at point 
3

,
2

n st s   and collocating (7) at points
1

, 0 2
2

n rt r

 
  

 
, leads to a system of 

nonlinear equation of the form, 

TA U            (8) 

 where   

 0 1 2 3 4 5

T
A a a a a a a           1 1 3 2

2 2

T

n n n n
n n

U y f f f f f 
 

 
  
 

 

2 3 4 5

3 3 3 3 3

2 2 2 2 2

2 3 4

2 3 4

1 1 1 1

2 2 2 2

2 3 4

1 1 1 1

2 3 4

3 3 3 3

2 2 2 2

2 3 4

2 2 2 2

1

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

n n n n n

n n n n

n n n n

n n n n

n n n n

n n n n

t t t t t

t t t t

t t t t

T t t t t

t t t t

t t t t

    

   

   

   

   

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  

 

Solving (8) by Gauss elimination method for the ' , 0(1)5ja s j  and substituting back into the power series 

basis function gives a linear multistep method of the form,   

2

3 3

02 2

1
( ) ( ) ( ) , 0 2

2
j n j

n
j

y t t y h t f j  




 
    

 
       (9) 

where the coefficients of n n jy and f   are given as, 

3

2

5 4 3 2

0

5 4 3 2

1

2

5 4 3 2

1

5 4 3 2

3

2

5 4 3 2

2

1

1
(192 1200 2800 3000 1440 243)

1440

1
(384 2160 4160 2880 459)

720

1
(48 240 380 180 27)

60

1
(384 1680 2240 960 189)

720

1
(192 720 880 360 27

1440

x x x x x

x x x x

x x x x

x x x x

x x x x















     

     

    

     

     )



















   (10) 

and x  is given by  
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nt t
x

h


              (11) 

Evaluating (9) at 
1 1

2
2 2

t
 

  
 

, gives a discrete two-step algorithm of the form  (3) given by, 

 

1 1 1

2 2 2

1 1 1

3 3 3

2 2 2

2

251
0 0 0

1440
1 0 0 0 0 0 0 1 29

0 0 0
0 1 0 0 0 0 0 1 180

0 0 1 0 0 0 0 1 27
0 0 0

1600 0 0 1 0 0 0 1

7
0 0 0

45

n n n

n n n

n n n

n n n

y y f

y y f
h

y y f

y y f

  

  

  



 
 

     
        
        
          
        
                    

 
 

1

2

1

3

2

2

323 11 53 19

720 60 720 1440

31 2 1 1

45 45 45 180

51 9 21 3

80 20 80 160

32 4 32 7

45 15 45 45

n

n

n

n

f

f
h

f

f














 
 
 



  
 

  
  
  
   

   
  
    

 
   (12) 

The two-step algorithm derived in equation (12) is capable of solving nonlinear differential equation of the form 

(1).  

 

3. Analysis of the Two-Step Algorithm 

Some basic properties of the two-step algorithm derived shall be discussed in this section.  

3.1. Order of the Two-Step Algorithm 

According to [13], the two-step algorithm (12) is said to be of uniform accurate order p , if p  is the largest 

positive integer for which 0 1 2 1... 0, 0p pc c c c c       . 1pc   is called the error constant and the 

local truncation error of the method is given by; 

 ( 1) ( 1) ( 2)
1 ( )p p p

n k pt c h y t O h  
            (13) 

Therefore, for our two-step algorithm 0 1 2 3 4 5 0c c c c c c      , implying that the order 

 5 5 5 6
T

p   and the error constant is given by 

4 4 5 52.9297 10 1.7361 10 2.9297 10 6.6138 10
T

          . 

3.2. Consistency of the Two-Step Algorithm 

The two-step algorithm (12) is consistent since it has order 1p  . Consistency controls the magnitude of the 

local truncation error committed at each stage of the computation, [14]. 

3.3. Zero Stability of the Two-Step Algorithm 

Definition 3.1 [14]: A block method is said to be zero-stable, if the roots kszs ,...,2,1,   of the first 

characteristic polynomial )(z  defined by )det()( )0( EzAz   satisfies 1sz  and every root 

satisfying 1sz  have multiplicity not exceeding the order of the differential equation.  
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For the two-step algorithm (12), the first characteristic polynomial is given by,  

 

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
( )

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

z z

   
   
    
   
   
   

        

             
3

0 0 1

0 0 1
( 1)

0 0 1

0 0 0 1

z

z
z z

z

z




  





 

Thus, solving for z in  

 
3( 1) 0z z             (14) 

gives 1 2 3 40 1z z z and z    . Hence, the two-step algorithm (12) is zero-stable. 

3.4. Convergence of the Two-Step Algorithm 

The two-step algorithm is convergent since it is consistent and zero-stable. 

Theorem 3.1 [15] 

A linear multistep method is convergent if and only if it is zero stable and consistent  

3.5. Region of Absolute Stability of the Two-Step Algorithm  

Definition 3.2 [16] 

Region of absolute stability is a region in the complex z  plane, where z h . It is defined as those values of 

z  such that the numerical solutions of 'y y   satisfy 0jy   as j   for any initial condition. 

Applying the boundary locus method, we obtain the stability polynomial for the two-step algorithm derived as; 

 

 

4 3 4 3 4 3 2 3 4

4 3 4 3

1 17 223 5 7 1878
( )

80 600 3600 48 16 3600
h w h w w h w w h w w

h w w w w

     
           

     

   

     (15) 

The region of absolute stability of the two-step algorithm is shown in Figure 3.1. 

 
Figure 3.1: Stability region of the two-step method 

The stability region obtained in Figure 3.1 is ( )A  -stable (see [12]), since the stability region consists of the 

complex plane outside the enclosed figure. Note that the unstable region is the interior of the curve (when the 

curve is on the positive plane) while the stability region contains the exterior part of the curve.               
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4. Results 

4.1 Numerical Experiments    

The two-step algorithm developed shall be applied on two important nonlinear differential equations that find 

application in science and engineering. This is with the view to testing how computationally reliable the two-

step algorithm derived is. 

The following notations shall be used in the Tables below: 

ERR= Absolute error in the computational method 

Eval t =Evaluation time per seconds 

EFA-Absolute error in [17] 

ENB-Absolute error in [18] 

Problem 4.1:  

Consider the nonlinear problem,  

    
1 2'( ) (1 ) ( ) ( ), (0) 1y t t y t y t y             (16) 

The exact solution is given by, 

 
1( ) (1 )y t t             (17) 

Source: [17] 

Table 4.1: Showing the result for the nonlinear problem 4.1 

  t            Exact Solution              Computed Solution     ERR         EFA                Eval t  

0.1000    0.9090909090909091    0.9090909090915035    5.944134e-013    3.8296e-07     0.0813     

0.2000    0.8333333333333334    0.8333333333341414    8.080203e-013    3.8296e-07  0.0837    

0.3000    0.7692307692307692    0.7692307692316456    8.764101e-013    5.7951e-07  0.0860    

0.4000    0.7142857142857142    0.7142857142866030    8.888446e-013    6.8133e-07  0.0885    

0.5000    0.6666666666666666    0.6666666666675477    8.810730e-013    7.3394e-07  0.0909    

0.6000    0.6250000000000000    0.6250000000008679    8.678613e-013    7.6091e-07  0.0934    

0.7000    0.5882352941176470    0.5882352941185024    8.554268e-013    7.7483e-07  0.0958    

0.8000    0.5555555555555555    0.5555555555564012    8.457679e-013    7.8257e-07  0.0982    

0.9000    0.5263157894736841    0.5263157894745238    8.397727e-013    7.8799e-07  0.1005    

1.0000    0.4999999999999999    0.5000000000008377    8.377743e-013    7.9326e-07   0.1031    

 
Figure 4.1: Graphical Results for the Nonlinear Problem 4.1. 

 

Problem 4.2:  

Consider the nonlinear problem,  

    
2'( ) 1 ( ), (0) 0y t y t y             (18) 
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The exact solution is given by, 

 ( ) tanh( )y t t            (19) 

Source: [18] 

Table 4.2: Showing the result for the nonlinear problem 4.2 

  t             Exact Solution                Computed Solution        ERR            ENB            Eval t  

0.1000    -0.0996679946249558    -0.0996679946249528    3.053113e-015    
71.8 10  0.0171    

0.2000    -0.1973753202249040    -0.1973753202248864    1.759703e-014    
61.2 10   0.0192    

0.3000    -0.2913126124515909    -0.2913126124515429    4.796163e-014    
62.7 10  0.0215    

0.4000    -0.3799489622552249    -0.3799489622551366    8.826273e-014    
63.5 10  0.0236    

0.5000    -0.4621171572600099    -0.4621171572598834    1.264544e-013    
62.9 10  0.0258    

0.6000    -0.5370495669980354    -0.5370495669978849    1.505462e-013    
61.6 10  0.0279    

0.7000    -0.6043677771171636    -0.6043677771170095    1.540990e-013    
78.7 10  0.0301    

0.8000    -0.6640367702678492    -0.6640367702677114    1.378897e-013    
79.2 10  0.0323    

0.9000    -0.7162978701990246    -0.7162978701989173    1.072475e-013    
61.1 10  0.0345    

1.0000    -0.7615941559557651    -0.7615941559556947    1.038814e-013    
71.8 10  0.0367   

 
Figure 4.2: Graphical Results for the Nonlinear Problem 4.2 

 

4.2. Discussion of Results 

From the results above, it is clear that the two-step algorithm derived is efficient in handling nonlinear 

differential equations of the form (1). The stability region obtained also shows that the method can effectively 

handle even stiff equations since it is ( )A  -stable. The evaluation time per seconds obtained were also very 

small, showing that the method derived generates results faster. The analysis presented also show that the 

method is convergent, consistent and zero-stable. 

 

5. Conclusion 

The two-step algorithm derived in this work has been shown to be efficient in solving nonlinear problems of the 

form (1). Thus, the algorithm developed is recommended for the solution of problems of the form (1) and first 

order differential equations in general.  
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