Optimization of Production Scheduling System

Umeh Maryrose N. ${ }^{1}$, Aguh Sunday P. ${ }^{\mathbf{2}}$, Nwakoby John Oguejiofor ${ }^{2}$
${ }^{1}$ Department of Computer Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
${ }^{2}$ Industrial and Production Engineering Department, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

Abstract

In manufacturing industries production scheduling is always a key to the company's economic growth and profitability. It defines the appropriate timing system for production. It also establishes just-in-time system of the company under study. In this research work, the researcher makes use of $36 \times 75 \times 40$ size of foam product which was analyzed using response surface, integer programming and linear programming optimization tools to optimize the production output of the product. The result shows that maximum production output of the product using response surface, integer programming and linear programming were 1854 units, 2160.0 units and 2172.7 units respectively over any given monthly production. The results were recommended to the case company for optimum use in scheduling their monthly production output.

Keywords Scheduling, response surface, integer programming, linear programming optimization, Production and regression

Introduction

Manufacturing is very critical to economic growth, prosperity and a higher standard of living. It is a catalyst for industrial and economic development. Its satisfy economic want of individual, communities and nations by manufacturing things in workshops by utilizing men, materials, machines, money and methods [1].
Essentially, manufacturing can be simply define as value addition processes by which raw materials of low utility and value to its inadequate material properties and poor irregular size, shape and finish are converted into high utility and valued product with definite dimensions, forms, and finish imparting some functional ability by utilizing resources [2]. The resources could be people, machines, computers and/or organized integration of one or more of the above mentioned [3]. To realize higher efficiency, there must be optimal allocation of these resources to activities (scheduling)
Critical areas like cost, time, quality, and flexibility need to be optimize.
Optimization is finding an alternative with the most cost effective or highest achievable performance under the given constraints, by maximizing desired factors and minimizing undesired ones. One of the tools of optimization is scheduling.
Scheduling is the process of arranging, controlling and optimizing work and workloads in a production or manufacturing process. It is used to allocate plant and machinery resources, plan human resources, plan production processes and purchase materials [4].
It is an important tool for production, engineering and in sciences, where it can have a major impact on the productivity of a process. In manufacturing, the purpose of scheduling is to minimize the production time and costs, by telling a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce costs [5].
Wilson (2000a) provides an overview of manufacturing management and notes how modern manufacturing organizations developed from the mills and workshops and projects of the past. Unfortunately, neither of these

Journal of Scientific and Engineering Research
excellent sources discusses the scheduling function in detail [6]. Hopp and Spearman (1996) also provide a general overview of manufacturing in America since the First Industrial Revolution [7]. McKay (2003) provides a historical overview of the key concepts behind the practices that manufacturing firms have adopted in modern times, highlighting, for instance, how the ideas of just-in-time (though not the term) were well-known in the early twentieth century [8].
According to Wight (1984), the two key problems in production scheduling are, "priorities" and "capacity." Wight defines scheduling as "establishing the timing for performing a task" and observes that, in manufacturing, there are multiple types of scheduling, including the detailed scheduling of a shop order that shows when each operation must start and complete [9].
Cox et al. (1992) also define detailed scheduling as "the actual assignment of starting and/or completion dates to operations or groups of operations to show when these must be done if the manufacturing order is to be completed on time." They note that this is also known as operations scheduling, order scheduling, and shop scheduling which this research is concerned about [10]. The computer based scheduling can help manufacturers improve on time delivery, respond quickly to customer orders and create realistic schedules, but success requires using finite scheduling techniques and integrating them with other manufacturing planning systems [11]. This research investigate the minimization of the makespan via scheduling
The aim of the study is to develop an optimal time scheduling system that will be more suitable in foam manufacturing Industry.
The analysis of the research work were based on the case company data collected over a given period of three years. The data was analyzed and optimized using integer programming model, linear programming model and response surface optimization model. The models were applied to the data in other to obtain the maximum quantity and maximum time scheduling system in the production industry. However, the data collected is a size of foam produced in the case company. Product F is 36X75X40 size of foam produced.

Response surface optimization for scheduling of product F

Response Surface Regression: Yield versus W1, W2, W3, W4, W5, W6, W7, W8

Table 1: Estimated Regression Coefficients for Yield

erm	Coef SE Coef T P
Constant	5163.140 .000000 *
W1	478.940 .000000
W2	390.830 .000000
W3	615.710 .000000
W4	575.610 .000000
W5	278.770 .000000
W6	345.190 .000000
W7	315.310 .000000
W8	308.700 .000000
W1*W1	0.000 .000000
W2*W2	0.000 .000000
W3*W3	0.000 .000000
W4*W4	-0.00 0.000000
W5*W5	-0.00 0.000000
W6*W6	-0.00 0.000000
W7*W7	-0.00 0.000000
W8*W8	0.000 .000000
W1*W2	-0.00 0.000000
W1*W3	0.000 .000000
W1*W4	-0.00 0.000000
W1*W5	0.000 .000000
W1*W6	-0.00 0.000000
W1*W7	0.000 .000000
W1*W8	-0.00 0.000000
W2*W3	-0.00 0.000000

$$
\begin{array}{cc}
\hline \mathrm{W} 2 * \mathrm{~W} 4 \quad 0.00 \quad 0.000000 * * \\
\hline \mathrm{R}-\mathrm{Sq}=100.00 \% \mathrm{R}-\mathrm{Sq}(\mathrm{adj})=100.00 \%
\end{array}
$$

Table 2: Analysis of Variance for Yield

| Source | DF | Seq SS | Adj SS | Adj MS F P | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Regression | 25 | 33669948 | 33669948 | 1346798 | $*$ |

Linear 8336699482751180 343898 * *

W1	1	4614041	143	$143 * *$
W2	1	15162256	140	$140 * *$
W3	1	6978921	84	$84 * *$
W4	1	492189	67	$67 * *$
W5	1	4722590	17	$17 * *$
W6	1	1145438	26	$26 * *$
W7	1	465969	31	$31 * *$
W8	1	88545	6	$6 * *$

$\begin{array}{lrllll}\text { Square } & 8 & 0 & 0 & 0 & * * \\ \mathrm{~W} 1 * \mathrm{~W} 1 & 1 & 0 & 0 & 0 & 0 *\end{array}$

$\mathrm{W} 2 * \mathrm{~W} 2$	1	0	0	0

W3*W3 1 | | 0 | 0 | 0 | $*$ |
| :--- | :--- | :--- | :--- | :--- |

W4*W4 1 | | 0 | 0 | 0 | $* *$ |
| :--- | :--- | :--- | :--- | :--- |

$\mathrm{W} 5 * \mathrm{~W} 5$	1	0	0	$0 * *$
$\mathrm{~W} 6 * \mathrm{~W} 6$	1	0	0	$0 * *$

W7*W7 $1 \quad 0 \quad 0 \quad 0$ * *

$\mathrm{W} 8 * \mathrm{~W} 8$	1	0	0	$0 * *$

$\begin{array}{ccccc}\text { Interaction } & 9 & 0 & 0 & 0 * * \\ \mathrm{~W} 1 * \mathrm{~W} 2 & 1 & 0 & 0 & 0 * *\end{array}$
W1*W3 $1 \quad 0 \quad 0 \quad 0$ * *
W1*W4 $1 \quad 0 \quad 0 \quad 0$ * *

W1*W5 1 | | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |$* *$

W1*W6 1 | | 0 | 0 | 0 | $* *$ |
| :--- | :--- | :--- | :--- | :--- |

W1*W7 1		0	0	$0 * *$

W1*W8 1 | | 0 | 0 | 0 | $*$ |
| :--- | :--- | :--- | :--- | :--- |

W2*W3 1 | | 0 | 0 | 0 | $* *$ |
| :--- | :--- | :--- | :--- | :--- |

$\mathrm{W} 2 * \mathrm{~W} 4 \quad 1 \quad 0 \quad 0 \quad 0$ * *
$\begin{array}{ccccc}\text { Residual Error } 10 & 0 & 0 & 0 \\ \text { Pure Error } & 10 & 0 & 0 & 0\end{array}$ Total 3533669948

Table 3: Residuals in Analysis of Variance

| Obs | | | | | StdOrder |
| :---: | :---: | :---: | :---: | :---: | :---: | Yield \quad Fit SE Fit Residual

18	18	5954.800	5954.800	0.000	0.000
19	19	6616.660	6616.660	0.000	0.000
20	20	6198.640	6198.640	0.000	0.000
21	21	4868.060	4868.060	0.000	0.000
22	22	5129.650	5129.650	0.000	0.000
23	23	6357.060	6357.060	0.000	0.000
24	24	4858.080	4858.080	0.000	-0.000
25	25	4861.340	4861.340	0.000	0.000
26	26	4850.710	4850.710	0.000	0.000
27	27	6300.980	6300.980	0.000	-0.000
28	28	5565.220	5565.220	0.000	0.000
29	29	6057.420	6057.420	0.000	0.000
30	30	4838.560	4838.560	0.000	0.000
31	31	6616.660	6616.660	0.000	0.000
32	32	6198.640	6198.640	0.000	0.000
33	33	4868.060	4868.060	0.000	0.000
34	34	5129.650	5129.650	0.000	0.000
35	35	6357.060	6357.060	0.000	0.000
36	36	4858.080	4858.080	0.000	-0.000

Table 4: Predicted Response for New Design Points Using Model for Yield

Point	Fit SE Fit	95\% CI	95\% PI		
1	6643.29	0	$(6643.29,6643.29)$	$(6643.29,6643.29)$	
2	6745.69	0	$(6745.69,6745.69)$	$(6745.69,6745.69)$	
3	6061.11	0	$(6061.11,6061.11)$	$(6061.11,6061.11)$	
4	4749.04	0	$(4749.04,4749.04)$	$(4749.04,4749.04)$	
5	4900.19	0	$(4900.19,4900.19)$	$(4900.19,4900.19)$	
6	3151.77	0	$(3151.77,3151.77)$	$(3151.77,3151.77)$	
7	6164.92	0	$(6164.92,6164.92)$	$(6164.92,6164.92)$	
8	6717.97	0	$(6717.97,6717.97)$	$(6717.97,6717.97)$	
9	8350.04	0	$(8350.04,8350.04)$	$(8350.04,8350.04)$	
10	6756.48	0	$(6756.48,6756.48)$	$(6756.48,6756.48)$	
11	5418.72	0	$(5418.72,5418.72)$	$(5418.72,5418.72)$	
12	7336.50	0	$(7336.50,7336.50)$	$(7336.50,7336.50)$	
13	4861.34	0	$(4861.34,4861.34)$	$(4861.34,4861.34)$	
14	4850.71	0	$(4850.71,4850.71)$	$(4850.71,4850.71)$	
15	6300.98	0	$(6300.98,6300.98)$	$(6300.98,6300.98)$	
16	5565.22	0	$(5565.22,5565.22)$	$(5565.22,5565.22)$	
17	5100.54	0	$(5100.54,5100.54)$	$(5100.54,5100.54)$	
18	5954.80	0	$(5954.80,5954.80)$	$(5954.80,5954.80)$	
19	6616.66	0	$(6616.66,6616.66)$	$(6616.66,6616.66)$	
20	6198.64	0	$(6198.64,6198.64)$	$(6198.64,6198.64)$	
21	4868.06	0	$(4868.06,4868.06)$	$(4868.06,4868.06)$	
22	5129.65	0	$(5129.65,5129.65)$	$(5129.65,5129.65)$	
23	6357.06	0	$(6357.06,6357.06)$	$(6357.06,6357.06)$	
24	4858.08	0	$(4858.08,4858.08)$	$(4858.08,4858.08)$	
25	4861.34	0	$(4861.34,4861.34)$	$(4861.34,4861.34)$	
26	4850.71	0	$(4850.71,4850.71)$	$(4850.71,4850.71)$	
27	6300.98	0	$(6300.98,6300.98)$	$(6300.98,6300.98)$	
28	5565.22	0	$(5565.22,5565.22)$	$(5565.22,5565.22)$	
29	6057.42	0	$(6057.42,6057.42)$	$(6057.42,6057.42)$	
30	4838.56	0	$(4838.56,4838.56)$	$(4838.56,4838.56)$	
31	6616.66	0	$(6616.66,6616.66)$	$(6616.66,6616.66)$	
32	6198.64	0	$(6198.64,6198.64)$	$(6198.64,6198.64)$	
33	4868.06	0	$(4868.06,4868.06)$	$(4868.06,4868.06)$	
34	5129.65	0	$(5129.65,5129.65)$	$(5129.65,5129.65)$	
35	6357.06	0	$(6357.06,6357.06)$	$(6357.06,6357.06)$	
36	4858.08	0	$(4858.08,4858.08)$	$(4858.08,4858.08)$	

Response Optimization

Parameters
Goal Lower Target Upper Weight Import
Yield Minimum $3450 \quad 345010000 \quad 1 \quad 1$

Global Solution
$\mathrm{W} 1=20.24$
$\mathrm{W} 2=0$
$\mathrm{W} 3=21.08$
$\mathrm{W} 4=17.64$
$\mathrm{W} 5=429.52$
$\mathrm{W} 6=542.81$
$\mathrm{W} 7=432.18$
$\mathrm{W} 8=390.6$

Predicted Responses
Yield $=1854.07$, desirability $=1.000000$
Composite Desirability $=1.000000$

Figure 1: Optimization Plot for Scheduling Product F
INTEGER PROGRAMMING B\&B OUTPUT SUMMARY
Title: 36.75.40 Product
FEASIBLE SOLUTION 1 :
Objective Value $=1950$ Solution found at iteration 12
x 1 : $\mathrm{w} 1=0$
$\mathrm{x} 2: \mathrm{w} 2=0 \mathrm{x} 3: \mathrm{w} 3=0 \mathrm{x} 4: \mathrm{w} 4=0 \times 5: \mathrm{w} 5=0 \mathrm{x} 6: \mathrm{w} 6=1 \mathrm{x} 7: \mathrm{w} 7=0 \mathrm{x} 8: \mathrm{w} 8=6$

FEASIBLE SOLUTION 2:

Objective Value $=1960$ Solution found at iteration 73
x 1 : $\mathrm{w} 1=0$
$\mathrm{x} 2: \mathrm{w} 2=0 \mathrm{x} 3: \mathrm{w} 3=0 \mathrm{x} 4: \mathrm{w} 4=0 \mathrm{x} 5: \mathrm{w} 5=0 \mathrm{x} 6: \mathrm{w} 6=0 \mathrm{x} 7: \mathrm{w} 7=7 \mathrm{x} 8: \mathrm{w} 8=0$
OPTIMAL SOLUTION:
Objective Value $=2160($ MAX $)$
solution found at iteration 5277 Result verified at iteration 5287
x 1 : $\mathrm{w} 1=1$
$\mathrm{x} 2: \mathrm{w} 2=1 \mathrm{x} 3: \mathrm{w} 3=1 \mathrm{x} 4: \mathrm{w} 4=1 \mathrm{x} 5: \mathrm{w} 5=1 \mathrm{x} 6: \mathrm{w} 6=1 \mathrm{x} 7: \mathrm{w} 7=1 \mathrm{x} 8: \mathrm{w} 8=1$
LINEAR PROGRAMMING OUTPUT SUMMARY
Title: 36.75.40 Product
Final Iteration No.: 20
Objective Value $=2172.7$
Variable Value Obj Coeff Obj Val Contrib
x1: w1
x2: w2
$1.08 \quad 280.00$
302.68
x3: w3
$\begin{array}{lll}1.04 & 280.00 & 291.16\end{array}$
x4: w4
$\begin{array}{lll}0.00 & 250.00 & 0.00\end{array}$
x5: w5
$\begin{array}{llll}x 6: ~ w 6 ~ & 1.04 & 270.00 & 280.47\end{array}$
$\begin{array}{llll}x 7: ~ w 7 & 0.48 & 280.00 & 133.79\end{array}$
$\begin{array}{llll}\mathrm{x} 8: \mathrm{w} 8 & 2.29 & 280.00 & 641.92\end{array}$
Constraint RHS Slack-/Surplus+
$1(<) \quad 1508.000 .00$
$2(<) \quad 1523.0010 .69-$
$3(<) \quad 1368.0014 .10-$
4 (<) 1064.0039.14-
$5(<) \quad 1116.006 .27-$
$6(<) \quad 1180.000 .00$
$7(<) \quad 1389.0018 .70-$
$8(<) \quad 1515.004 .38$ -
$9(<) \quad 1501.0022 .12-$
10 (<) 1526.003.84-
$11(<) \quad 1511.000 .00$
12 (<) 1489.0021.52-
13 (<) 1519.0022.33-
14 (<) 1120.0026.81-
15 (<) 1865.0030.48-
16 (<) 1508.005.89-
17 (<) 1273.0023.14-
18 (<) 1049.0033.48-
19 (<) 935.00 58.88-
$20(<) \quad 1312.00109 .77-$
21 (<) 1147.0075.47-
22 (<) 1102.0064.22-
23 (<) 1363.0021.49-
24 (<) 1040.0019.09-
$25(<) \quad 1140.0058 .83-$
26 (<) 1096.0043.26-
27 (<) 1423.000.00
28 (<) 1262.0035.76-

$29(<)$	$1378.0039 .12-$
$30(<)$	$1098.0013 .39-$
$31(<)$	$1492.0027 .49-$
$32(<)$	1407.000 .00
$33(<)$	$1091.0010 .22-$
$34(<)$	1173.000 .00
$35(<)$	$1433.0030 .49-$
$36(<)$	1094.000 .00
UB-x1w1	$300.00298 .92-$
UB-x2w2	$300.00298 .96-$
UB-x3w3	$300.00 ~ 300.00-$
UB-x4w4	$300.00298 .93-$
UB-x5w5	$300.00299 .06-$
UB-x6w6	$300.00298 .96-$
UB-x7w7	300.00
UB-x8w8 $299.52-$	
	300.00
$297.71-$	

Sensitivity Analysis
Variable Current Obj CoeffMin Obj CoeffMax Obj CoeffReduced Cost

x1: w1	280.00	276.95	292.07	0.00
x2: w2	280.00	277.41	283.09	0.00
x3: w3	250.00	-infinity	262.70	12.70
x4: w4	260.00	256.75	264.19	0.00
x5: w5	260.00	258.42	262.43	0.00
x6: w6	270.00	263.21	272.19	0.00
x7: w7	280.00	278.08	281.33	0.00
x8: w8	280.00	278.50	281.33	0.00
ConstraintCurrent RHS	Min RHS	Max RHS	Dual Price	
$1(<)$	1508.00	1503.69	1509.93	0.81
$2(<)$	1523.00	1512.31	infinity	0.00
$3(<)$	1368.00	1353.90	infinity	0.00
$4(<)$	1064.00	1024.86	infinity	0.00
$5(<)$	1116.00	1109.73	infinity	0.00
$6(<)$	1180.00	1166.88	1191.22	0.04
$7(<)$	1389.00	1370.30	infinity	0.00
$8(<)$	1515.00	1510.62	infinity	0.00
$9(<)$	1501.00	1478.88	infinity	0.00
$10(<)$	1526.00	1522.16	infinity	0.00
$11(<)$	1511.00	1508.76	1514.12	0.24
$12(<)$	1489.00	1467.48	infinity	0.00
$13(<)$	1519.00	1496.67	infinity	0.00
$14(<)$	1120.00	1093.19	infinity	0.00
$15(<)$	1865.00	1834.52	infinity	0.00
$16(<)$	1508.00	1502.11	infinity	0.00
$17(<)$	1273.00	1249.86	infinity	0.00
$18(<)$	1049.00	1015.52	infinity	0.00
$19(<)$	935.00	876.12	infinity	0.00
$20(<)$	1312.00	1202.23	infinity	0.00
$21(<)$	1147.00	1071.53	infinity	0.00
$22(<)$	1102.00	1037.78	infinity	0.00
10				

$23(<)$	1363.00	1341.51	infinity	0.00
$24(<)$	1040.00	1020.91	infinity	0.00
$25(<)$	1140.00	1081.17	infinity	0.00
$26(<)$	1096.00	1052.74	infinity	0.00
$27(<)$	1423.00	1415.35	1445.62	0.23
$28(<)$	1262.00	1226.24	infinity	0.00
$29(<)$	1378.00	1338.88	infinity	0.00
$30(<)$	1098.00	1084.61	infinity	0.00
$31(<)$	1492.00	1464.51	infinity	0.00
$32(<)$	1407.00	1400.56	1412.11	0.06
$33(<)$	1091.00	1080.78	infinity	0.00
$34(<)$	1173.00	1167.80	1179.58	0.04
$35(<)$	1433.00	1402.51	infinity	0.00
$36(<)$	1094.00	1087.54	1098.64	0.08
UB-x1	300.00	1.08	infinity	0.00
UB-x2	300.00	1.04	infinity	0.00
UB-x3	300.00	0.00	infinity	0.00
UB-x4	300.00	1.07	infinity	0.00
UB-x5	300.00	0.94	infinity	0.00
UB-x6	300.00	1.04	infinity	0.00

UB-x7300.000.48infinity 0.00
UB-x8300.002.29infinity0.00

Discussion

In product two (2), Response surface, integer programming and linear programming optimization tools were employed to optimize the production output of the $36 \times 75 \times 40$ size of foam product. From the analysis, it shows the result of the maximum production output of 1854 units, 2160.0 units and 2172.7 units of the product respectively over any given monthly of production. In linear programming algorithm, it shows the slacks in the variables and also it performs the sensitivity analysis of the product. However, the linear programming optimum production was achieved in the seventeenth iterations while the integer programming maximum optimal solution was found at iteration 5277 and also the Result of this iteration was verified at iteration 5287. In linear programming algorithm, it shows the slacks in the variables and also it performs the sensitivity analysis of the product. However, the optimum production was achieved in the fourteenth iterations. Furthermore, the sensitivity analysis in linear programming develops the coefficients of the independent variables and also reduced cost at the optimum iteration.
In response surface model employed to optimize the production time scheduling of the $36 \times 75 \times 40$ size of foam product shows the result of the optimum production time scheduling of 1854 units of the product over any given monthly of production. However, response surface method shows the coefficients of the independent variables and the analysis of variance (ANOVA) in the variables. It develops new design points for the variables. The response surface model shows the coefficient of relationship (R^{2}) to be hundred percent (100%). However, the response optimization shows the composite desirability of achieving the optimum of 1854 units to be 100%. The response optimization also shows the optimization plot which contains the optimum value of the dependent variable (1854units) and the current response values of the independent variables at optimum. The response optimum analysis also reveals that the composite desirability of achieving the predicted optimum result is hundred percent (100%).

Conclusion

In conclusion, the research work have really achieved the aim of the study which is to optimize the production time scheduling system in foam industry. The specific size of foam used is $36 \times 75 \times 40$. From the discussion of
the result, it shows that the optimum production of the foam size at every month runs at the optimal quantity of 1854 units using response surface, 2160 units using integer programme and 2173 units approximately using linear programme model. Having achieved the stated aim of the work, the results were recommended to the aforementioned case Company.

References

[1]. Jeffrey W. Herrmann (2012). A History of Decision-Making Tools for Production Scheduling. Department of Mechanical Engineering and Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
[2]. Jagadeesha T, (2016) Assistant Professor, MED, National Institute of Technology, Calicut
[3]. Krishna Kumar C. and Bani K. Sinha, (1999)," Efficiency Based Production Planning and Control Models", European Journal of Operational Research, Vol. 117, pages 450-469.
[4]. Marcus V. Magalhaes and Nilay Shah, "Crude Oil Scheduling," Foundations of Computer-Aided Operations (FOCAPO) 2003, pp 323-325.
[5]. Zhenya Jia and Marianthi Ierapetritou, "Efficient Short-Term Scheduling of Refinery Operation Based on a Continuous Time Formulation," Foundations of Computer-Aided Operations (FOCAPO) 2003, pp 327-330
[6]. Wilson, James M., History of manufacturing management, in Encyclopedia of Production and Manufacturing Management, Paul M. Swamidass, ed., Kluwer Academic Publishers, Boston, 2000a.
[7]. Hopp, W.J., and Spearman, M.L., 1996, Factory Physics, Irwin/McGraw-Hill, Boston.
[8]. McKay, K.N., 2003, Historical survey of manufacturing control practices from a production research perspective, International Journal of Production Research, 41(3):411-426.
[9]. Wight, Oliver W., Production and Inventory Management in the Computer Age, Van Nostrand Reinhold Company, Inc., New York, 1984.
[10]. Cox, James F., John H. Blackstone, Jr., and Michael S. Spencer, editors, APICS Dictionary, American Production and Inventory Control Society, Falls Church, Virginia, 1992.
[11]. LaForge, R. Lawrence, and Christopher W. Craighead, Manufacturing scheduling and supply chain integration: a survey of current practice, American Production and Inventory Control Society, Falls Church, Virginia, 1998.

