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1. Introduction  

Let’s A  denote the class of all complex valued functions ( )f z  given by  

2 3

2 3

2

( ) ,  n

n

n

f z z a z a z z a z




                                         (1.1)  

which are analytic in the open unit disk 𝑈 = {𝑍 ∈ ℂ ∶  𝑧 < 1} in the complex plane. Furthermore, let S  be 

the class of all functions in A  which are univalent in U . Some of the important and well-investigated subclass 

of S  is the class ( , )Q   given below  

     
( )

( , ) :  Re 1 ( ) , ,  0,1 , 0,1
f z

Q f S f z z U
z

      
  

         
  

, 

which firstly introduced and investigated by Ding et al. [4] 

It is well-known that (see [6]) every function f S  has an inverse 
1f 
 , defined by  

1( ( )) ,  f f z z z U     

and 

𝑓 𝑓−1 𝑤  = 𝑤,𝑤 ∈ 𝐷 = 𝐷𝑟0 =  𝑤 ∈ ℂ ∶  𝑤 < 𝑟0 𝑓  , 𝑟0(𝑓) ≥ 1/4, 

where  

   1 2 2 3 3 4

2 2 3 2 2 3 4( ) 2 5 5 ,  f w w a w a a w a a a a w w D          .           (1.2) 

A function f A  is called bi-univalent in U  if both 
1 and f f 
 are univalent in the definition sets. Let us 

  denote the class of bi-univalent functions in U  given by (1.1). For a short history and examples of functions 

in the class , see [14]. 

Firstly, Lewin [12] introduced the class of bi-univalent functions, obtaining the estimate 2 1.51a  . 

Subsequently, Brannan and Clunie [2] developed the result of Lewin to 2 2a   for f  . Accordingly, 
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Netanyahu  [10] showed that 
2

4

3
a  . Earlier, Brannan and Taha [1] introduced certain subclasses of bi-

univalent function class  , namely bi-starlike function of order   denoted 
* ( )S 

 and bi-convex function of 

order   denoted ( )C   corresponding to the function classes 
*( )S   and ( )C  , respectively. For each of 

the function classes 
* ( )S 

 and ( )C  , non-sharp estimates on the first two Taylor-Maclaurin coefficients 

were found in [1, 16]. Many researchers (see [15, 17, 18]) have introduced and investigated several interesting 

subclasses of bi-univalent function class   and they have found non-sharp estimates on the first two Taylor-

Maclaurin coefficients. However, the coefficient problem for each of the Taylor-Maclaurin coefficients 

,  3,4,...na n   is still an open problem (see, for example, [10, 12]). 

An analytic function f  is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both f  and 
1f 
 

are, respectively, Ma-Minda starlike and convex. These classes are denoted, respectively, by 
* ( )S   and 

( )C  . In the sequel, it is assumed that the function   is an analytic function with positive real part in U , 

satisfying (0) 1,  (0) 0 and (U)     is symmetric with respect to the real axis. Such a function has a 

series expansion of the following form: 

2 3

1 2 3 1

1

( ) 1 1 ,  0n

n

n

z b z b z b z b z b




         . 

An analytic function f  is subordinate to an analytic function  , written ( ) ( )f z z , provided that there is 

an analytic function (that is, Schwarz function)   defined on U  with (0) 0 and ( ) 1z    satisfying 

( ) ( ( ))f z z  . Ma and Minda [8] unified various subclasses of starlike and convex functions for which 

either of the quantity 
( )

( )

zf z

f z


 or 

( )
1

( )

zf z

f z





 is subordinate to a more general function. For this purpose, they 

considered an  analytic function   with positive real part in ,U (0) 1,  (0) 0 and      maps U  onto a 

region starlike with respect to 1   and symmetric with respect to the real axis. The class of Ma-Minda starlike 

and Ma-Minda convex functions consists of functions f A  satisfying the subordination 
( )

( )
( )

zf z
z

f z



  and 

( )
1 ( )

( )

zf z
z

f z






 , respectively.  

In 1976, Noonan and Thomas [11] defined the thq Hankel determinant of f  for 𝑞 ∈ ℕ  by  

1

1 2 2

       

( )          

   

n n q

q

n q n q

a a

H n

a a

 

   

  

   

  

 . 

For 2 and 1q n  , Fekete and Szegö [7] considered the Hankel determinant of f as 

1 2 2

2 1 3 2

2 3

(1)
a a

H a a a
a a

   .  
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Recently, the upper bounds of 
2

2 2 4 3(2)H a a a   for the classes 
* ( )S 

 and ( )C   were obtained by 

Deniz et al. [3]. Very soon, Orhan et al. [13] reviwed the study of bounds for the second Hankel determinant of 

the subclass ( )M  
 of bi-univalent functions.  

Chebyshev polynomials, which are used by us in this paper, play a considerable act in numerical analysis and 

mathematical physics. It is well-known that the Chebyshev polinomials are four kinds. The most of research 

articles related to specific orthogonal polynomials of Chebyshev family, contain essentially results of 

Chebyshev polynomials of first and second kinds ( )nT x and ( )nU x , and their numerous uses in different 

applications (see [5, 9]).  

The well-known kinds of the Chebyshev polynomials are the first and second kinds. In the case of real variable 

x  on  1,1 , the first and second kinds of the Chebyshev polynomials are defined by  

( ) cos( arccos )nT x n x ,  

   
2

sin ( 1)arccos sin ( 1)arccos
( )

sin(arccos ) 1
n

n x n x
U x

x x

 
 


. 

We consider the function 

2

1 1
( , ) ,  ,1 ,

1 2 2
G t z t z U

tz z

 
   

   
. 

It is well-known that if cos ,  0,
3

t


 
 

  
 

, then  

 

   
1

2 2 2 3 3

sin ( 1)
( , ) 1

sin

              1 2cos 3cos sin 8cos 4cos ,  .

n

n

n
G t z z

z z z z U





    






  

       


 

That is,  

2 3

1 2 3

1
( , ) 1 ( ) ( ) ( ) ,  ,1 ,

2
G t z U t z U t z U t z t z U

 
        

 
,                     (1.3) 

where 𝑈𝑛 𝑡 =
sin   𝑛+1 arccos 𝑡 

 1−𝑡3
,𝑛 ∈ ℕ  are the second kind Chebyshev polynomials. From the definition of 

the second kind Chebyshev polynomials, we easily obtain that 1( ) 2U t t  . 

 Also, it is well-known that  

1 2( ) 2 ( ) ( )n n nU t tU t U t    

for all 𝑛 ∈ ℕ. From here, we can easily obtain 

2 3

2 3( ) 4 1,  ( ) 8 4U t t U t t t    ,… . 

Inspired by the aforementioned works, making use of the Chebyshev polynomials, we define a subclass of bi-

univalent functions   as follows. 

Definition 1.1. A function f   given by (1.1) is said to be in the class 
1

( , , ),  0, ,1
2

Q G t t 

 
  

 
, 

where G  is an analytic function given by (1.3), if the following conditions are satisfied 

 
( )

1 ( ) ( , ),  
f z

f z G t z z U
z

      

and 



Mustafa N                                                 Journal of Scientific and Engineering Research, 2017, 4(7):383-393 

 

Journal of Scientific and Engineering Research 

386 

 

 
( )

1 ( ) ( , ),  
g w

g w G t w w D
w

      

where 
1g f  .  

Remark 1.1. Taking 1  , we have 
1

( ,1, ) ( , ),  ,1
2

Q G t G t t 

 
  

 
; that is,  

( , ) ( ) ( , ),  f G t f z G t z z U
    and ( ) ( , ),  g w G t w w D  , 

where 
1g f  . 

Remark 1.2. Taking 0  , we have 
1

( ,0, ) ( , ),  ,1
2

Q G t N G t t 

 
  

 
; that is,  

( )
( , ) ( , ),  

f z
f N G t G t z z U

z
    and 

( )
( , ),  

g w
G t w w D

w
 , 

where 
1g f  . 

In order to prove our main results, we shall need the following lemma. 

Lemma 1.1. ([6]) Let   be the class of all analytic functions ( )p z  of the form 

2

1 2

1

( ) 1 1 n

n

n

p z p z p z p z




        

satisfying  Re ( ) 0,   and (0) 1p z z U p   . Then, 2,  for every 1,2,3,...np n   . This inequality 

is sharp for each n . 

Moreover,  

 2 2

2 1 12 4 ,p p p x    

      23 2 2 2 2

3 1 1 1 1 1 14 2 4 4 2 4 1p p p p x p p x p x z        , 

for some ,   with 1,  1x z x z  .   

The object of this paper is to determine the second Hankel determinant for the function class ( , , )Q G t  

and its special classes, and is to give upper bound estimate for 2 (2)H .  

In the introduction and preliminaries section of the paper, we provide the necessary information to prove 

our main results. In the second section we give the main result. The special cases of the results obtained in 

presented paper have been examined and compared with known results. 

 

2. Upper bound for the second Hankel determinant of the class ( , , )Q G t  

In this section, we prove the following theorem on upper bound of the second Hankel determinant of the 

function class ( , , )Q G t .  

Theorem 2.1. Let the function ( )f z  given by (1.1) be in the class ( , , ),Q G t   
1

0,1 , ,1
2

t
 

  
 

, 

where the function G  is an analytic function given by (1.3). Then, 
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2

22

2 4 3

if  ( , ) 0 and ( , ) 0,
4

max , ( ,2 ) ,  if  ( , ) 0 and ( , ) 0,
1 2

if  ( , ) 0 and ( , ) 0,

max ( , ), ( , 2 ) ,         if  ( , ) 0 and ( , ) 0,  

t c t
t

H t t c t
a a a

t c t

H t H t t c t

 

 


 

  

   
   

     
         

    

 

where 

    

   

32 2 2

4

8 2 1 1 2 1 3
( ,2 )

1 1 3

t t t
H t

 

 

   
 

 
, 

       

2 2

2 4 2

4 ( , )
( , )

1 2 8 1 1 2 1 3 ( , )

t c t
H t

t




    
 

    
, 

      

           

3 22 2 2

2 32 2 2 2

( , ) 16 2 1 1 2 1 3 1 2

8 1 3 1 1 2 4 1 1 1 2 8 1 ,

t t t t

t t t t

   

      

       

         
 

  

        

     

22 2 2

2 32

( , ) 8 5 1 1 3 2 4 1 1 1 2

             8 1 2 1 .

c t t t t

t

    

   

        
 

    
 

 

Proof. Let us  
1

( , , ),  0,1 , ,1
2

f Q G t t 

 
   

 
 and 

1g f  . Then, in view of Definition 1.1, there 

are analytic functions 
0 0

: ,  : r rU U D D    with (0) 0 (0),   ( ) 1,z   ( ) 1w   

satisfying the following conditions 

 
( )

1 ( ) ( , ( )),  
f z

f z G t z z U
z

                                       (2.1) 

and 

  
0

( )
1 ( ) ( , ( )),  r

g w
g w G t w w D

w
      .                             (2.2) 

Let also the functions ,p q  be define as follows 

2

1 2

1

1 ( )
( ) : 1 1

1 ( )

n

n

n

z
p z p z p z p z

z










       


   

and 

2

1 2

1

1 ( )
( ) : 1 1

1 ( )

n

n

n

w
q w q w q w q w

w










       


 . 

It follows that  

2 3
2 31 1

1 2 3 1 2

( ) 1 1
( ) :

( ) 1 2 2 4

p pp z
z p z p z p p p z

p z


    
            

     
            (2.3) 

and  

2 3
2 31 1

1 2 3 1 2

( ) 1 1
( ) :

( ) 1 2 2 4

q qq w
w q w q w q q q w

q w


    
            

     
.           (2.4) 

From (2.3) and (2.4), considering (1.3), we can easily show that 
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2
2 21 1 1 2

1 2 1

3 2
3 331 1 2 1

3 1 2 1 2 1

( ) ( ) ( )
( , ( )) 1

2 2 2 4

( )( ) ( )
                   

2 4 2 2 8

U t U t p U t
G t z p z p p z

U tU t p U t p
p p p p p p z


  

       
  

    
          

    

    (2.5) 

and  

2
2 21 1 1 2

1 2 1

3 2
3 331 1 2 1

3 1 2 1 2 1

( ) ( ) ( )
( , ( )) 1

2 2 2 4

( )( ) ( )
                   .

2 4 2 2 8

U t U t q U t
G t w q w q q w

U tU t q U t q
q q q q q q w


  

       
  

    
          

    

      (2.6) 

From (2.1), (2.5) and (2.2), (2.6), comparing the coefficients of the like power of z  and w , we can easily 

obtain that 

  1
2 1

( )
1 ,

2

U t
a p                                                           (2.7) 

 
2

21 1 2
3 2 1

( ) ( )
1 2

2 2 4

U t p U t
a p p

 
    

 
,                                       (2.8) 

 
3 2

331 1 2 1
4 3 1 2 1 2 1

( )( ) ( )
1 3

2 4 2 2 8

U tU t p U t p
a p p p p p p

   
         

   
            (2.9) 

and 

  1
2 1

( )
1 ,

2

U t
a q                                                       (2.10) 

  
2

2 21 1 2
2 3 2 1

( ) ( )
1 2 2

2 2 4

U t q U t
a a q q

 
     

 
,                           (2.11) 

  
3 2

3 331 1 2 1
2 2 3 4 3 1 2 1 2 1

( )( ) ( )
1 3 5 5

2 4 2 2 8

U tU t q U t q
a a a a q q q q q q

   
            

   
.  (2.12) 

From (2.7) and (2.10), we get 

   
1 1

1 2 1

( ) ( )

2 1 2 1

U t U t
p a q

 
  

 
.                                        (2.13) 

Subtracting (2.11) from (2.8) and considering (2.13), we can easily obtain that  

 
 

   
 

2
2 21 1 1

3 2 2 2 1 2 22

( ) ( ) ( )

4 1 2 4 1 24 1

U t U t U t
a a p q p p q

 
     

 
.           (2.14)  

Similarly, subtracting (2.12) from (2.9) and considering (2.13) and (2.14), we get 

 

  

 

 

 
 

 

2

1 1 2 2 1 3 3

4

31 2 32 1
1 2 2 1

5 ( ) ( )

16 1 1 2 4 1 3

( ) 2 ( ) ( )( ) ( )
      .

4 1 3 8 1 3

U t p p q U t p q
a

U t U t U tU t U t
p p q p

  

 

 
  

  

 
 

 

                   (2.15)  

Thus, from (2.13), (2.14) and (2.15), for the second Hankel determinant 
2

2 4 3a a a  , we can easily establish that 
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3 2 2

1 1 2 2 1 1 3 32

2 4 3 2

22

2 1 1 1 2 22

1 2 2 2

4
3 31 1

1 2 3 14

( ) ( )

8 1 1 332 1 1 2

( ) ( ) ( ) ( )
                  

8 1 1 3 16 1 2

( )
                  ( ) 2 ( ) ( ) 1 ( ) 1 3 .

16 1 1 3

U t p p q U t p p q
a a a

U t U t U t U t p q
p p q

U t p
U t U t U t U t

  

  

 
 

 
   

  

 
  

  

    
 

     (2.16) 

Since (see (2.13)) 1 1p q  , in view of Lemma 1.1, we can easily obtain 

   
2 2

21 1
2 2 2 2 1

4 4
,  

2 2

p p
p q x y p q p x y

 
                              (2.17) 

and  

 
 

 
 

   

2 23
1 1 1 1 2 21

3 3

2
2 21

4 4

2 2 4

4
              1 1 .

2

p p p pp
p q x y x y

p
x z y w

 
      

    
 

                  (2.18) 

According to Lemma 1.1, we may assume without any restriction that  0,2  , where 1p  .  

Thus, substituting the expressions (2.17) and (2.18) in (2.16) and using triangle inequality, letting 

,  x y   , we can easily obtain that  

     
22 2 2

2 4 3 1 2 3 4( , ) ( , ) ( , ) ( , ) : ( , )a a a c t c t c t c t F                    ,    (2.19) 

where 

 
 

  
  

2
2 2 2 2

1 1

1 22

( ) 4 ( ) 2 4
( , ) 0,  ( , ) 0,

32 1 1 364 1 2

U t U t
c t c t

   
 

 

  
   

 
 

 
   

 
  

3 2 2 2 2

1 1 2

3 2

( ) 4 ( ) ( ) 4
( , ) 0,

16 1 1 364 1 1 2

U t U t U t
c t

   


  

 
  

  
 

   

   

 
  

 

3 3 2 2
1 3 1 14

4 4

( ) 1 ( ) 1 3 ( ) ( ) 4
( , ) 0,

8 1 1 316 1 1 3

1
,1 , 0,2 .

2

U t U t U t U t
c t

t

   
 

  



   
  

  

 
  
 

     

Now, we need to maximize the function ( , )F    on the closed square     , :  , 0,1       for each 

 0,2  . Since the coefficients of the function ( , )F    is dependent to variable   for fixed value of t , we 

must investigate the maximum of ( , )F    respect to   taking into account these cases 

 0,  2 and 0,2     . 

Let us 0  . Then, we write   

 
 

2
21

1 2

( )
( , ) ( ,0)

4 1 2

U t
F c t   


  


. 
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It is clear that the maximum of the function ( , )F    occurs at  , (1,1)   , and  

  
 

2

1

2

( )
max ( , ) : , 0,1 (1,1)

1 2

U t
F F   


  


.                          (2.20) 

Now, let’s 2  . In this case, ( , )F    is a constant function (with respect to  ) as follows: 

   

   

3 3

1 3 1

4 4

( ) 1 ( ) 1 3 ( )
( , ) ( ,2)

1 1 3

U t U t U t
F c t

 
 

 

  
 

 
.                    (2.21) 

In the case  0,2  , we will examine the maximum of the function ( , )F    taking into account the 

sing of 

2

( , ) ( , ) ( , ) ( , )F F F              
 

. 

By simple computation, we can easily see that  

 2 1 2( , ) 4 ( , ) 2 ( , ) ( , )c t c t c t       . 

Since 2( , ) 0c t   for all  
1

,1 , 0,2
2

t 
 

  
 

 and  

 

    

2 2

1

1 2 2

( )(4 ) 2
2 ( , ) ( , ) ( )

32 1 1 2 1 3

U t
c t c t

 
   

  

 
 

  
, 

where    2( ) 2 1 1 3         . It is clear that   1 1 3 1     for all  0,1  . Hence, we 

write    2 2( ) 2 1 1 3 2              for all  0,1   and  0,2  . That is, ( ) 0    for 

all  0,2   and for each  0,1  . So, 1 22 ( , ) ( , ) 0c t c t    for all 

   0,2  and for each 0,1   . Thus, we conclude that ( , ) 0    for all  ,   , 

   0,2  and for each 0,1   . Consequently, the function ( , )F    cannot have a local maximum in 

 . Therefore, we must investigate the maximum of the function ( , )F    on the boundary of the square  .  

Let’s  

                   0, : 0,1 ,0 : 0,1 1, : 0,1 ,1 : 0,1                . 

We can easily show that the maximum of the function ( , )F    on the boundary   of the square   occurs 

at    , 1,1   , and  

      

   1 2 3 4

max , : , 1,1

1
                       4 ( , ) 2 ( , ) ( , ) ( , ), ,1 , 0,2 .

2

F F

c t c t c t c t t

   

    

  

 
     

 

          (2.22)  

Now, let us define the function  𝐻: (0, 2) → ℝ as follows: 

 1 2 3 4( , ) 4 ( , ) 2 ( , ) ( , ) ( , )H t c t c t c t c t                                (2.23) 

for fixed value of t .  

Substituting the value ( , ), j 1,2,3,4jc t    in the (2.23), we obtain  

       

2 4 2

1

2 4 2

( ) ( , ) 4 ( , )
( , )

1 2 32 1 1 2 1 3

U t t c t
H t

   


   

 
 

   
,                              (2.24) 
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where 

     

          

3 23

1 3 1

2 32 2 2

1 1 2 1

( , ) 2 ( ) 1 ( ) 1 3 ( ) 1 2

( ) 1 3 ( ) 4 1 1 2 ( ) 1 1 2 2 ( ) 1 ,

t U t U t U t

U t U t U t U t

   

      

      

         

 

        

     

22

1 1 2

2 32

1

( , ) ( ) ( ) 1 3 4 ( ) 1 1 2 1 1 2

             2 ( ) 1 2 1 .

c t U t U t U t

U t

     

   

         

    
 

 

Now, we must investigate the maximum (with respect to  ) of the function ( , )H t   in the interval  0,2  for 

fixed value of t .  

Differentiating both sides of (2.24) (according to  ), we get  

     

2

4 2

( , ) 2 ( , )
( , )

8 1 1 2 1 3

t c t
H t

  
 

  

 
 

  
. 

We will examine the sign of the function ( , )H t   depending on the different cases of the signs of ( , )t   and 

( , )c t  as follows. 

( )ı  Let ( , ) 0t   and ( , ) 0c t  , then ( , ) 0H t   , so ( , )H t   is an increasing function. 

Therefore,  

  
   

   

3 3

1 3 1

4

( ) 1 ( ) 1 3 ( )
max ( , ) : 0,2 ( ,2 )

1 1 3

U t U t U t
H t H t

 
 

 

  
   

 
.        (2.25) 

That is,  

       max max , : , 0,1 : 0,2 ( ,2 )F H t        . 

( )ıı  Let ( , ) 0t   and ( , ) 0c t  , then 0

2 ( , )

( , )

c t

t










 is a critical point of the function 

( , )H t  . We assume that  0 0,2  . Since 0( , ) 0H t   , 0  is a local minimum point of the function 

( , )H t  . That is, the function ( , )H t   cannot have a local maximum.  

( )ııı  Let ( , ) 0t   and ( , ) 0c t  , then ( , ) 0H t   . Thus, ( , )H t   is an decreasing function on 

the interval  0,2 .  

Therefore, 

  
 

2

1
1 2

( )
max ( , ) : 0,2 ( ,0 ) 4 ( ,0)

1 2

U t
H t H t c t 


    


.                  (2.26) 

( )ıv  Let ( , ) 0t   and ( , ) 0c t  , then 0  is a critical point of the function ( , )H t  . We assume 

that  0 0,2  . Since 0( , ) 0H t   , 0  is a local maximum point of the function ( , )H t   and maximum 

value occurs at 0  .  

Therefore, 

   0max ( , ) : 0,2 ( , ) ( , )H t H t H t      ,                             (2.27) 

where 



Mustafa N                                                 Journal of Scientific and Engineering Research, 2017, 4(7):383-393 

 

Journal of Scientific and Engineering Research 

392 

 

       

2 2

2 4 2

4 ( , )
( , )

1 2 8 1 1 2 1 3 ( , )

t c t
H t

t




    
 

    
. 

Thus, from (2.20) - (2.27), the proof of Theorem 2.1 is completed. 

In the special cases from Theorem 2.1, we arrive at the following results. 

Corollary 2.1. Let the function ( )f z  given by (1.1) be in the class 
1

( ,0, ) ( , ),  ,1
2

Q G t N G t t 

 
  

 
, 

where the function G  is an analytic function given by (1.3). Then, 

2 2

2 4 3 8a a a t  . 

Corollary 2.2. Let the function ( )f z  given by (1.1) be in the class 
1

( ,1, ) ( , ),  ,1
2

Q G t G t t 

 
  

 
, 

where the function G  is an analytic function given by (1.3). Then, 

 

    

 

2 2

0

2 2

0 1

2

2 4 3 2 2

1

2

1
1 ,                       if  , ,

2

max ( ), 1 ,   if  , ,

5
1 ,                       if  , ,

3

4 5
,                                if  ,1 ,

9 3

t t t t

H t t t t t t

a a a
t t t t

t t

  
  

 
  



   
   

 
  
   

 

 

where  

 
2

2 2 3 24 ( )
( ) , ( ) 64 42 7 9 , ( ) 18 42 27

9 ( )

t
H t t t t t t t t t t

t


 


           

and 0 10.55368, 0.69471t t   are the positive numerical roots of the equations 

2 3 242 7 9 0,18 42 27t t t t t      , respectively.  
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