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Abstract The present paper is concerned with using E-Bayesian method under record values sample from 

compound Rayleigh distribution (CRD) to find estimates for the parameter and hazard function. The Bayesian 
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1. Introduction 

The compound Rayleigh distribution (CRD) is one of models which is useful in different areas of statistics, the 

probability density function (pdf) given by  

𝑓 𝑥; 𝑎, 𝑏 = 2 𝑎 𝑏𝑎𝑥(𝑏 + 𝑥2)−(𝑎+1),   𝑥 > 0,   𝑎, 𝑏 > 0,      (1) 

and the cumulative distribution function (cdf)   of CRD given by  

𝐹 𝑥; 𝑎, 𝑏 = 1 − 𝑏𝑎(𝑏 + 𝑥2)−𝑎  ,             (2) 

where a and b defined as shape and scale parameters, respectively. The survival (reliability) and hazard (failure 

rate) functions, at time t, of the CRD, respectively, are    

𝑅 𝑡; 𝑎, 𝑏 = 𝑏𝑎(𝑏 + 𝑡2)−𝑎  ,              (3) 

𝑕 𝑡; 𝑎, 𝑏 =
2 𝑎 𝑡

𝑏+𝑡2 ,   𝑡 > 0.          (4) 

The CRD is a special case of the 3- parameter Burr type XII distribution, which has a pdf of the form (1). 

Applications of randomly censored data as goodness of fit of the CRD using a medical data are studied by 

Bekker et al. [8] and Ghitany [14]. For more details properties on CRD(𝑎, 𝑏), see El-Sagheer and Ahsanullah 

[13].   

Record values and the associated statistics are of interest and importance in many areas of real life applications 

involving data relating to sport, economics, athletic events, oil, mining surveys and life testing. Many authors 

have studied records and associated statistics. Among them are Ahsanullah [3, 4], Resnick [28], Nagaraja [22], 

Arnold et al. [5], Ragab [27], Soliman and Al-Aboud [34], AbdEllah[1, 2] and El-Sagheer [12]. 

Let {𝑋𝑚 , 𝑚 ≥ 1} be an infinite sequence of independent and identically distributed (iid) random variables with 

cdfF(x)andpdff(x). Set 𝑌𝑛 = max(𝑋1, 𝑋2, … , 𝑋𝑚 ) , 𝑚 ≥ 1, we say that 𝑋𝑗  is an upper record and denoted by 

𝑋𝑈(𝑗 ) if 𝑌𝑗 > 𝑌𝑗−1, 𝑗 > 1. 

This paper discusses the record values data from CRD and the maximum likelihood estimation (MLE) to 

estimate the parameter reliability, and hazard functions in Section 2. Bayesian estimators are derived based on 

squared error, LINEX and entropy loss functions in Section 3. The E-Bayesian estimates for three different prior 
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distributions of the hyperparameters 𝛼 and 𝛽 are discussed in Section 4. Properties of E-Bayesian estimation are 

carried out in Section 5. While comparisons between the new method, the corresponding Bayes, and MLE`s are 

studied through numerical examples (simulation data and real life data) in Section 6. Finally, we conclude with 

some comments in the last Section. 

 

2. Maximum Likelihood Estimation 

In general, the joint pdf of the first m upper record values 𝑋𝑈(1), 𝑋𝑈(2), … , 𝑋𝑈(𝑚) is given by  

𝑓1,2,…,𝑚 𝑥𝑢 1 , 𝑥𝑢 2 , … , 𝑥𝑢 𝑚  = 𝑓 𝑥𝑢 𝑚  .  
𝑓(𝑥𝑢 𝑖 )

𝑅(𝑥 𝑖 )

𝑚
𝑖=1 ,  

0 < 𝑥𝑢 1 < 𝑥𝑢 2 <  … < 𝑥𝑢 𝑚 < ∞.           (5) 

By using (1), (2) and (5) after replacing 𝑥𝑢(𝑖) by 𝑥𝑖 , therefore without the additive constant, the  likelihood 

function, when b is known, can be written as  

ℓ = 𝑎𝑚 . 𝑒−𝑎𝑇 ,                   (6) 

where 

𝑇 = 𝑙𝑜𝑔  
𝑏+𝑥𝑚

2

𝑏
 .                                                                                                      (7) 

Then, the log-likelihood function is  

𝐿 = 𝑚 log 𝑎 − 𝑎 𝑇.        (8) 

Equating the first partial derivative of (8), with respect to 𝑎, to zero, we obtain the MLE of 𝑎 as  

𝑎 𝑀𝐿 =
𝑚

𝑇
.         (9) 

Therefore, the MLE of 𝑅(𝑡)and 𝑕(𝑡),  respectively, are  

𝑅 𝑀𝐿 𝑡 = 𝑏𝑎 𝑀𝐿 (𝑏 + 𝑡2)−𝑎 𝑀𝐿 ,𝑕 𝑀𝐿 𝑡 =
2 𝑡 𝑎 𝑀𝐿

𝑏+𝑡2 .             (10) 

 

3. Bayes estimation 

In this section, we present the posterior densities of the parameter𝑎 when 𝑏 is known and hence derive 

symmetric and asymmetric Bayes estimators for 𝑎andhazardfunction. 

3.1. The Loss Function  

The symmetric square-error loss (SEL) function is one of the most popular loss functions. A useful asymmetric 

loss function known as the LINEX loss function was introduced by [35] and was widely used in several papers, 

see for example, [7- 9, 21, 26, 32, 33, 35]. 

The Bayes estimator 𝑎 𝐵𝐿  of 𝑎 under the LINEX loss function is  

𝑎 𝐵𝐿 =
−1

𝑠
log⁡[𝐸(𝑒−𝑠𝑎 )], 𝑠 ≠ 0,                        (11) 

provided that the expectation 𝐸(𝑒−𝑠𝑎 )  exists and is finite. 

An other useful asymmetric loss function is the entropy loss (BE), see [10] and [11],  

and the estimator of 𝑎 under BE function is  

𝑎 𝐵𝐸 = 𝐸 𝑎−1  −1  ,        (12) 

provided that the expectation 𝐸(𝑎−1)  exists and finite. 

 

3.2. Prior and posterior distributions 

Assuming the parameter 𝑏 is known, we can use the gamma distribution as  prior distribution of  𝑎 with shape 

and scale parameters 𝛼 and 𝛽 respectively and its pdf given by  

𝑔(𝑎  𝛼, 𝛽) =
𝛽𝛼

Γ 𝛼 
𝑎𝛼−1  𝑒−𝛽𝑎 ,    𝑎 > 0,   𝛼, 𝛽 > 0.     (13) 

Combining (6) and (13), we get the posterior density of 𝑎 given 𝑥can be obtained as  

Π  a 𝑥 =
(𝑇+𝛽)𝑚 +𝛼

Γ(𝑚+𝛼)
𝑎𝑚+𝛼−1𝑒−(𝑇+𝛽)𝑎 ,      (14) 

which obeys the gamma distribution with parameters 𝑚 + 𝛼and  𝑇 + 𝛽. 

 

3.3. Bayesian estimation under squared error loss (SEL) function 

Under the squared error loss function, the Bayes estimates of 𝑎,𝑅 𝑡 and 𝑕 𝑡  are, respectively, given by 
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𝑎 𝐵𝑆 = 𝐸 𝑎 =
𝑚+𝛼

𝑇+𝛽
 ,    𝑅 𝐵𝑆 = (

𝑇+𝛽

𝑇+𝑇1+𝛽
)𝑚+𝛼 , h 𝐵𝑆 =

2(𝑚+𝛼)𝑡

(𝑏+𝑡2)(𝑇+𝛽)
,    (15) 

where 

𝑇1 = ln  1 +
𝑡2

𝑏
 .         (16) 

 

3.4. Bayesian estimation under LINEX loss function  

By using (11) and (14), then the Bayes estimates of 𝜃,  𝑅 𝑡  and 𝑕 𝑡 under LINEX loss function are, 

respectively, given by 

𝑎 𝐵𝐿 =
𝑚+𝛼

𝑆
log⁡(1 +

𝑆

𝑇+𝛽
), 𝑅 𝐵𝐿 =

−1

𝑆
log⁡[ 

(−𝑆)𝑖

𝑖!

∞
𝑖=0 (

𝑇+𝛽

𝑇+𝑖 𝑇1+𝛽
)𝑚+𝛼 ], 

h 𝐵𝐿 =
𝑚+𝛼

𝑠
log⁡(1 +

2 𝑠 𝑡

(𝑏+𝑡2)(𝑇+𝛽)
).         (17) 

3.5. Bayesian estimation under Entropy oss function  

By using (12) and (14), then the Bayes estimates of 𝜃,  𝑅 𝑡  and 𝑕 𝑡 under entropy loss function are, 

respectively, given by 

𝑎 𝐵𝐸 =
𝑚+𝛼−1

𝑇+𝛽
, 𝑅 𝐵𝐸 = (1 −

𝑇1

𝑇+𝛽
)𝑚+𝛼h 𝐵𝐸 =

2 𝑡 (𝑚+𝛼−1)

(𝑏+𝑡2)(𝑇+𝛽)
.      (18)     

 

4. E-Bayesian Estimation 

According to Han [16], the prior parameters𝛼and 𝛽 must be choose to guarantee that 𝑔 𝑎  is a decreasing 

function of  𝑎. The derivative of 𝑔 𝑎 𝛼, 𝛽   with respect to 𝑎 is 
𝑑𝑔 𝑎 𝛼,𝛽   

𝑑𝑎
=

𝛽𝛼

Γ 𝛼 
𝑎𝛼−2𝑒−𝛽𝑎   𝛼 − 1 − 𝛽 𝑎 ,      (19) 

where𝑎 > 0,   𝛼, 𝛽 > 0, it follows 0 < 𝛼 < 1, 𝛽 > 0 due to 
𝑑𝑔 𝑎 𝛼,𝛽   

𝑑𝑎
< 0, and therefore 𝑔 𝑎 𝛼, 𝛽   is a 

decreasing function of 𝑎.  

Suppose that 𝛼 and 𝛽 are independent with bivariate density function 

Π 𝛼, 𝛽 = Π1 𝛼 Π2 𝛽 .                 (20) 

Then, the E-Bayesian estimate of  𝑎 (expectation of the Bayesian estimate of  𝑎) can be written as  

𝑎 𝐸𝐵 = 𝐸  a 𝑥 =  𝑎 𝐵 α, β Π 𝛼, 𝛽 𝑑𝛼𝑑𝛽,
𝑄

      (21) 

where Q is the domain of 𝛼 and 𝛽, and  𝑎 𝐵 α, β  is the Bayes estimate of 𝑎 given by (15), (17) and (18). For 

more details, see Han [17, 18], Azimi et al. [6], Gupta and Gupta [15], Kizilaslan [19], Li et al. [20], Nasiri and 

Esfandyarifar [23], Okasha [24], Okasha and Wang [25], Reyad and Ahmed [29, 30], Read et al,.[31], Wang et 

al. [36] and Yousefzadeh [37]. 

The following joint prior density functions of 𝛼, 𝛽, where 0 < 𝛼 < 1, 0 < 𝛽 < 𝑐,  may be used  

Π1 𝛼, 𝛽 =
2(𝑐−𝛽)

𝑐2 ,       0 < 𝛼 < 1,    0 < 𝛽 < 𝑐,      

Π2 𝛼, 𝛽 =
1

𝑐
,                 0 < 𝛼 < 1,    0 < 𝛽 < 𝑐, 

Π3 𝛼, 𝛽 =
2 𝛽

𝑐2 ,             0 < 𝛼 < 1,    0 < 𝛽 < 𝑐.                                           (22)   

4.1. E-Bayesian estimation under squared error loss function 

For 𝜋𝑖 𝛼, 𝛽 , 𝑖 = 1, 2, 3, the E-Bayesian estimate of a and 𝑕(𝑡)based on the squared error loss function, are 

derived from (15) and (22)as 

 

𝑎 𝐸𝐵𝑆1 =  𝑎 𝐵𝑆 α, β Π1 𝛼, 𝛽 𝑑𝛼𝑑𝛽

𝑄

=   
2(𝑐 − 𝛽)

𝑐2
.

1

0

𝑐

0

𝑚 + 𝛼

𝑇 + 𝛽
𝑑𝛼𝑑𝛽 

=
2𝑚 + 1

𝑐2
  𝑇 + 𝑐 log  

𝑇 + 𝑐

𝑇
 − 𝑐 , 

𝑎 𝐸𝐵𝑆2 =
2𝑚 + 1

2 𝑐
log  

𝑇 + 𝑐

𝑇
 , 𝑎 𝐸𝐵𝑆3 =

2𝑚 + 1

𝑐2
{𝑐 − 𝑇 log  

𝑇 + 𝑐

𝑇
 }, 

𝑕 𝐸𝐵𝑆1 =
2 𝑡 (2𝑚 + 1)

𝑐2(𝑏 + 𝑡2)
  𝑇 + 𝑐 log  

𝑇 + 𝑐

𝑇
 − 𝑐 , 𝑕 𝐸𝐵𝑆2 =

 𝑡 (2𝑚 + 1)

𝑐(𝑏 + 𝑡2)
log  

𝑇 + 𝑐

𝑇
 , 
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𝑕 𝐸𝐵𝑆3 =
2 𝑡 (2𝑚+1)

𝑐2(𝑏+𝑡2)
 𝑐 − 𝑇 log  

𝑇+𝑐

𝑇
  .      (23) 

4.2. E-Bayesian estimation under LINEX loss function 

For 𝜋𝑖 𝛼, 𝛽 , 𝑖 = 1, 2, 3, the E-Bayesian estimate of a and 𝑕(𝑡)based on the LINEX loss function, are derived 

from (17) and (22) as 

𝑎 𝐸𝐵𝐿1 =  𝑎 𝐵𝐿 α, β Π1 𝛼, 𝛽 𝑑𝛼𝑑𝛽

𝑄

=   
2(𝑐 − 𝛽)

𝑐2
.

1

0

𝑐

0

𝑚 + 𝛼

𝑆
log⁡(1 +

𝑆

𝑇 + 𝛽
)𝑑𝛼𝑑𝛽 

=
2𝑚 + 1

𝑐2𝑆
 𝑐 𝐼1 − 𝐽1 , 

𝑎 𝐸𝐵𝐿2 =
2𝑚 + 1

2𝑐𝑆
𝐼1, 𝑎 𝐸𝐵𝐿3 =

2𝑚 + 1

𝑐2𝑆
𝐽1, 

𝑕 𝐸𝐵𝐿1 =
2𝑚+1

𝑐2𝑆
 𝑐 𝐼2 − 𝐽2 ,          𝑕 𝐸𝐵𝐿2 =

2𝑚+1

2𝑐 𝑆
𝐼2, 𝑕 𝐸𝐵𝐿3 =

2𝑚+1

𝑐2𝑆
𝐽2,(24) 

where 

𝐼1 = 𝑐 log  1 +
𝑆

𝑇 + 𝑐
 − 𝑇 log  1 +

𝑐

𝑇
 +  𝑇 + 𝑆 log  1 +

𝑐

𝑇 + 𝑆
 , 

𝐽1 =
1

2
{𝑐2 log  1 +

𝑆

𝑇+𝑐
 + 𝑐𝑆 + 𝑇2 log  1 +

𝑐

𝑇
 −  𝑇 + 𝑆 2 log  1 +

𝑐

𝑇+𝑆
 }, 

𝐼2 = 𝑐 log  1 +
𝐻

𝑇 + 𝑐
 − 𝑇 log  1 +

𝑐

𝑇
 +  𝑇 + 𝐻 log  1 +

𝑐

𝑇 + 𝐻
 , 

𝐽2 =
1

2
{𝑐2 log  1 +

𝐻

𝑇+𝑐
 + 𝑐𝐻 + 𝑇2 log  1 +

𝑐

𝑇
 −  𝑇 + 𝐻 2 log  1 +

𝑐

𝑇+𝐻
 }, 

𝐻 =
2𝑡 𝑆

𝑏+𝑡2.          (25) 

4.3. E-Bayesian estimation under Entropy loss function 

For 𝜋𝑖 𝛼, 𝛽 , 𝑖 = 1, 2, 3, the E-Bayesian estimate of a and 𝑕(𝑡)based on the entropy loss function, are derived 

from (18) and (22) as 

𝑎 𝐸𝐵𝐸1 =
2𝑚 − 1

𝑐2
  𝑇 + 𝑐 log  

𝑇 + 𝑐

𝑇
 − 𝑐 , 𝑎 𝐸𝐵𝐸2 =

2𝑚 − 1

2𝑐
log  

𝑇 + 𝑐

𝑇
 , 

𝑎 𝐸𝐵𝐸3 =
2𝑚 − 1

𝑐2
 𝑐 − 𝑇 log  

𝑇 + 𝑐

𝑇
  , 𝑕 𝐸𝐵𝐸1 =

2 𝑡 (2𝑚 − 1)

𝑐2(𝑏 + 𝑡2)
  𝑇 + 𝑐 log  

𝑇 + 𝑐

𝑇
 − 𝑐 , 

𝑕 𝐸𝐵𝐸2 =
 𝑡 (2𝑚−1)

𝑐(𝑏+𝑡2)
log  

𝑇+𝑐

𝑇
 , 𝑕 𝐸𝐵𝐸3 =

2 𝑡 (2𝑚−1)

𝑐2(𝑏+𝑡2)
 𝑐 − 𝑇 log  

𝑇+𝑐

𝑇
  .           (26) 

 

5. Properties of E-Bayesian estimation 

In this section, the relations between the E-Bayesian estimators 𝑎 𝐸𝐵𝑆𝑖 , 𝑎 𝐸𝐵𝐿𝑖 ,𝑎 𝐸𝐵𝐸𝑖 𝑕 𝐸𝐵𝑆𝑖 , 𝑕 𝐸𝐵𝐿𝑖  and 𝑕 𝐸𝐵𝐸𝑖 , 𝑖 =

1, 2, 3 are discussed. 

5.1. Relations among 𝒂 𝑬𝑩𝑺𝒊, 𝒂 𝑬𝑩𝑳𝒊  and 𝒂 𝑬𝑩𝑬𝒊(i=1, 2, 3) 

Lemma 1. Let 0 < 𝑐 < 𝑇 and  𝑎 𝐸𝐵𝑆𝑖 , 𝑎 𝐸𝐵𝐿𝑖  and 𝑎 𝐸𝐵𝐸𝑖 (i=1, 2, 3) be given by Eqs (23), (24) and (26). Then 

i) 𝑎 𝐸𝐵𝑆1 > 𝑎 𝐸𝐵𝑆2 > 𝑎 𝐸𝐵𝑆3 , 

ii) lim𝑇→∞ 𝑎 𝐸𝐵𝑆1 = lim𝑇→∞ 𝑎 𝐸𝐵𝑆2 = lim𝑇→∞ 𝑎 𝐸𝐵𝑆3 , 

iii)𝑎 𝐸𝐵𝐿1 > 𝑎 𝐸𝐵𝐿2 > 𝑎 𝐸𝐵𝐿3 , 

iv)lim𝑇→∞ 𝑎 𝐸𝐵𝐿1 = lim𝑇→∞ 𝑎 𝐸𝐵𝐿2 = lim𝑇→∞ 𝑎 𝐸𝐵𝐿3 , 

v) 𝑎 𝐸𝐵𝐸1 > 𝑎 𝐸𝐵𝐸2 > 𝑎 𝐸𝐵𝐸3 , 

vi)lim𝑇→∞ 𝑎 𝐸𝐵𝐸1 = lim𝑇→∞ 𝑎 𝐸𝐵𝐸2 = lim𝑇→∞ 𝑎 𝐸𝐵𝐸3 . 

Proof.  See Appendix. 

5.2. Relations among 𝒉 𝑬𝑩𝑺𝒊, 𝒉 𝑬𝑩𝑳𝒊 and 𝒉 𝑬𝑩𝑬𝒊(𝒊 = 𝟏, 𝟐, 𝟑) 

Lemma 1. Let 0 < 𝑐 < 𝑇 and  𝑕 𝐸𝐵𝑆𝑖 , 𝑕 𝐸𝐵𝐿𝑖  and 𝑕 𝐸𝐵𝐸𝑖  (i=1, 2, 3) be given by Eqs (23), (24) and (26). Then 

i) 𝑕 𝐸𝐵𝑆1 > 𝑕 𝐸𝐵𝑆2 > 𝑕 𝐸𝐵𝑆3 , 

ii) lim𝑇→∞ 𝑕 𝐸𝐵𝑆1 = lim𝑇→∞ 𝑕 𝐸𝐵𝑆2 = lim𝑇→∞ 𝑕 𝐸𝐵𝑆3 , 

iii) 𝑕 𝐸𝐵𝐿1 > 𝑕 𝐸𝐵𝐿2 > 𝑕 𝐸𝐵𝐿3, 

iv)lim𝑇→∞ 𝑕 𝐸𝐵𝐿1 = lim𝑇→∞ 𝑕 𝐸𝐵𝐿2 = lim𝑇→∞ 𝑕 𝐸𝐵𝐿3 , 
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v) 𝑕 𝐸𝐵𝐸1 > 𝑕 𝐸𝐵𝐸2 > 𝑕 𝐸𝐵𝐸3 , 

vi)lim𝑇→∞ 𝑕 𝐸𝐵𝐸1 = lim𝑇→∞ 𝑕 𝐸𝐵𝐸2 = lim𝑇→∞ 𝑕 𝐸𝐵𝐸3 . 

Proof.  See Appendix. 

 

6. Simulation study and Application example  

In this section, two examples are presented to illustrate the use of E-Bayesian in estimating the parameter and 

hazard function. 

 

Example 1 (Simulated data) 

Comparisons of the new method (E-Bayesian estimation) and Bayesian estimationof the parameterand hazard 

function are discussed by simulation study. The following steps are  

i) For given value of the prior parameter c, 𝛼  and 𝛽  were generated from uniform priors (22),  

respectively. 

ii) For given values of 𝛼and 𝛽, 𝑎 was generated from the gamma prior density (13). 

iii) For known value of 𝑏and the value of 𝑎, from the above step, we generate samples of record  

values with different sizes (m=3, 5, 7) from CRD with pdf (1). 

iv)Under the different loss functions, the estimates 𝑎 𝐵𝑆 ,𝑎 𝐸𝐵𝑆𝑖 ,𝑎 𝐸𝐵𝐿𝑖𝑎 𝐸𝐵𝐸𝑖 , 𝑕 𝐵𝑆 , 𝑕 𝐸𝐵𝑆𝑖 ,𝑕 𝐸𝐵𝐿𝑖  and 𝑕 𝐸𝐵𝐸𝑖 (𝑖 = 1, 2, 3) 

were computed from (15), (17), (18), (23), (24 and (26). 

v) We repeat the above steps 1000 times and then we compute the mean square errors (MSEs) and average for 

the estimates. The simulation results are displayed in Tables 1-2. 

Table 1: MSEs and average estimates for 𝑎 

n 𝒂 𝑴𝑳 𝒂 𝑩𝑺 𝒂 𝑬𝑩𝑺 𝒂 𝑩𝑳 𝒂 𝑬𝑩𝑳 𝒂 𝑩𝑬 𝒂 𝑬𝑩𝑬 

3 

0.0855145 

(0.207981) 

0.0441244 

(0.238676) 

0.0434731 

(0.222102) 

0.0386747 

(0.2141) 

0.030375 

(0.206098) 

0.0299992 

(0.222508) 

0.029772 

(0.204952) 

0.0253397 

(0.198755) 

0.0214378 

(0.192559) 

0.0250197 

(0.17849) 

0.0240636 

(0.158644) 

0.0227437 

(0.152928) 

0.0191885 

(0.147213) 

5 

0.0429353 

(0.216043) 

 

0.0224504 

(0.241825) 

 

0.0213458 

(0.228482) 

0.0193065 

(0.224271) 

0.0174201 

(0.220059) 

0.0181962 

(0.232448) 

0.0171324 

(0.219224) 

0.0157258 

(0.215454) 

0.0144183 

(0.211685) 

0.0153118 

(0.201289) 

0.0150327 

(0.18694) 

0.0139383 

(0.183494) 

0.0129462 

(0.180048) 

7 

0.030508 

(0.247617) 

0.0198405 

(0.268566) 

0.019003 

(0.257574) 

0.017662 

(0.253926) 

0.0164016 

(0.250278) 

0.0169071 

(0.260394) 

0.0161795 

(0.249505) 

0.0151684 

(0.246137) 

0.0142179 

(0.242769) 

0.014999 

(0.23485) 

0.0147936 

(0.223231) 

0.0139951 

(0.220069) 

0.0132571 

(0.216908) 

 

Table 2: MSEs and average estimates for 𝑕(𝑡) 

n 𝒉 𝑴𝑳 𝒉𝑩𝑺 𝒉 𝑬𝑩𝑺 𝒉 𝑩𝑳 𝒉 𝑬𝑩𝑳 𝒉 𝑩𝑬 𝒉 𝑬𝑩𝑬 

3 

1.07426 

(0.922951) 

0.176818 

(0.584421) 

0.1544041 

(0.759233) 

0.137029 

(0.681652) 

0.0672756 

(0.59407) 

0.206289 

(0.511616) 

0.107574 

(0.638322) 

0.06647236 

(0.578387) 

0.0386046 

(0.518452) 

0.291527 

(0.412532) 

0.125832 

(0.549452) 

0.0706191 

(0.486894) 

0.0544161 

(0.424335) 



Shawky AI & Al-Aboud FM                   Journal of Scientific and Engineering Research, 2017, 4(7):299-308 

 

Journal of Scientific and Engineering Research 

304 

 

5 

0.890664 

(1.04907) 

 

0.169715 

(0.760319) 

 

0.151584 

(0.922752) 

0.122204 

(0.842369) 

0.0561992 

(0.761983) 

0.19113 

(0.681871) 

0.10518 

(0.804987) 

0.0646118 

(0.744052) 

0.037257 

(0.683117) 

0.241835 

(0.619519) 

0.11902 

(0.754979) 

0.0655444 

(0.689211) 

0.048421 

(0.623444) 

7 

0.70669 

(1.20253) 

0.165228 

(0.917195) 

0.151023 

(1.07416) 

0.120801 

(0.994301) 

0.105719 

(0.914443) 

0.108988 

(0.833727) 

0.104443 

(0.958019) 

0.101914 

(0.894732) 

0.0717875 

(0.831445) 

0.240404 

(0.79325) 

0.116229 

(0.930937) 

0.069501 

(0.861727) 

0.0579402 

(0.792518) 

 

Example 2 (Real life data) 

This example provides a real data set to illustrate the estimation methods which have been described in the 

preceding sections. All the computations were performed using Mathematica version 9. We select seven 

observations of the real data from Bekker et al. [8] to consider as an upper record values {0.164, 0.501, 0.863, 

1.485, 2.178, 2.416, 3.578}. Based on these seven record values and 𝑐 = 2, 𝑆 = 1.5, 𝑏 = 2.5, 𝑡 = 1.5, 𝛼 =

0.9477 and 𝛽 = 1.06365. Therefore, the results are displayed in Table (3)   

 

Table 3: Average values of the different estimators for the parameters𝑎 and 𝑕. 

𝒂 𝑴𝑳 𝒂 𝑩𝑺 𝒂 𝑬𝑩𝑺 𝒂 𝑩𝑳 𝒂 𝑬𝑩𝑳 𝒂 𝑩𝑬 𝒂 𝑬𝑩𝑬 

3.86378 2.80441 3.13192 

2.78929 

2.44665 

2.22436 2.41965 

2.20182 

1.98399 

2.41630 2.71433 

2.41738 

2.12043 

𝒉 𝑴𝑳 𝒉𝑩𝑺 𝒉 𝑬𝑩𝑺 𝒉 𝑩𝑳 𝒉 𝑬𝑩𝑳 𝒉 𝑩𝑬 𝒉 𝑬𝑩𝑬 

2.44028 1.74574 1.97806 

1.76166 

1.54525 

1.50894 1.66010 

1.50131 

1.34252 

1.52608 1.71432 

1.52677 

1.33922 

 

7. Concluding Remarks 

Based on the results shown in Tables 1-2, one concludes generally, the MSEs of the E-Bayesian estimates of 𝑎 

and 𝑕 are the smallest MSE compared with their corresponding Bayes estimates. The MSE ofthe E-Bayesian 

estimates under LINEX loss function have smallest MSE compared with the E-Bayesian estimates under 

squared error loss function. Also was noted that MSEs of Bayesian and E-Bayesian estimates decrease as n 

increase. By increasing n, the computations in all tables show that the E-Bayes estimates (based on squared 

error, LINEX and entropy losses) are better than the Bayes in the sense of comparing the MSEs of the estimates. 

Table 3 is conformed the properties of E-Bayesian estimation which discussed in Section 5. 

 

Appendix 

Proof of Lemma 1 

i) From (23), we have 

𝑎 𝐸𝐵𝑆1 − 𝑎 𝐸𝐵𝑆2 = 𝑎 𝐸𝐵𝑆2 − 𝑎 𝐸𝐵𝑆3 =
2𝑚+1

2 𝑐2 𝑀, (A.1)  

where 

𝑀 =  2𝑇 + 𝑐  𝑙𝑜𝑔  1 +
𝑐

𝑇
 − 2𝑐 

For  -1 < y < 1, we deduce  

𝑙𝑜𝑔 1 + 𝑦 = 𝑦 −
1

2
𝑦2 +

1

3
𝑦3 −

1

4
𝑦4 +

1

5
𝑦5 −

1

6
𝑦6 + ⋯  =  (−1)ℓ−1

𝑦ℓ

ℓ
.

∞

ℓ=1
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Let𝑦 =
𝑐

𝑇
, when 0 <

𝑐

𝑇
< 1,   we get 

𝑀 = 𝑐  
2 𝑇

𝑐
+ 1  

 𝑐

𝑇
−

1

2
 
𝑐

𝑇
 

2

+
1

3
 
𝑐

𝑇
 

3

−
1

4
 
𝑐

𝑇
 

4

+
1

5
 
𝑐

𝑇
 

5

−
1

6
 
𝑐

𝑇
 

6

+
1

7
 
𝑐

𝑇
 

7

+ ⋯  − 2 𝑐 

= 𝑐  
1

6
 

𝑐

𝑇
 

2

 1 −
𝑐

𝑇
 +

1

60
 

𝑐

𝑇
 

4

 9 − 8  
𝑐

𝑇
  + ⋯  > 0.(A.2) 

According to (A.1) and (A.2), we obtain 

𝑎 𝐸𝐵𝑆1 − 𝑎 𝐸𝐵𝑆2 = 𝑎 𝐸𝐵𝑆2 − 𝑎 𝐸𝐵𝑆3 > 0, 

that is  

𝑎 𝐸𝐵𝑆1 > 𝑎 𝐸𝐵𝑆2 > 𝑎 𝐸𝐵𝑆3 . 

ii) From  (A.1) and (A.2), we get 

lim
𝑇→∞

 𝑎 𝐸𝐵𝑆1 − 𝑎 𝐸𝐵𝑆2 = lim
𝑇→∞

 𝑎 𝐸𝐵𝑆2 − 𝑎 𝐸𝐵𝑆3 =
2𝑚 + 1

2𝑐2
lim
𝑇→∞

 𝑀 = 0. 

Then, 

lim
𝑇→∞

𝑎 𝐸𝐵𝑆1 = lim
𝑇→∞

𝑎 𝐸𝐵𝑆2 = lim
𝑇→∞

𝑎 𝐸𝐵𝑆3 . 

 

iii) From (24), we deduce 

𝑎 𝐸𝐵𝐿1 − 𝑎 𝐸𝐵𝐿2 = 𝑎 𝐸𝐵𝐿2 − 𝑎 𝐸𝐵𝐿3=
2𝑚+1

2 𝑆
𝑀1,(A.3) 

Where 

𝑀1 =
1

𝑐2
 𝑐𝐼1 − 2 𝐽1 = −

𝑆

𝑐
−

𝑇

𝑐
 1 +

𝑇

𝑐
  𝑙𝑜𝑔  1 +

𝑐

𝑇
 + (

𝑇 + 𝑆

𝑐
)  1 +

𝑇 + 𝑆

𝑐
 𝑙𝑜𝑔⁡(1 +

𝑐

𝑇 + 𝑆
) 

=
𝑐

𝑇
 
1

6
−

1

12
 
𝑐

𝑇
 +

1

20
 
𝑐

𝑇
 

2

−
1

30
 
𝑐

𝑇
 

3

+
1

42
 
𝑐

𝑇
 

4

−
1

56
 
𝑐

𝑇
 

5

+ ⋯   

−
𝑐

𝑇+𝑆
 

1

6
−

1

12
(

𝑐

𝑇+𝑆
) +

1

20
 

𝑐

𝑇+𝑆
 

2

−
1

30
 

𝑐

𝑇+𝑆
 

3

+
1

42
 

𝑐

𝑇+𝑆
 

4

−
1

56
 

𝑐

𝑇+𝑆
 

5

+ ⋯  , 

we note that  

𝑀1 > 0,   if  𝑆 > 0    and   𝑀1 < 0, if 𝑆 < 0.                                 (A.4)   

Therefore, from (A.3) and (A.4), we obtain 

𝑎 𝐸𝐵𝐿1 − 𝑎 𝐸𝐵𝐿2 = 𝑎 𝐸𝐵𝐿2 − 𝑎 𝐸𝐵𝐿3 > 0, 

that is  

𝑎 𝐸𝐵𝐿1 > 𝑎 𝐸𝐵𝐿2 > 𝑎 𝐸𝐵𝐿3. 

iv) According to (A.3) and (A.4), we get 

 

lim
𝑇→∞

 𝑎 𝐸𝐵𝐿1 − 𝑎 𝐸𝐵𝐿2 = lim
𝑇→∞

 𝑎 𝐸𝐵𝐿2 − 𝑎 𝐸𝐵𝐿3 =
2𝑚 + 1

2𝑆
lim
𝑇→∞

𝑀1 = 0. 

Then, 

lim
𝑇→∞

𝑎 𝐸𝐵𝐿1 = lim
𝑇→∞

𝑎 𝐸𝐵𝐿2 = lim
𝑇→∞

𝑎 𝐸𝐵𝐿3 . 

v), vi) From (26), we have 

𝑎 𝐸𝐵𝐸1 − 𝑎 𝐸𝐵𝐸2 = 𝑎 𝐸𝐵𝐸2 − 𝑎 𝐸𝐵𝐸3 =
2𝑚−1

2 𝑐2 𝑀, (A.5)  

therefore, as (i) and (ii), we can prove the relations.  

Proof of Lemma 2 

i) From (23), we deduce 

𝑕 𝐸𝐵𝑆1 − 𝑕 𝐸𝐵𝑆2 = 𝑕 𝐸𝐵𝑆2 − 𝑕 𝐸𝐵𝑆3 =
 2𝑚+1 𝑡

𝑐2 𝑏+𝑡2 
𝑀,(A.6) 

and from Lemma 1, we have 𝑀 > 0, thus  

𝑕 𝐸𝐵𝑆1 − 𝑕 𝐸𝐵𝑆2 = 𝑕 𝐸𝐵𝑆2 − 𝑕𝐸𝐵𝑆3 > 0, 

that is  

𝑕 𝐸𝐵𝑆1 > 𝑕 𝐸𝐵𝑆2 > 𝑕𝐸𝐵𝑆3. 

ii) According to  (A.2) and (A.6), we get 

lim
𝑇→∞

 𝑕 𝐸𝐵𝑆1 − 𝑕 𝐸𝐵𝑆2 = lim
𝑇→∞

 𝑕 𝐸𝐵𝑆2 − 𝑕𝐸𝐵𝑆3 =
 2𝑚 + 1 𝑡

𝑐2 𝑏 + 𝑡2 
lim
𝑇→∞

 𝑀 = 0. 
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Then, 

lim
𝑇→∞

𝑕 𝐸𝐵𝑆1 = lim
𝑇→∞

𝑕 𝐸𝐵𝑆2 = lim
𝑇→∞

𝑕 𝐸𝐵𝑆3 . 

iii) From (24), we deduce 

𝑕 𝐸𝐵𝐿1 − 𝑕 𝐸𝐵𝐿2 = 𝑕 𝐸𝐵𝐿2 − 𝑕 𝐸𝐵𝐿3 =
2𝑚+1

2𝑆
𝑀2,     (A.7) 

Where  

𝑀2 =
1

𝑐2
(𝑐 𝐼2 − 2𝐽2) 

𝑀2 =
𝑇 + 𝑆𝑡

𝑐
 1 +

𝑇 + 𝑆𝑡

𝑐
 𝑙𝑜𝑔⁡(1 +

𝑐

𝑇 + 𝑆𝑡
) −

𝑇

𝑐
 1 +

𝑇

𝑐
  𝑙𝑜𝑔  1 +

𝑐

𝑇
 −

 𝑆𝑡

𝑐
 

=
𝑐

𝑇
 
1

6
−

1

12
 
𝑐

𝑇
 +

1

20
 
𝑐

𝑇
 

2

−
1

30
 
𝑐

𝑇
 

3

+
1

42
 
𝑐

𝑇
 

4

−
1

56
 
𝑐

𝑇
 

5

+ ⋯   

−
𝑐

𝑇+𝐻𝑡
 

1

6
−

1

12
(

𝑐

𝑇+𝐻
) +

1

20
 

𝑐

𝑇+𝐻
 

2

−
1

30
 

𝑐

𝑇+𝐻
 

3

+
1

42
 

𝑐

𝑇+𝐻
 

4

−
1

56
 

𝑐

𝑇+𝐻
 

5

+ ⋯  , 

𝐻 =
2𝑆𝑡

𝑏+𝑡2, 

we note that  

𝑀2 > 0,   if  𝑆 > 0    and   𝑀2 < 0, if 𝑆 < 0.                                      (A.8)   

Therefore, from (A.7) and (A.8), we obtain 

𝑕 𝐸𝐵𝐿1 − 𝑕 𝐸𝐵𝐿2 = 𝑕 𝐸𝐵𝐿2 − 𝑕 𝐸𝐵𝐿3 > 0, 

that is  

𝑕 𝐸𝐵𝐿1 > 𝑕 𝐵𝐿21 > 𝑕 𝐸𝐵𝐿3. 

iv) According to  (A.7) and (A.8), we get 

lim
𝑇→∞

 𝑕 𝐸𝐵𝐿1 − 𝑕 𝐸𝐵𝐿2 = lim
𝑇→∞

 𝑕 𝐸𝐵𝐿2 − 𝑕 𝐸𝐵𝐿3 =
2𝑚 + 1

2𝑆
lim
𝑇→∞

𝑀2 = 0. 

Then, 

lim
𝑇→∞

𝑕 𝐸𝐵𝐿1 = lim
𝑇→∞

𝑕 𝐸𝐵𝐿2 = lim
𝑇→∞

𝑕 𝐸𝐵𝐿3. 

v), vi) From (26), we have 

𝑕 𝐸𝐵𝐸1 − 𝑕 𝐸𝐵𝐸2 = 𝑕 𝐸𝐵𝐸2 − 𝑕 𝐸𝐵𝐸3 =
𝑡(2𝑚 − 1)

𝑐2(𝑏 + 𝑡2)
𝑀,  

therefore, as (i) and (ii), we can prove the relations.  
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