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Abstract From the inception of the oil and gas industry, water production has always been an aching problem 

for various operators. Throughout the productive life of a field, oil production is often accompanied with some 

amount of water production, which in most cases, is so significant and unwanted. Because of the great 

operating, environmental and economic challenges associated with excess water production, operators are in 

search for different methods and tools that could be used to identify the sources of water and prevent or mitigate 

early water breakthrough in producing oil wells. In this study, an Artificial Neural Network (ANN) model 

named CASNNET1 was developed for accurate prediction of producing well water cut in order to optimize oil 

production. CASNNET1 was developed and validated with data from one producing well and generalized with 

data from four other producers in the same reservoir. Water cut values predicted using the developed 

CASNNET1 model were compared to the actual water cut values from the wells, the R-squared (R
2
) and the 

mean square error values were estimated. The generalization of the network showed that the network has an 

average predictive accuracy of approximately 84%. The neural network model results were used jointly with 

reservoir simulation results to suggest possible ways of mitigating excess water production. The developed 

ANN model can be used as reservoir management tool to proffer solution to excess water production problems. 

 

Keywords production enhancement, water production prediction, artificial neural network, reservoir simulation, 

XY model 

Introduction 

The cost of unwanted water production has been estimated by several survey sponsored by oil and gas industries 

globally and it is within the region of 50 billion US dollars. These outrageous expenses are incurred for many 

purposes like water flow via fractures; safe water disposal is also added in the costs now. One of the major 

problems lingering in the oil and gas industry is allocating and shriveling timely well to well production. This is 

because, it more challenging to validate and relate the data to the wells production rates in a more consistent, 

coherent and timely way, and taking urgent action beyond collecting real time data from wells and facilities.  In 

order to solve the problem of integrating surveillance in subsea oil and gas production, Sensor Dynamics Ltd 

designed a sensor system. This designed sensory system was designed to solve many problems regarding subsea 

oil and gas production and also in deep sea in combination with fiber optic temperature, pressure, acoustic and 

seismic sensors. Some of the challenges associated with water production include; multiphase flow, valve and 

choke failure, hydrate and wax dropout. Excessive water production is associated with economic and 

environmental issues. Operators are in search for different methods and tools that could be employed in the 

identification of the water sources during oil production. Among available methods for predicting water 

production include the artificial neural network and reservoir simulation. In this study, both techniques were 

employed to quantify and possibly suggest ways to minimize excess water production. 
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During the production of oil and gas from petroleum reservoirs, water production could arise from an adjoining 

aquifer or from water injection wells in a process of water flooding. When production of water is in excess, the 

associated costs regarding operating both subsurface and surface production facilities will go up, and also result 

in scale and corrosion problems. Besides, recovery factor is decreased due to the bypass of oil by the 

displacement water front. These factors are critical environmental and financial challenges for the oil and gas 

production industry.  

The fundamental objective of this study was to develop an Artificial Neural Network (ANN) model that could 

accurately forecast well and field water production over the useful life of the field, identify the mechanisms 

(sources) of water production and recommend ways to reduce water production. Therefore, it is pertinent to state 

here that the neural network models developed in this study will only do well when fed with data from wells of 

the XY model. However, since the same process is used in building artificial neural network, neural network 

models can be developed for any reservoir to solve a well-defined problem. In this study, well water cut is the 

problem under investigation. Also, the neural network model built in this study is to predict water values which 

are time dependent variables.  

In real cases, controlling excessive water production is really complex, difficult, and always a function of many 

mechanisms evolving throughout the useful life of the production wells and entire field [1]. He presented a 

method that could be employed in quick diagnosis, evaluation and determination of the production mechanisms. 

These usually employ the diagnostic plots derived through history of the producing well data. However, the 

applications of the diagnostic plot to field data and results from numerical simulations have indicated their 

limitations, especially the use of derivative plots with noisy production data makes good decision making very 

difficult. Water production diagnostic model for oil wells on the bases of Spectral Analysis/Fourier 

Transformation was presented in [2]. The aim of their research was to use mathematical medium to transfer 

production rate of surface Water oil Ratio (WOR) from time dependent domain/region into periodic dependent 

domain/region so as to better comprehend the mechanism behind production of water. According to Egbe and 

Appah in [2], spectral analysis is a mathematical physics tool used in analyzing systems that changes or 

fluctuates with time. Gasbarri et al in [3] proposed an interesting method for diagnosing of water production 

with the aid of transient test having multiphase flow meter. In their study, they showed how the multiphase flow 

meter (MPFM) could be used as a tool for better investigation of problems of produced water for wells through 

imposition of conditions of a transient flow and evaluating its parameters like flow rates, water cut, and gas / oil 

ratio. Rabiei et al in [4] carried out a research to investigate the importance of WOR. They employed data 

mining techniques to facilitate the extraction of latent information for prediction of oil and water production 

data. In their study, they explored the graphs of WOR verses oil recovery factor and used WOR behavior to 

create data for prediction from those graphs to be employed in classification with other parameters of the 

reservoir. Basically, their methodology adopted a technique of mita learning classification known as Logistic 

Model Trees (LMT) for diagnosis of mechanism of water production on the bases of the well's WOR data and 

parameters of static reservoir. Their results indicated that monitoring the WOR is very important for effective 

prediction of water production mechanism type before the well develops the actual problem. Reyes et al in [5] 

introduced a production of water analysis diagnosis model on the bases of reliability systematic method. They 

adopted a method that integrated knowledge of petroleum engineering reliability and 6 sigma reservoir 

production system model tools to represent the entire potential cause effect relations and failure modes for easy 

identification of the water production origin including their classification. Polymer gels have been successfully 

used for water production control in many oil producing regions of the world, especially in Poza Rica, Northern 

Mexico [6]. PQ silicates are highly stable compounds with little or zero bad effect to the environment which is 

the major problem of most chemical used in controlling water production. During the preparation of the solution 

used for making polymer gels employed in water plug off processes, it is opined that, polyacryl must be 

hydrolyzed into amide (HPAM) polymer at complete hydrolysis prior to use for cross linker [7]. The final gel 

will have lower than optimum mechanical strength, presumably because polymer chains need to be fully 

unfolded before proper cross linking can occur. In their research, they evaluated the gel strength of “flowing” 

gels for water shutoff in natural fractures and other non-matrix features as a function of time of addition of cross 

linker relative to time of hydration of polymer. Gels were prepared from moderately high molecular weight 



Adebayo A & Appah D                                Journal of Scientific and Engineering Research, 2017, 4(5):25-30 

 

Journal of Scientific and Engineering Research 

122 

 

HPAM cross linked with chromium(III)acetate (CrAc) or polyethyleneimine (PEI).Cross linker was added after 

either initial wetting of solid polymer particles or complete dissolution of the polymer [7]. There are both 

mechanical and chemical means of decreasing excess water production. The most common widely used 

chemical means are “rigid gels” for total shutoff of flow in the near wellbore area (usually applied to 

hydraulically-isolated matrix or very near well non-matrix water shutoff problems) and “flowing gels” used to 

extrude into non-matrix flow features, potentially to many tens or even hundreds of feet from the wellbore 

through which it is injected [8]. Polymers have been very effective in permeability reduction treatment of excess 

water production from matrix (rigid gels), as well as from fractures, faults and similar non-matrix flow features 

(flowing gels). The most common polymer gels are derived from a solid-free solution of a water soluble 

polymer plus a crosslinker [7].  Several methods are available to estimate the water saturation in shaly 

formations but the most commonly used in the industry are those based on petrophysical models, such as 

Waxman-Smits and Simandoux. These models have limitations and their input parameters are often not readily 

available [9]. This consequently leads to either underestimated or overestimated fluid saturations [9]. In their 

study, a method based on Artificial Neural Network (ANN) models was developed and tested for water 

saturation prediction with the aid of wire-line logs and core Dean-Stark data. The model utilized in their study 

was on the basis of three-layered neural network with a Resilient Back-propagation (PROP) learning algorithm. 

The model was successfully tested on the Hara sandstone formation (in Oman) producing a water saturation 

prediction with  (RMSE) error of around 2.5 saturation units (saturation) correlation factor of 0.91 on the testing 

data [9]. 

 

Methods 

The method utilized in this study began with the development of a dynamic reservoir model using SENSOR 

simulator which paved way for the development an optimized neural network model. The reservoir model is of 

24 x 15 x 15 gridblock dimension and it’s a black oil model. Tables 1 to 4 describe the equilibration data of the 

model and the Rock and fluid properties of both the reservoir and aquifer. The total number of active blocks in 

the XY model is 9000, which implies that all blocks in the model are affected by the flow dynamics in the 

reservoir. In the model, there are 26 wells; one injector (WI) and twenty five producers (P2 – P26).  

Table 1: Reservoir model description 

Reservoir Model Description 

Fluid Model Black Oil   

Grid: NX 24 

  NY 15 

  NZ 15 

  Total Grid Blocks 9000 

  No. of Active Blocks 9000 

Simulation Time: Start 1/1/1970 

  End 1/1/1985 

  Days 5479 

  Years 15 

  Time Steps 115 

Avg. Transmissibility: TX 2.3342 

(RB-CP/D-PSI) TY 0.84991 

  TZ 2.1855 

Wells: No. of Injector 1 

  No. of Producer 25 

WATER Bwi , RB/STB 1.0034 
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PROPERTIES: 

  ɣw, (Water = 1.0) 1.0095 

  Cw, 1/Psi 0.000001 

  µw, cp 0.96 

Stock Tank Oil: ɣo,  0.7206 

  ρo, lb/Cuft 44.986 

  DEG. API 64.864 

GAS: ɣg, (AIR = 1.0) 0.92 

  ρg, lb/SCF 0.07025 

Table 2: Reservoir rock properties of model 

Rock  Compressibility,  Cf, 1/Psi (Field) 0.000001 

Reservoir Net Pay FT 359 

Reservoir Gross Th. FT 359 

Avg. Reservoir Porosity Fraction 0.1262 

Avg. Reservoir Kx Md 108.1 

Avg. Reservoir Ky Md 108.1 

Avg. Reservoir Kz Md 1.081 

 

Table 3: Equilibration parameters 

Equilibration (Initialization) Region 1 

Initial Hydrocarbon - Water Contact, FT 9950 

Depth to Center of Shallowest Block, FT 9009.85 

Depth to Center of Deepest Block, FT 10502.48 

Reference Depth, FT 9035 

 

Table 4: Reservoir model’s initial fluid in place 

Initial Fluids in Place 

  Water OIL GAS GOR Bo Bg 

HC 

PAVG PAVG 

  MRB MRB MMCF SCF/STB RB/STB BB/MCF PSI PSI 

Region 1 211,332 241,712 0 1385 1.1092 0 3,820.10 3,896.30 

Region 2 210,696 217,912 301,880 1385 1.1092 0 3,820.10 3,896.30 

 

SENSOR is a black oil and compositional reservoir simulation software used to optimize oil and gas recovery 

from underground reservoirs. It is a trademark of Coats Engineering and was used extensively in this research to 

study fluid withdrawal capacity of the reservoir XY model. The simulation was run for 15 years (5479 Days), as 

shown in Table 1. After 15 years of field depletion (01/01/1970 – 01/01/1985), the simulation run was 

terminated and an output file which contained the simulation results was automatically created by the simulator. 

The SENSOR maps which graphically show the IJK slice of the XY reservoir model were generated. With the 

aid of the SENSOR Plot tool, each well and field summary production data for the depletion period were 

plotted.  
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Development of Neural Networks 

In this study, several processes were taken to build optimized neural network models which could be used to 

predict water cut values at well and field scales respectively. The ANN development workflow is shown in 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: ANN workflow 

The workflow defines all the processes involved in developing the neural network models in this study. The 

different processes include; problem definition, data collection, data preprocessing and division, determination 

of the network architecture, training and optimizing the network, etc.  

CASSNET1, a non-linear auto regressive time series network with exogenous input (NARX) was developed 

using producer P26’s data.  

y(t)=f[y(t−1),y(t−2),…,y(t−n),x(t−1),x(t−2),…,x(t−n)]    1 

The following value of the output signal was regressed on next values of the output signal and previous values 

of an independent input signal. In the equation, n is the maximum number of delay, x is a time dependent input 

variable, while t, t-1, t-2, etc., are time steps. The NARX model can be implemented by using a feedforward 

neural network to approximate the function f.  

In building the CASNNET1, fourteen (14) input parameters and one desired parameter were used. The desired 

parameter is the water cut values of the producer P26. These parameters are depicted in Tables 5. 

Problem Definition 

Data Collection & 

Analysis 

Data Division 

Network Structure 

Model Training & 

Testing 

Model Optimization 

Sensitivity Analysis: e.g. 

different learning 

algorithms; number of 

hidden neurons; network 

delay, etc.  

Best Model Selection 

Robustness of Model 

Comparison 

 YES 

 NO 
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Table 5: Input – Output Parameters of CASNNET 1 

CASE ONE 

CASNNET 1- Input & Output Parameters 

S/N Input Parameters Output Parameters 

1 Well oil production rate (QOIL), STB/D 

  

2 Well gas production rate (QGAS), MCF/D 

3 Well water production rate (QWAT), STB/D 

4 Well gas - oil ratio (GOR), SCF/STB 

5 Well bottomhole pressure (PBH), Psi 

6 Average grid cell pressure (PGRID), Psi Well water cut 

(WCUT), % 7 Gas - oil contact, GOC (Datum Depth), Feet 

8 Initial Oil - water contact, OWC, Feet 

  

9 Average layer porosity, Fraction 

10 Average layer Kz, md 

11 Average layer Kh, md 

12 Well depth, Feet 

13 Aquifer total (rock + water) compressibility, 1/Psi 

14 Net pay thickness of reservoir, Feet 

 

The accuracy of the CASNNET1 was tested on data never seen by the network. The well P26 data used in 

training and validating the CASNNET1 had eighty-five (85) time steps. To further ascertain the predictive 

capability of the network, the CASNNET1 was used for multistep ahead prediction. Thirty (30) time steps ahead 

input parameters were fed into the trained network to predict 30 steps ahead water cut values. This was done to 

check the capability of the built CASNNET1 on P26 data. Similarly, the CASNNET1 was tested on data from 

wells P16, P17, P22 and P23 and it gave an appreciable result. The accuracy of the network was emphasized on 

the mean squared error (mse) and R-Squared values of each of the well data. 

 

Results and Discussion 

As earlier discussed, reservoir simulation runs were made and results were generated. Maps and plots of the 

results were generated to properly visualize and adequately analyze the results. 

 
Figure 2: Producer P26’s water cut and cumulative production vs. time plot 
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Figure 3: Producer P23’s water cut and 

cumulative production vs. time plot 

Figure 4: Producer P17’s water cut and 

cumulative production vs. time plot 

 

 
Figure 5: Correlation coefficient values of the CASNNET1 – P26 
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Figure 6: CASNNET1 – P26 water cut prediction and target plot 

 
Figure 7: CASNNET1 – P23 water cut prediction and target plot 

 

 
Figure 8: CASNNET1 – P23 water cut correlation plot 
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Figure 9: CASNNET1 – P22 water cut prediction and target plot 

 
Figure 10: CASNNET1 – P22 water cut correlation plot 

 
Figure 11: CASNNET1 – P17 water cut prediction and target plot 
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Figure 12: CASNNET1 – P17 water cut correlation plot 

 
Figure 13: CASNNET1 – P16 water cut prediction and target plot 

 
Figure 14: CASNNET1 – P16 water cut correlation plot 
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Table 6: Summary of CASNNET1 results 

CASNNET1 Summary for the Prediction of Well Water Cut 

Well No. Correlation 

Coefficient (R
2
) 

Mean Squared 

Error (MSE) 

Average Error 

Fraction 

Accuracy of 

Network (%) 

P26 0.9983 7.3125 0.0966 90.34 

P23 0.9369 81.4932 0.1458 85.42 

P22 0.9408 45.9222 0.1373 86.27 

P17 0.9293 79.8335 0.1421 85.79 

P16 0.9736 35.0157 0.2883 71.17 

Average  49.92  83.80 

 

With the aid of the SENSOR Map tool, maps which show the distribution of the XY model fluid and rock 

properties were created. Since all the producers were completed in layers K2, K3 and K4 and the injector in 

layers K11, K12, K13, K14 and K15, only the maps for these layers were generated. There was an indication of 

gas in the reservoir at this state, which implies that it was depleted below its bubble point pressure after 15 years 

of continuous production.  

One of the aims of this study was to evaluate water cut trends in producing wells. In the XY reservoir model 

under investigation, there are 25 producers (P2 – P26) and 1injector (WI). From the reservoir simulation results, 

only fifteen of the producers produced water during the depletion period. However, only seven had significant 

water cut (above 50%) after 15 years of depletion. The production plots of the wells that had water cut values 

above 90% are shown in Figures 2 – 4. Figures 2 – 4 shows that all three producers had early water 

breakthrough after 10 days of production (Well P26 = 1.3%, Well P23 = 0.5%, Well P17 = 0.5%). At the end of 

5479 days (15 years) of production, the water cut values were: Well P26 = 93.77%, Well P23 = 90.4%, Well 

P17 = 92.96%. 

As earlier discussed, a neural network model named CASNNET1 was developed. The CASNNET1 time series 

non-linear autoregressive network with exogenous inputs (NARX) was developed to predict water cut values at 

well scale.  The CASNNET1 was built using data from well P26. This network was trained, validated and tested 

to predict well P26’s water cut values. For well P26, there were 115 simulation time steps. The data for the first 

85 time steps (10 years) were used for training and validating the network, while the data for time steps 86 – 115 

(5 years) were used to make multistep ahead prediction. The well data were divided as: Training data = 40%; 

Validation data = 15%; and Testing data = 45%. The training algorithm used was the Levenberg-Marquardt 

back propagation (trainlm). Other training parameters are: Number of delay = 2; number of hidden neurons = 

10; number of input neurons = 14; number of output neurons (water cut) = 1. The results generated by the 

CASNNET1 on well P26 are shown in Figures 5 - 6. 

In Figure 5, the network’s overall correlation coefficient, R
2
 value of 0.99834 is an indication of a good 

prediction ability of CASNNET1 on well P26’s data. This is reflected in the accuracy value of approximately 

90% and mean squared error (mse) value of 7.3 as shown in Table 6. In Figure 6, the black line is the observed 

or desired P26 water cut values for 115 time steps. The blue line is CASNNET1 water cut match during training 

for 85 time steps, while the red line is the 30 time steps ahead (86 -115) prediction of water cut by the network.  

CASNNET1 was originally developed using well P26’s data. To test for network generalization, unseen data 

were fed into the network. Wells P23, P22, P17 and P16 data were used to for this generalization. Table 6 shows 

the summary results of CASNNET1 on Wells P23, P22, P17 and P16, while Figures 7 – 14 shows the water cut 

and correlation plots of all four wells. 

As shown in the summary result of Table 6, CASNNET1 shows a higher degree of accuracy of 90.34% in 

predicting well’s P26 water cut values. This is because the network was trained and optimized using well P26’s 

data. The accuracy of the network in predicting new data from wells P23, P22, P17 and P16 are 85.42%, 

86.27%, 85.79% and 71.17% respectively. Therefore, by generalization, the CASNNET1 neural network model 

has an average accuracy of approximately 84% on the five wells. 
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Conclusion 

Artificial neural network applications are gaining more grounds in the oil and gas industry. The process of 

developing the network is cheaper and faster than the reservoir simulation process. 

In this study, CASNNET1 was built to accurately predict well water cut values. The CASNNET1 was tested on 

wells P26, P23, P22, P17 and P16 to evaluate its predictive capacity. The prediction of this neural network on 

the well showed that CASNNET1 has a predictive ability of approximately 84% accuracy and therefore could 

be used for predicting water cut in producing wells. This developed neural network model can be used as a 

reservoir management tool to make forecast of water cut value for any of the wells in the XY Reservoir Model.  
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Appendix  

Table 7: Casnnet1 Water Cut Prediction and Accuracy on Well p26 

TIME ACTUAL 

WCUT 

NEURAL 

NETWORK 

PREDICTION 

ABSOLUTE 

ERROR 

(AE) 

ERROR 

FRACTION 

(AE)^2 MSE NETWORK 

ACCURACY 

DAYS % % % Fraction     % 

10.00 1.30 1.30 0.00 0.00 0.00     

22.04 1.31 1.31 0.00 0.00 0.00     

31.00 1.38 2.65 1.27 0.92 1.62     

44.43 1.58 6.89 5.31 3.35 28.17     

64.59 2.11 6.97 4.86 2.30 23.59     

90.67 3.17 5.91 2.74 0.86 7.49     

104.72 4.06 4.90 0.84 0.21 0.71     
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117.44 5.03 6.36 1.33 0.26 1.76     

128.01 5.97 6.87 0.90 0.15 0.81     

143.85 7.67 7.41 0.26 0.03 0.07     

162.08 9.95 9.86 0.09 0.01 0.01 7.31 90.34 

178.58 12.22 12.78 0.56 0.05 0.32     

197.86 15.38 16.37 0.98 0.06 0.97     

219.20 18.99 22.65 3.66 0.19 13.41     

240.85 22.59 22.02 0.57 0.03 0.32     

260.76 25.92 25.53 0.39 0.02 0.16     

285.46 30.16 28.96 1.20 0.04 1.44     

309.96 33.48 36.98 3.51 0.10 12.29     

335.96 36.73 37.72 0.99 0.03 0.98     

365.00 39.83 41.21 1.38 0.03 1.91     

394.37 41.97 45.03 3.06 0.07 9.36     

411.84 42.51 44.79 2.28 0.05 5.20     

424.00 42.74 43.76 1.02 0.02 1.03     

442.23 43.24 43.92 0.68 0.02 0.46     

454.95 43.74 45.13 1.39 0.03 1.92     

470.33 44.60 47.91 3.31 0.07 10.94     

493.40 46.20 49.07 2.86 0.06 8.20     

522.12 48.41 51.16 2.75 0.06 7.55     

551.98 50.77 54.29 3.52 0.07 12.39     

580.63 53.06 57.41 4.35 0.08 18.97     

602.26 54.75 59.96 5.21 0.10 27.16     

622.78 56.40 61.88 5.48 0.10 30.04     

647.62 58.42 63.15 4.73 0.08 22.38     

684.89 61.23 64.38 3.15 0.05 9.95     

732.93 64.09 65.75 1.66 0.03 2.75     

766.85 65.66 67.45 1.79 0.03 3.20     

791.56 66.78 69.11 2.34 0.04 5.46     

828.64 68.27 70.30 2.03 0.03 4.14     

865.69 69.61 71.09 1.48 0.02 2.19     

921.28 71.53 72.23 0.70 0.01 0.49     

981.28 73.25 73.43 0.18 0.00 0.03     

1041.28 74.76 75.07 0.31 0.00 0.10     

1096.00 76.01 76.50 0.49 0.01 0.24     

1156.00 77.19 77.46 0.27 0.00 0.07     

1216.00 78.25 78.26 0.00 0.00 0.00     

1276.00 79.11 79.03 0.07 0.00 0.01     

1336.00 79.95 79.79 0.16 0.00 0.03     

1396.00 80.74 80.49 0.26 0.00 0.07     

1461.00 81.54 81.16 0.38 0.00 0.14     
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1521.00 82.22 81.81 0.42 0.01 0.17     

1581.00 82.87 82.41 0.46 0.01 0.22     

1641.00 83.46 82.94 0.53 0.01 0.28     

1701.00 83.97 83.44 0.53 0.01 0.28     

1761.00 84.46 83.87 0.58 0.01 0.34     

1826.00 84.88 84.22 0.66 0.01 0.44     

1884.33 85.28 84.55 0.73 0.01 0.53     

1944.33 85.67 84.88 0.79 0.01 0.62     

2004.33 86.04 85.18 0.86 0.01 0.74     

2064.33 86.40 85.48 0.92 0.01 0.85     

2124.33 86.75 85.78 0.97 0.01 0.94     

2191.00 87.11 86.06 1.06 0.01 1.11     

2251.00 87.43 86.35 1.08 0.01 1.17     

2311.00 87.74 86.64 1.10 0.01 1.21     

2371.00 88.04 86.88 1.16 0.01 1.34     

2431.00 88.32 87.14 1.18 0.01 1.40     

2491.00 88.59 87.37 1.22 0.01 1.50     

2557.00 88.89 87.58 1.31 0.01 1.71     

2613.06 89.11 87.78 1.33 0.01 1.76     

2673.06 89.33 87.99 1.34 0.02 1.81     

2733.06 89.55 88.15 1.39 0.02 1.94     

2793.06 89.75 88.34 1.41 0.02 1.99     

2853.06 89.96 88.57 1.39 0.02 1.93     

2922.00 90.18 88.81 1.37 0.02 1.87     

2982.00 90.37 89.06 1.31 0.01 1.71     

3042.00 90.55 89.30 1.26 0.01 1.58     

3102.00 90.73 89.47 1.25 0.01 1.57     

3162.00 90.90 89.62 1.28 0.01 1.64     

3222.00 91.06 89.75 1.31 0.01 1.71     

3287.00 91.23 89.84 1.38 0.02 1.92     

3347.00 91.33 89.90 1.43 0.02 2.05     

3407.00 91.40 90.07 1.34 0.01 1.79     

3467.00 91.48 89.92 1.56 0.02 2.44     

3527.00 91.58 90.31 1.27 0.01 1.62     

3587.00 91.69 91.19 0.49 0.01 0.24     

3652.00 91.82 92.02 0.19 0.00 0.04     

3712.00 91.95 92.21 0.26 0.00 0.07     

3772.00 92.07 91.90 0.17 0.00 0.03     

3832.00 92.19 95.30 3.11 0.03 9.70     

3892.00 92.31 96.45 4.15 0.04 17.19     

3952.00 92.42 96.49 4.07 0.04 16.56     

4018.00 92.53 96.56 4.03 0.04 16.24     

4078.00 92.62 92.57 0.05 0.00 0.00     
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4138.00 92.71 96.57 3.85 0.04 14.86     

4198.00 92.80 96.77 3.98 0.04 15.82     

4258.00 92.87 96.79 3.91 0.04 15.32     

4318.00 92.95 95.49 2.54 0.03 6.44     

4383.00 93.03 95.57 2.54 0.03 6.47     

4443.00 93.08 95.66 2.58 0.03 6.65     

4503.00 93.13 95.70 2.57 0.03 6.61     

4563.00 93.16 95.77 2.61 0.03 6.82     

4623.00 93.20 96.29 3.09 0.03 9.56     

4683.00 93.24 96.30 3.06 0.03 9.38     

4748.00 93.29 96.37 3.08 0.03 9.51     

4808.00 93.34 96.40 3.07 0.03 9.39     

4868.00 93.39 96.46 3.07 0.03 9.43     

4928.00 93.45 96.54 3.10 0.03 9.59     

4988.00 93.50 96.59 3.08 0.03 9.50     

5048.00 93.56 96.67 3.11 0.03 9.66     

5113.00 93.62 96.79 3.17 0.03 10.04     

5173.00 93.67 96.88 3.21 0.03 10.29     

5233.00 93.71 97.20 3.49 0.04 12.21     

5293.00 93.73 97.24 3.51 0.04 12.33     

5353.00 93.74 98.26 4.53 0.05 20.48     

5413.00 93.75 98.35 4.60 0.05 21.15     

5479.00 93.77 98.54 4.77 0.05 22.77     

 

The same computation carried out on well P26 shown in Table 7 above was also done for the other four wells 

(P23, P22, P17 and P16)  


