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Abstract A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is 

displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will 

accelerate it back toward the equilibrium position. When released, the restoring force combined with the 

pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one 

complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the 

pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing. 
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1- Construction of Differential Equation 

 F = −Wsin θ = m ∗ acceleration =
W

g
∗ acceleration 

α =
acceleration

length
 . .  angular acceleration  

 F = −Wsin θ =
Wl

g
α 

−Wsin θ =
Wl

g
α 

yields
    −sin θ =

l

g
α 

α +
g

l
Sin θ = 0 

α =
dω

dt
=

d2θ

dt2
 

d2θ

dt2
+

g

l
sin θ = 0… . . (1) 

This is the main equation to be used. 

 

It is a second order differential equation, there is multiple methods to be used to solve this equation, either linear 

or nonlinear. Next we will be solving this equation and compare the results. 
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Figure 1: A free-body diagram of the swinging pendulum showing the forces on the particle and the 

acceleration 

 

2- Linear Analytical Solution 

Series expansion for sin θ  can be expressed as: 

sin θ = θ −
θ3

3!
+

θ5

5!
−

θ7

7!
+

θ9

9!
−

θ11

11!
+ ⋯ 

For small angular displacements, sin θ  is approximately  

equal to θ when expressed in radians 

So sin θ ≈ θ  rad … . (2) 

Recall equation 1 and replace sin θ  with equation 2  

d2θ

dt2
+

g

l
θ = 0… . . (3) 

θ = A sin   
𝑔

𝑙
𝑡 + 𝐵 cos   

𝑔

𝑙
𝑡 … (4) 

substitute initial conditions θ 0 = θ𝑜 ;
dθ

𝑑𝑡
= 0 

θ = θ𝑜 cos   
𝑔

𝑙
𝑡 . . (5) 

Angular velocity 𝜔 =
𝑑𝜃

𝑑𝑡
= −θ𝑜 ∗  

𝑔

𝑙
sin   

𝑔

𝑙
𝑡 … (6) 

using equation 5 and 6 to obtain the data in the table 

for θ𝑜 =
𝜋

3
𝑎𝑛𝑑 θ𝑜 =

𝜋

10
 

Table 1: Linear Analytical Solution for 𝜃 and 𝜔 with initial condition 

θ𝑜 = 𝜋/3 

 θ𝑜 = 𝜋/3 

T (sec) θ(rad) 𝜔 (rad/s) 

0 1.0471 0 
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Table 2: Linear Analytical Solution for 𝜃 and 𝜔 with initial condition 

θ𝑜 = 𝜋/10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: 𝜃 and 𝜔 relationship with time for two initial conditions 𝜃𝑜 = 𝜋/3, 𝜃𝑜 = 𝜋/10 

 

3- Second Order Differential Equation Solution Using Runge-Kutta 4
th

 Order Methods 

d2θ

dt2
+

g

l
sin θ = 0… . .  1     ;     𝜔 =

𝑑𝜃

𝑑𝑡
… . . (6) 

Rearrange equations 

d𝜔

dt
= −9.81sin θ … . .  7  (𝑔 = 9.81

𝑚

𝑠2
; 𝑙 = 1𝑚)  

𝑑𝜃

𝑑𝑡
= 𝜔… (8) 

 
𝜔

𝜃
 
𝑖+1

=  
𝜔

𝜃
 
𝑖

+
ℎ

6
  
𝑘11

𝑘21
 + 2  

𝑘12

𝑘22
 + 2  

𝑘13

𝑘23
 +  

𝑘14

𝑘24
  … (9) 

Taking h=0.001 

θo =
π

3
,

π

10
; ωo = 0; to = 0 

-2

0

2

0 5θ
 (

ra
d

)

t (second)

Linear Solution

π/3

π/10
-5

0

5

-1 1 3 5𝜔
(r

ad
)

t (seconds)

Linear Solution

π/3

π/10

0.5 0.00497 -3.27988 

1 -1.047 -0.03116 

1.5 -0.014 3.27958 

2 1.047 0.06232 

2.5 0.0248 -3.27899 

3 -1.046 -0.09347 

3.5 -0.034 3.27810 

4 1.0464 0.12461 

4.5 0.0447 -3.27692 

5 -1.046 -0.15575 

g=9.81 m/s^2; length=1m 

 θ𝑜 = 𝜋/10 

T (sec) Θ (rad) 𝜔(rad/s) 

0 0.3141 0 

0.5 0.001492 -0.9839 

1 -0.314 -0.0093 

1.5 -0.00447 0.9838 

2 0.3141 0.00187 

2.5 0.007461 -0.98369 

3 -0.314 -0.02804 

3.5 -0.01044 0.98343 

4 0.3139 0.03738 

4.5 0.0134 -0.98307 

5 -0.313 -0.04672 

g=9.81 m/s^2; length=1m 
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Coefficients related to 𝝎 Coefficients related to 𝜃 

𝒌𝟏𝟏 = 𝒇 to , ωo , θo  𝒌𝟐𝟏 = 𝒇 to , ωo , θo  

𝒌𝟏𝟐 = 𝒇  to +
ℎ

2
, ωo +

ℎ ∗ 𝑘11

2
, θo +

ℎ

2
𝑘21  𝒌𝟐𝟐 = 𝒇  to +

ℎ

2
, ωo +

ℎ ∗ 𝑘11

2
, θo +

ℎ

2
𝑘21  

𝒌𝟏𝟑 = 𝒇  to +
ℎ

2
, ωo +

ℎ ∗ 𝑘12

2
, θo +

ℎ

2
𝑘22  𝒌𝟐𝟑 = 𝒇  to +

ℎ

2
, ωo +

ℎ ∗ 𝑘12

2
, θo +

ℎ

2
𝑘22  

𝒌𝟏𝟒 = 𝒇 to + ℎ, ωo + ℎ𝑘13, θo + ℎ𝑘23  𝒌𝟐𝟒 = 𝒇 to + ℎ, ωo + ℎ𝑘13, θo + ℎ𝑘23  

 

This is very time consuming process but very efficient, instead of solving it manually, a Matlab program will be 

used to evaluate the results for θ and ω for a step of 0.001s and then substitute in equation 9 

For example, θo =
π

3
; ωo = 0; to = 0 

𝜃𝑖+1 = 𝜃𝑖 +
ℎ

6
(𝑘21 + 2𝑘22 + 2𝑘23 + 𝑘24) 

𝜃𝑖+1 =
𝜋

3
+

0.001

6
(−8.420863017 ∗ 10−3) 

𝜃𝑖+1 = 𝟏.𝟎𝟒𝟕𝟏𝟗𝟔𝟏𝟒𝟖 𝒓𝒂𝒅 

𝜔𝑖+1 = 𝜔𝑖 +
ℎ

6
(𝑘11 + 2𝑘12 + 2𝑘13 + 𝑘14) 

𝜔𝑖+1 =
0.001

6
 −42.39518331 = −𝟕.𝟎𝟔𝟓𝟖𝟔𝟑𝟖𝟖𝟔 ∗ 𝟏𝟎−𝟑𝒓𝒂𝒅/𝒔 

 

 

 

 

 

 

 

 

 

t 𝜃 𝑅𝐾4  𝜃 𝑙𝑖𝑛𝑒𝑎𝑟  𝜔(𝑅𝐾4) 𝜔(𝑙𝑖𝑛𝑒𝑎𝑟) 

0 𝜋

3
 

𝜋

3
 0 0 

0.001 1.047194723 0.003279914 -0.007065863 -0.010273 

g=9.81 m/s^2; length=1m 

 

Since h=0.001, for 5 seconds we need 5000 solutions! So we must use Matlab for solution. 

As time increases the difference in results increases. 

Other numerical methods for solving ODEs was not used because RK4 gives very good results so we do not 

need to use other methods. 

 

4- Matlab Solution for 𝜽 

*Matlab code for 𝜃 Solution is available at the end of the paper (Code #1) 

K11 -8.495709211 

K21 0 

K12 -8.495709211 

K22 -0.004247854606 

K13 -8.495698793 

K23 -0.000004247854606 

K14 0.08334190469 

K24 0.00008334190469 
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Figure 3: Graph of 𝜃 − 𝑡𝑖𝑚𝑒 for two initial conditions 𝜃𝑜 = 𝜋/3 , 𝜃𝑜 = 𝜋/10 

 
Figure 4: Graph of 𝜔 − 𝑡𝑖𝑚𝑒 for two initial conditions 𝜃𝑜 = 𝜋/3 , 𝜃𝑜 = 𝜋/10 

 

5- Matlab Solution for 𝝎 

*Matlab code for 𝜔 Solution is available at the end of the paper (Code #2),  

for the previous section a second order differential equation for theta was defined and solution for 𝜃 was 

obtained. 

for 𝜔 an approach mentioned in section 3 was used to find 𝜔(𝑡) , keep it in mind that the error of the 

linearization for 𝜔 will be higher than 𝜃 because the linear function of 𝜃 (equation 5) that has approximation 

error was derived to find 𝜔 (equation 6) which results in higher error. 

 

6- Applications of Swinging Pendulum 

Students learn what a pendulum is and how it works in the context of amusement park rides. While exploring 

the physics of pendulums, they are also introduced to Newton's first law of motion — about continuous motion 

and inertia. Pendulums are used in many engineered objects, such as clocks, metronomes, amusement park rides 
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and earthquake seismometers. In addition, engineers know that understanding the physics of how pendulums 

behave is an important step towards understanding motion, gravity, inertia and centripetal force. Engineers 

apply their understanding of these motion concepts to determine the force needed to propel an object into outer 

space, the braking power required to stop a vehicle at high speeds, and the optimal curve of a highway ramp. 

Teams of engineers work on a wide range of projects and solve problems that are important to society. 

The pendulum-slosh problem 

Suspending a rectangular vessel which is partially filled with fluid from a single rigid pivoting pole produces an 

interesting theoretical model with which to investigate the dynamic coupling between fluid motion and vessel 

rotation. The exact equations for this coupled system are derived with the fluid motion governed by the Euler 

equations relative to the moving frame of the vessel, and the vessel motion governed by a modified forced 

pendulum equation. The nonlinear equations of motion for the fluid are solved numerically via a time-dependent 

conformal mapping, which maps the physical domain to a rectangle in the computational domain with a time 

dependent conformal modulus.  

The numerical scheme expresses the implicit free-surface boundary conditions as two explicit partial differential 

equations which are then solved via a pseudo-spectral method in space. The coupled system is integrated in time 

with a fourth-order Runge-Kutta method. 

 

 
Figure 5: The Pendulum-Slosh Problem 

 

 
Figure 6: Double Pendulum 
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Double Pendulum 

In physics and mathematics, in the area of dynamical systems, a double pendulum is a pendulum with another 

pendulum attached to its end, and is a simple physical system that exhibits rich dynamic behavior with a strong 

sensitivity to initial conditions. The motion of a double pendulum is governed by a set of coupled ordinary 

differential equations and is chaotic. Lagrange’s equation for 𝜃1 

0 =  𝑚1 + 𝑚2 𝑙1
2𝜃1
 + 𝑚2𝑙1𝑙2𝜃2

 cos 𝜃2 − 𝜃1 −  𝑚2𝑙1𝑙2𝜃2
2 sin 𝜃2 − 𝜃1 +  𝑚1 + 𝑚2 𝑔𝑙1 sin 𝜃1  

Lagrange’s equation for 𝜃2 

0 = 𝑚2𝑙2
2𝜃2
 + 𝑚2𝑙1𝑙2𝜃1

 cos 𝜃2 − 𝜃1 + 𝑚2𝑙1𝑙2𝜃1
2 sin 𝜃2 − 𝜃1 + 𝑚2𝑔𝑙2 sin 𝜃2  

We collect the two Lagrange equations of motion, which are, of course, the same ones we got from Newton’s law: 

 𝑚1 + 𝑚2 𝑙1𝜃1
 + 𝑚2𝑙2𝜃2

 cos 𝜃2 − 𝜃1 = 𝑚2𝑙2𝜃2
2 sin 𝜃2 − 𝜃1 −  𝑚1 + 𝑚2 𝑔 sin 𝜃1 … (𝐴) 

𝑙2𝜃2
 +  𝑙1𝜃1

 cos 𝜃2 − 𝜃1 = − 𝑙1𝜃1
2 sin 𝜃2 − 𝜃1 − 𝑔 sin 𝜃2 … (𝐵) 

 

7- Conclusion 

Pendulum is a great tool to express the motion of a body, an important application in chaos theory which is a 

branch in mathematics focused on the behavior of dynamical systems that are highly sensitive to initial 

conditions. So it was necessary to explain its equation and find solutions methods to expect its motion related to 

time and depending on the initial condition. It was seen that for small initial angular displacement the 

linearization gives fairly good results and less time consuming, while large initial angular displacement cannot 

be solved linearly, and the differential equation is in complex form, so we used numerical methods to solve the 

equation of motion using Matlab because it is a time consuming process, increasing the time interval (h value) 

increases accuracy of solution, for 5 seconds a time interval of 0.001 second was used, so a 5000 process was 

done using Matlab, without Computer Softwares it would be impossible to solve the problem. Graphs has 

already been shown and it will be available in large pixels in the next page. Double Pendulum expands the 

ability to represent more complex motions, but more complex equations, and more time needed to solved the 

problem. More pendulums can be used as much as needed. 
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Code #1 Code #2 

function main 

%define g and L 

g=9.81;L=1; 
K=g/L; 

%nonlinear solution, define theta and time (initial conditions) 

%case 1 
%define time change for 0.001 

xo=[pi/3,0]; 

[t,x]=ode45(@DE2,[0:0.001:5],xo); 
plot(t,x(:,1),'k--','Linewidth',1.5) 

xlabel('t'),ylabel('theta'),grid on 

axis([0,5,-2,2]) 
hold on 

%case 2 

%define time change for 0.001 
xo=[pi/10,0]; 

[t,x]=ode45(@DE2,[0:0.001:5],xo); 

plot(t,x(:,1),'k-','Linewidth',1.5) 
%linear solution 

%case 1 

B=pi/3; 
T=0:0.05:5; 

z=B*cos(sqrt(K)*T); 
plot(T,z,'r*','Linewidth',1) 

%case 2 

B=pi/10; 
T=0:0.05:5; 

z=B*cos(sqrt(K)*T); 

plot(T,z,'b-*','Linewidth',1) 
%define legends 

legend('\theta(0) = \pi/3','\theta(0) = \pi/10'... 

,'Linear \theta(0) = \pi/3','Linear \theta(0) = \pi/10') 
%define ode function 

function ode=DE2(t,x) 

g=9.81;L=1; 

K=g/L; 

ode=[x(2);-K*sin(x(1))]; 

%save this as pendulumcats.m 

function dy = pendulumcats(t,y) 

dy = zeros(2,1); 
omega = 9.81*(4-5); 

dy(1) = y(2); 

dy(2) = omega*sin(y(1)); 
%make a new m-file for the next code 

[t,y] = ode45('pendulumcats',[0:0.001:5], [pi/3 0]); 

plot(t,y(:,2),'k-','Linewidth',1.5); 
hold on 

[t,y] = ode45('pendulumcats',[0:0.001:5], [pi/10 0]); 

plot(t,y(:,2),'k--','Linewidth',1.5); 
hold on 

%linear solution 

%case 1 
B=pi/3; 

T=0:0.05:5; 

z=-B*sqrt(9.81)*sin(sqrt(9.81)*T); 
plot(T,z,'r*','Linewidth',1) 

hold on 

%case 2 
B=pi/10; 

T=0:0.05:5; 
z=-B*sqrt(9.81)*sin(sqrt(9.81)*T); 

plot(T,z,'b-*','Linewidth',1) 

xlabel('time'); 
ylabel('omega'); 

legend('\theta(0) = \pi/3','\theta(0) = \pi/10'... 

,'Linear \theta(0) = \pi/3','Linear \theta(0) = \pi/10') 
 

 

 
 

 

 

 

 


