Journal of Scientific and Engineering Research, 2017, 4(4):322-326

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

Application of Linear Stochastic Models to Monthly Streamflow Data

Tariq Mahgoub Mohamed^{1*}, Ette Harrison Etuk²

¹Department of Civil Engineering, Jazan University, Jazan, KSA ²Department of Mathematics, Rivers State University Nigeria

Abstract Time series analysis and forecasting has become a major tool in different applications in hydrology and environmental management fields. Linear stochastic models known as multiplicative Seasonal Autoregressive Integrated Moving Average (SARIMA) model were used to simulate and forecast monthly streamflow of Rahad River, Sudan. For the analysis, monthly streamflow data for the years 1972–2009 were used. A visual inspection of the time plot gives the expected impression of a generally horizontal trend and 12month seasonal periodicity. The seasonality observed in Auto Correlation Function (ACF) and Partial Auto Correlation Function (PACF) plots of monthly streamflow data was removed using first order seasonal differencing prior to the development of the SARIMA model. Interestingly, the SARIMA (2,0,0)x(0,1,1)12 model developed was found to be most suitable for simulating monthly streamflow for Rahad River. The model was found appropriate to forecast three years of monthly streamflow and assist decision makers to establish priorities for water demand.

Keywords Streamflow, Rahad River, Sudan, SARIMA models.

1. Introduction

The Rahad River, which catchment is in the Ethiopian uplands, is entirely seasonal. It rise to the west of Lake Tana, Ethiopia, and flows westwards across the Sudanese border joining the Blue Nile below Wad Madani, Sudan. The basin is characterized by highly rugged topography and considerable variation of altitude ranging from about 410 meters above sea level (masl) at Wad Madani to over 4,250 (masl) in the Ethiopian highlands [1]. The flow in the river starts in July; the flood reaches its peak in the last week of September and dries out by the end of November. Rahad River has been measured at Abu Haraz, Sudan, near its mouth from 1908 to 1951, with a record at El Hawata from 1972. The gap in the record between 1951 and 1972 was filled by means of a statistical model. The average annual flow for the Rahad river is 1.076 km³ (1972-2009). The range of annual flows is great; the maximum recorded in the early years was 1.96 km³ in 1909 for the river, compared with low flows in 1941 of 0.53 km³. This low flow has been canceled in 1984 by flows of 0.29 km³ [2].

The Rahad agricultural project, which is semi-arid region, lies along the east bank of the Rahad River about 160 km southeast of Khartoum in the central part of the Sudan. ELFau town is the headquarters of the project which is about 280 km from Khartoum along Khartoum – Port Sudan highway .The project area of the scheme is about 25 km wide and 160 km long. It is situated in a vast clay plain at an elevation of 400-430 meters above sea level [3]. The annual rainfall ranges from 350 mm in the northern part of the project to about 600 mm in the south.

The length of rainy season fluctuates around five months i.e. from June to October and the peak of rainfall is in August. Temperatures are highest in April and May, and lowest in January. The water supply resources for the Rahad project are the Blue Nile River and the Rahad seasonal river. During a normal year the Rahad could supply the full requirements of the project during August and September, but not during the peak month of October [4]. Therefore, the monthly flow forecasting for Rahad River plays an important role in the planning and management of Rahad agricultural scheme.

During the last decades, several studies have developed methods of analyzing stochastic characteristics of streamflow time series (Yurekli [5]; Modarres [6] and Can [7]). The most widely used model is the ARIMA model. For instance, Can [7] fitted an ARIMA (0,1,1) model to mean monthly streamflows at Asagıkagdaric gauging station on Karasu River, Turkey. Yurekli [5] examined monthly streamflow data in Cekerek stream watershed, Turkey, and fitted a SARIMA (1,0,0)x(0,1,1)12 to it. In this study, linear stochastic models known as multiplicative seasonal autoregressive integrated moving average (SARIMA) models were used to model monthly flow for Rahad River, Sudan.

2. Materials and Methods

2.1. Data

In this study, streamflow data for the Rahad River at El Hawata gauging station were obtained from the Ministry of Water Resources and Electricity, covering the period 1972–2009. It includes a length of 38-years 456 monthly observations.

2.2. Modeling by Sarima Methods

A stationary time series can be modeled in different ways: an autoregressive (AR) process, a moving average (MA) process, or an autoregressive and moving average (ARMA) process. However, an ARMA model can be used when the data are stationary, ARMA models can be extended to non-stationary series by allowing differencing of data series. These models are called autoregressive integrated moving average (ARIMA) models. A time series is said to be stationary if it has constant mean and variance.

The general non-seasonal ARIMA model is AR to order p and MA to order q and operates on d^{th} difference of the time series X_t ; thus a model of the ARIMA family is classified by three parameters (p, d, q) that can have zero or positive integral values. The general non-seasonal ARIMA model may be written as

$$\phi(B)\nabla^d X_t = \theta(B)\varepsilon_t \tag{1}$$

Where:

 $\phi(B)$ and $\theta(B)$ = Polynomials of order *p* and *q*, respectively.

$$\phi(B) = (1 - \phi_1 B - \phi_2 B^2 - \dots \phi_p B^p) \quad (2)$$

And

$$\theta(B) = \left(1 - \theta_1 B - \theta_2 B^2 - \cdots + \theta_q B^q\right)$$
(3)

Often time series possess a seasonal component that repeats every s observations. For monthly observations s = 12 (12 in 1 year), for quarterly observations s = 4 (4 in 1 year). Box et al [8] has generalized the ARIMA model to deal with seasonality, and define a general multiplicative seasonal ARIMA model, which are commonly known as SARIMA models. In short notation the SARIMA model described as ARIMA (p, d, q) x (P, D, Q) s, which is mentioned below:

$$\phi_p(B)\Phi_p(B^s)\nabla^d\nabla^D_s(X_t) = \theta_q(B)\Theta_Q(B^s)\varepsilon_t \tag{4}$$

Where p is the order of non-seasonal autoregression, d the number of regular differencing, q the order of nonseasonal MA, P the order of seasonal autoregression, D the number of seasonal differencing, Q the order of seasonal MA, s is the length of season, Φ_p and Θ_Q are the seasonal polynomials of order P and Q, respectively.

2.3 Statistical Software

The econometric and statistical software Eviews-6 was used for all the analytical work. It is based on the least squares optimization criterion.

Journal of Scientific and Engineering Research

2.4. Performance Evaluation

The following measures were used to evaluate the performance of the models:

1. Mean Absolute Error:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - F_i|$$
 (5)

2. Root Mean Squared Error:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (Y_i - F_i)^2}$$
(6)

3. Theil Inequality Coefficient:

$$TIC = \frac{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(Y_i - F_i)^2}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(Y_i)^2} + \sqrt{\frac{1}{n}\sum_{i=1}^{n}(F_i)^2}}$$
(7)

4. Coefficient of Determination:

$$R^{2} = \left[\frac{\sum_{i=1}^{n} (Y_{i} - \bar{Y})(F_{i} - \bar{F})}{\sqrt{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2} \sum_{i=1}^{n} (F_{i} - \bar{F})^{2}}}\right]^{2} (8)$$

5. Coefficient of Efficiency:

$$E = 1 - \frac{\sum_{i=1}^{n} (Y_i - F_i)^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$$
(9)

3. Results and Discussion

The time series model development consists of three stages: identification, estimation and diagnostic check [8]. In the identification stage, data transformation is often needed to make the time series stationary. During the estimation stage the model parameters are calculated. Finally, diagnostic test of the model is performed to reveal possible model inadequacies to assist in the best model selection.

3.1. Model Identification

Model computation was made with streamflow monthly data from between January 1972 and December 2006. The data set from January 2007 to December 2009 was considered in forecasting estimations of the model.

The time series plot was conducted using the monthly streamflow data for Rahad River at El Hawata gauge station to assess the stability of the data, and Figure 1 was obtained. The plot shows that there is a seasonal cycle of the series and the series is non-stationary. The seasonal fluctuations occur every 12 months, resulting in period of time series S = 12. The time-plot shows no noticeable trend.

Non-stationary is also confirmed by the Augmented Dickey- Fuller Unit Root Test (ADF) on the monthly streamflow data in Table 1. The ADF Test was done on the entire streamflow data. The table displays results of the test: statistic value -1.04065 greater than critical vales -2.57019, -1.94154, -1.61621 all at 1%, 5%, and 10% respectively. This indicates that the series is non-stationary and also confirm that the data needs differencing in order to be stationary.

From the plot of the ACF and PACF of the monthly data, Figure 2, it has been found that the data must be differenced by one seasonal degree of differencing to achieve stationary (D = 1, S = 12). Differencing for non-seasonal ARIMA was not done due to absence of trends in the data sets. Figure 3 confirms that the ACF and PACF plots for the differenced and de-seasonalized data were stable and the SARIMA model $(p,0,q)(P,1,Q)_{12}$ could be identified for further analysis.

Тя	hle	1.	ADF-	Unit	Root	Test	for	Rahad	River	Month	1v	Flow
10	DIC.	1.1	יוער	Omt	NUUL	TOSU	IUI	Nanau	NIVUI	WIUIU	1 1	1 10 W

Station	Variable	ADF test	Level of Confidence	Critical Value	Probability	Result
EL Hawata	Monthly	-1.04065	1%	-2.57019	0.2687	Non-stationary
	Flow		5%	-1.94154		
			10%	-1.61621		

Once the time series was adjusted for stationarity, the order of autoregressive and moving average was estimated using the autocorrelation and partial autocorrelation function plots, Figure 3. The autocorrelation structure suggests many multiplicative SARIMA models.

The optional models, the Akaike Information Criterion (AIC) and the Schwarz Criterion (SC) values are shown in Table 2. The model that gives the minimum AIC and SC is selected as best fit model. Obviously, model SARIMA (2,0,0) $(0,1,1)_{12}$ has the smallest values of AIC and SC, then one would temporarily have a model SARIMA $(2,0,0)x(0,1,1)_{12}$.

3.2. Parameter Estimation

After the identification of model using the AIC and SC criteria, estimation of parameters is done. The value of the parameters, associated standard errors, t-ratios and p-values (< 5 %) are listed in Table 3. The result indicated that the parameters are significant since its p-values are smaller than alpha level (0.05) and should be retained in the model.

Table 2: Comparison of AIC and SC for the Selected Models						
Variable	Station	Model	AIC	SC		
Monthly Flow	EL Hawata	SARIMA(2,0,0)x(0,1,1) ₁₂	10.4142	10.4438		
		SARIMA(2,0,0)x(1,1,1) ₁₂	10.4306	10.4710		
		SARIMA(1,0,0)x(0,1,1) ₁₂	10.4290	10.4487		
		SARIMA(2,0,0)x(0,1,0) ₁₂	10.9879	11.0076		

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 0.698	0.698	223.73	0.000			1 (0.567	0.567	143.87	0.000
	I I	2 0.155	-0.648	234.81	0.000			2 (0.234 -	0.129	168.48	0.000
L I		3 -0.230	0.147	259.27	0.000	ի	l III	3 (0.071 -	0.009	170.75	0.000
		4 -0.368	-0.195	321.88	0.000	I I	l III	4 (0.006 -	0.009	170.76	0.000
		5 -0.385	-0.231	390.40	0.000	1	l III	5-0	0.002	0.013	170.77	0.000
		6 -0.386	-0.209	459.39	0.000	I I	11	6 -0	0.000 -	0.002	170.77	0.000
		7 -0.384	-0.264	528.06	0.000	I I	11	7 -(0.002 -	0.004	170.77	0.000
i i		8 -0.364	-0.363	589.78	0.000	I I	11	8 -(0.005 -	0.004	170.78	0.000
ı ا		9 -0.234	-0.102	615.32	0.000	ı ()	[]	9 -(0.064 -	0.087	172.63	0.000
ı þ		10 0.126	0.343	622.72	0.000	E I		10 -(0.194 -	0.175	189.80	0.000
		11 0.624	0.518	805.31	0.000			11 -(0.285 -	0.124	226.86	0.000
		12 0.869	0.119	1160.2	0.000	L I	□ '	12 -(0.379 -	0.218	292.85	0.000
		13 0.622	-0.203	1342.7	0.000	El 1		13 -(0.153	0.261	303.65	0.000
ı 🗖	l (l	14 0.132	-0.033	1351.0	0.000	ų i	l di	14 -(0.008 -	0.035	303.68	0.000
 '	11	15 -0.231	0.003	1376.3	0.000	u)u	l III	15 (0.019 -	0.017	303.85	0.000
L I	վ	16 -0.362	-0.025	1438.4	0.000	I I	1	16 -(0.005 -	0.041	303.86	0.000
L I	վ	17 -0.376	-0.039	1505.7	0.000	I I	ի հեր	17 (0.002	0.045	303.87	0.000
L I	l (l	18 -0.377	-0.054	1573.3	0.000	I I	l III	18 -(0.000 -	0.015	303.87	0.000
L I	1	19 -0.375	-0.011	1640.5	0.000	I I	11	19 (0.002	0.003	303.87	0.000
· ا	l (l	20 -0.355	-0.056	1701.0	0.000	1	1	20 -0	0.000 -	0.028	303.87	0.000
ا ب	l ili	21 -0.224	0.009	1725.2	0.000	1	l (l	21 -(0.003 -	0.058	303.87	0.000
- P		22 0.136	0.122	1734.1	0.000	ult -	l Q	22 (0.020 -	0.072	304.07	0.000
	ים	23 0.608	0.098	1912.3	0.000	II I	[]	23 -(0.029 -	0.114	304.46	0.000
1	l (l	24 0.818	-0.057	2235.5	0.000	 		24 -(0.165 -	0.277	317.35	0.000
	l (l	25 0.576	-0.055	2396.5	0.000	 	' 	25 -0	0.178	0.148	332.38	0.000
- P	1	26 0.111	-0.032	2402.5	0.000	٩ı	11	26 -0	0.108 -	0.004	337.89	0.000
 '	l III	27 -0.232	0.009	2428.6	0.000	IQ I	11	27 -(0.049 -	0.006	339.02	0.000
i i i	1	28 -0.350	0.013	2488.3	0.000	1	10	28 -0	0.007 -	0.031	339.05	0.000
L I	l (l	29 -0.365	-0.059	2553.4	0.000	1	וויי	29 -0	0.001	0.034	339.05	0.000
i i	1	30 -0.365	-0.012	2618.7	0.000	111	1	30 -0	0.000 -	0.018	339.05	0.000
i i	l III	31 -0.362	0.012	2682.9	0.000	111	11	31 -(0.004 -	0.005	339.05	0.000
i i i	1	32 -0.341	-0.011	2740.0	0.000	111	11	32 (0.000 -	0.007	339.05	0.000
 '	1	33 -0.212	-0.043	2762.2	0.000	ų.		33 (0.012 -	0.022	339.13	0.000
- P		34 0.137	0.008	2771.4	0.000	ı þi		34 (0.063	0.006	341.06	0.000
	'P	35 0.591	0.103	2944.7	0.000	·Ρ	1	35 (0.106 -	0.023	346.50	0.000
)	36 0.800	0.081	3263.3	0.000	ı) 🗖 ا	[]	36 (0.139 -	0.141	355.88	0.000

Figure 2: ACF and PACF Plots for Rahad River Monthly Flow

Figure 3: ACF and PACF Plots after one Seasonal Difference

Table 3: Estimation of the SARIMA (2, 0, 0)x(0, 1, 1)12 ModelDependent Variable: D(RAHAD,0,12)Method: Least SquaresSample (adjusted): 1973M03 2006M12Included observations: 406 after adjustmentsConvergence achieved after 14 iterationsMA Backcast: 1972M03 1973M02

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.631616	0.049298	12.81226	0.0000
AR(2)	-0.148952	0.049431	-3.013314	0.0027
MA(12)	-0.966407	0.008976	-107.6645	0.0000
R-squared	0.624067	Mean depender	nt var	1.522149
Adjusted R-squared	0.622202	S.D. dependen	t var	71.60754
S.E. of regression	44.01379	Akaike info cri	terion	10.41424

Sum squared resid Log likelihood Durbin-Watson stat	780697.1 -2111.092 1.993533	Schwarz crite Hannan-Quir		10.44385 10.42596		
Inverted AR Roots Inverted MA Roots	.3222i 0.99 .5086i 5086i	.32+.22i .86+.50i .00+1.00i 8650i	.8650 00-1.0 86+.50	i .5 00i5 0i	50+.86i 50+.86i -0.99	
Autocorrelation	Partial Correlatio	n AC	PAC	Q-Stat	Prob	
		1 0.001 2 -0.024 3 0.033 4 -0.022 5 0.004 6 -0.000 7 -0.013 8 0.007 9 0.013 10 -0.125 11 0.021 12 0.087 13 -0.007 14 0.026 15 0.013 18 -0.007 19 -0.003 20 0.003 21 -0.028 22 0.002 23 0.088 24 -0.102 25 -0.072 26 0.022 27 -0.029 28 0.013 29 -0.007 30 -0.001 31 -0.005 32 -0.004 33 -0.013 34 -0.047	0.001 -0.024 0.033 -0.022 0.006 -0.003 -0.011 0.006 0.012 -0.125 0.022 0.022 0.022 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.009 -0.006 0.004 -0.024 0.022 0.084 -0.022 0.084 -0.021 0.017 -0.011 0.017 -0.011 0.017 -0.011 0.017 -0.011 0.003 -0.021 0.021	0.0003 0.2499 0.7307 0.9387 0.9474 0.9474 1.0198 1.0411 1.1145 8.2343 8.4422 11.871 12.211 12.211 12.213 12.924 13.022 13.027 13.030 13.401 13.403 16.992 21.862 24.314 25.023 25.048 25.059 25.067 25.147 26.231	0.333 0.623 0.814 0.907 0.959 0.981 0.312 0.292 0.348 0.421 0.454 0.527 0.601 0.671 0.654 0.407 0.331 0.374 0.407 0.331 0.374 0.409 0.461 0.516 0.572 0.625 0.675 0.675 0.718 0.710	
1 <mark>1</mark> 1 1 1 1		35 0.056 36 -0.022	0.028	27.725 27.968	0.683 0.716	

Figure 4: ACF and PACF Plots for SARIMA (2, 0, 0)x(0, 1, 1)₁₂ Residuals

3.3. Diagnostic Check

Once an appropriate model is selected and its parameters are estimated, the Box Jenkins methodology requires examining the residuals of the model to verify that the model is an adequate one for the series. An adequate model should have uncorrelated residuals. This is the minimal condition. For a good forecasting model, the residuals must satisfy the requirements of a white noise process. Several tests were carried out on the residual series. The tests are summarized briefly in the following paragraphs.

3.3.1. ACF and PACF of Residuals

The ACF and PACF of residuals of the model SARIMA $(2,0,0)x(0,1,1)_{12}$ are shown in Figure 4. Most of the values of the RACF and RPACF lies within confidence limits except very few individual correlations appear large compared with the confidence limits. The figure indicates no significant correlation between the residuals.

3.3.2 Portmantateau Lack-Of-Fit Test (The Ljung-Box Test)

The goodness-of-fit of the selected model was tested using the Ljung-Box statistic test. The test is employed for checking independence of residual. From Figure 4, the goodness of fit values for the autocorrelations of residuals from the model up to lag 24was ≥ 0.05 . The result proves the acceptance of the null hypothesis of model adequacy at the 5% significance level and the set of autocorrelations of residuals was considered white noise.

3.3.3 The Breusch-Godfrey Serial Correlation LM Test

The Breusch-Godfrey Serial Correlation LM test accepts the hypothesis of no serial correlation in the residuals, as shown in Table 4.

The graph showing the observed and fitted values is presented in Figure 5. The Figure shows a very close agreement between the fitted model and the actual data. Since the model diagnostic tests show that all the parameter estimates are significant and the residual series is white noise, the estimation and diagnostic checking stages of the modeling process are complete.

4. Forecasting Of Monthly Streamflow

SARIMA model can also be used for forecasting future values based on the historical data. The SARIMA $(2,0,0)x(0,1,1)_{12}$ model was tested for its validity to forecast 36 observations obtained for the years 2007–2009 for Rahad river. The observed streamflow was found to be closely aligned to the forecasted values, Figure 6.

Table 4: The Breusch-Godfrey Serial Correlation LM Test

Breusch-Godfrey Serial Correlation LM Test:

Estatistic	0.210056	Duch $E(2, 401)$	0.9106
F-statistic	0.210056	Prob. $F(2,401)$	0.8106
Obs*R-squared	0.424327	Prob. Chi-Square(2)	0.8088

Breusch-Godfrey Serial Correlation LM Test:							
F-statistic	0.840840	Prob. F(12,391)	0.6082				
Obs*R-squared	10.21304	Prob. Chi-Square(12)	0.5973				

Figure 5: Comparison of Observed Data and SARIMA Model Flow (1972-2006)

Journal of Scientific and Engineering Research

4.1. Forecasting Accuracy

If the fitted SARIMA (2, 0, 0)x(0, 1, 1)₁₂ model has to perform well in forecasting, the forecast error will be relatively small .To check goodness of the prediction, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Theil inequality coefficient, Coefficient of Determination (R^2) and Nash Sutcliffe Efficiency Criteria (E) were used. Table 5 illustrates all of the statistic measures. From the statistics measurement, Table 5, it is observed that the model has lower values of RMSE and MAE. Theil inequality coefficient turns out to be 0.149, which is relatively close to zero. The Theil inequality coefficient always lies between zero and one, where zero indicates a perfect fit. The Coefficient of Determination (R^2) value of 0.91, Figure 9, and Nash Sutcliffe Efficiency Criteria (E) value of 89.3% showed the very good performance of the model.

Figure 6: Forecasting of monthly streamflow using developed SARIMA model (2,0,0)x(0,1,1)_{12,} (2007–2009) **Table 5:** Forecasting Accuracy Statistic

Figure 7: Calibration results of SARIMA model $(2,0,0)x(0,1,1)_{12}$

Conclusion

In this paper, linear stochastic model known as Multiplicative Seasonal Autoregressive Integrated Moving Average model, SARIMA, was used to simulate and forecast monthly streamflow for Rahad River, Sudan. The tentative model that best fits the criteria and meets the requirement is model SARIMA $(2,0,0)x(0,1,1)_{12}$. By analyzing the forecasted values, it was found that use of SARIMA model for forecasting monthly streamflow is admirably good. The fitting of stochastic ARIMA models to streamflow time series could result in a better tool which can be used for water resource planning. SARIMA model has the ability to predict accurately the future monthly streamflow for all streamflow gauge stations in Sudan.

References

- [1]. Melesse A., M., (2011). Nile River Basin: Hydrology, Climate and Water Use, Springer Dordrecht Heidelberg, London.
- [2]. Sutcliffe et Al (1999). The Hydrology of the Nile, IAHS Special Publication no. 5, IAHS Press, Institute of Hydrology, Wallingford, Oxfordshire OX10 8BB, UK.
- [3]. Benedict et Al (1982) Sudan: The Rahad Irrigation Project, U.S.Agency for International Development (AID).
- [4]. Document of international Bank for Reconstruction and Development International Development Association (1973). Appraisal of the Rahad Irrigation Project, Sudan, Agriculture Projects Department Eastern Africa Regional Office.
- [5]. Yurekli, K., Kurunc, K., Ozturk, F., (2005) Application of linear stochastic models to monthly flow data of Kelkit Stream, Ecological Modeling 183, 67–75.
- [6]. Modarres, R., (2007), Streamflow Drought Time Series Forecasting. Stoch Environ Res Risk Assess, 21:223–233.
- [7]. Can., I., Selim, S., (2009) Stochastic modeling of mean monthly flows of Karasu River, in Turkey, Water and Environment Journal. doi:10.1111/j.1747-6593.2009.00186.x
- [8]. Box, G. E. P., Jenkins, G. M., Reinsel, G. C. (1994). Time Series Analysis Forecasting and Control, 3rd ed., Englewood Cliffs, N.J. Prentice Hall.
- [9]. Nash, J. E., Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models: 1. A discussion of principles." Journal of Hydrology, 10, 282–290.
- [10]. Shamseldin, A. Y., O'Connor, K. M., Liang, G. C. (1997). Methods for combining the output of different rainfall-runoff models. Journal of Hydrology, 197, 203–229.