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Abstract Time series analysis and forecasting has become a major tool in different applications in hydrology 

and environmental management fields. Linear stochastic models known as multiplicative Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model were used to simulate and forecast monthly 

streamflow of Rahad River, Sudan. For the analysis, monthly streamflow data for the years 1972–2009 were 

used. A visual inspection of the time plot gives the expected impression of a generally horizontal trend and 12-

month seasonal periodicity. The seasonality observed in Auto Correlation Function (ACF) and Partial Auto 

Correlation Function (PACF) plots of  monthly streamflow data was removed using first order seasonal 

differencing prior to the development of the SARIMA model. Interestingly, the SARIMA (2,0,0)x(0,1,1)12 

model developed was found to be most suitable for simulating monthly streamflow for Rahad River. The model 

was found appropriate to forecast three years of monthly streamflow and assist decision makers to establish 

priorities for water demand. 
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1. Introduction 

The Rahad River, which catchment is in the Ethiopian uplands, is entirely seasonal. It rise to the west of Lake 

Tana, Ethiopia, and flows westwards across the Sudanese border joining the Blue Nile below Wad Madani, 

Sudan. The basin is characterized by highly rugged topography and considerable variation of altitude ranging 

from about 410 meters above sea level (masl) at Wad Madani to over 4,250 (masl) in the Ethiopian highlands 

[1]. The flow in the river starts in July; the flood reaches its peak in the last week of September and dries out by 

the end of November.  Rahad River has been measured at Abu Haraz, Sudan, near its mouth from 1908 to 1951, 

with a record at El Hawata from 1972. The gap in the record between 1951 and 1972 was filled by means of a 

statistical model. The average annual flow for the Rahad river is 1.076 km
3
 (1972-2009). The range of annual 

flows is great; the maximum recorded in the early years was 1.96 km
3
 in 1909 for the river, compared with low 

flows in 1941 of 0.53 km
3
 .This low flow has been canceled in 1984 by flows of 0.29 km

3 
[2]. 

The Rahad agricultural project, which is semi-arid region, lies along the east bank of the Rahad River about 160 

km southeast of Khartoum in the central part of the Sudan. ELFau town is the headquarters of the project which 

is about 280 km from Khartoum along Khartoum – Port Sudan highway .The project area of the scheme is about 

25 km wide and 160 km long. It is situated in a vast clay plain at an elevation of 400-430 meters above sea level 

[3]. The annual rainfall ranges from 350 mm in the northern part of the project to about 600 mm in the south. 

The length of rainy season fluctuates around five months i.e. from June to October and the peak of rainfall is in 

August. Temperatures are highest in April and May, and lowest in January. The water supply resources for the 

Rahad project are the Blue Nile River and the Rahad seasonal river. During a normal year the Rahad could 

supply the full requirements of the project during August and September, but not during the peak month of 

October [4]. Therefore, the monthly flow forecasting for Rahad River plays an important role in the planning 

and management of Rahad agricultural scheme.  
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During the last decades, several studies have developed methods of analyzing stochastic characteristics of 

streamflow time series (Yurekli [5]; Modarres [6] and Can [7]). The most widely used model is the ARIMA 

model. For instance, Can [7] fitted an ARIMA (0,1,1) model to mean monthly streamflows at Asagıkagdaric 

gauging station on Karasu River, Turkey. Yurekli [5] examined monthly streamflow data in Cekerek stream 

watershed, Turkey, and fitted a SARIMA (1,0,0)x(0,1,1)12 to it. In this study, linear stochastic models known as 

multiplicative seasonal autoregressive integrated moving average (SARIMA) models were used to model 

monthly flow for Rahad River, Sudan. 

 

2. Materials and Methods  

2.1. Data 

In this study, streamflow data for the Rahad River at El Hawata gauging station were obtained from the Ministry 

of Water Resources and Electricity, covering the period 1972–2009. It includes a length of 38-years 456 

monthly observations.  

 

2.2. Modeling by Sarima Methods 

A stationary time series can be modeled in different ways: an autoregressive (AR) process, a moving average 

(MA) process, or an autoregressive and moving average (ARMA) process. However, an ARMA model can be 

used when the data are stationary, ARMA models can be extended to non-stationary series by allowing 

differencing of data series. These models are called autoregressive integrated moving average (ARIMA) models. 

A time series is said to be stationary if it has constant mean and variance.  

The general non-seasonal ARIMA model is AR to order p and MA to order q and operates on d
th

 difference of 

the time series 𝑋𝑡 ; thus a model of the ARIMA family is classified by three parameters (p, d, q) that can have 

zero or positive integral values. The general non-seasonal ARIMA model may be written as 

 

𝜙 𝐵 ∇𝑑𝑋𝑡 = 𝜃 𝐵 𝜀𝑡             (1) 

 

Where: 

 

𝜙 𝐵  and 𝜃 𝐵  = Polynomials of order p and q, respectively. 

 

𝜙 𝐵 =  1 − 𝜙1𝐵 − 𝜙2𝐵
2 − ⋯𝜙𝑃𝐵

𝑝   (2) 

 

And 

 

𝜃 𝐵 =  1 − 𝜃1𝐵 − 𝜃2𝐵
2 − ⋯𝜃𝑞𝐵

𝑞   (3) 

Often time series possess a seasonal component that repeats every s observations. For monthly observations s = 

12 (12 in 1 year), for quarterly observations s = 4 (4 in 1 year). Box et al [8] has generalized the ARIMA model 

to deal with seasonality, and define a general multiplicative seasonal ARIMA model, which are commonly 

known as SARIMA models. In short notation the SARIMA model described as ARIMA (p, d, q) x (P, D, Q) s, 

which is mentioned below: 

 

𝜙𝑝 𝐵 Φ𝑝 𝐵
𝑠 ∇𝑑∇𝑠

𝐷 𝑋𝑡 = 𝜃𝑞 𝐵 Θ𝑄 Bs 𝜀t                    (4) 

 

Where p is the order of non-seasonal autoregression, d the number of regular differencing, q the order of 

nonseasonal MA, P the order of seasonal autoregression, D the number of seasonal differencing, Q the order of 

seasonal MA, s is the length of season, Φ𝑝  and  Θ𝑄  are the seasonal polynomials of order P and Q, respectively. 

 

2.3 Statistical Software 

The econometric and statistical software Eviews-6 was used for all the analytical work. It is based on the least 

squares optimization criterion. 
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2.4. Performance Evaluation 

The following measures were used to evaluate the performance of the models: 

1.  Mean Absolute Error: 

 

𝑀𝐴𝐸 =
1

𝑛
  𝑌𝑖 − 𝐹𝑖 

𝑛

𝑖=1

                  (5) 

2. Root Mean Squared Error: 

 

𝑅𝑀𝑆𝐸 =  
1

𝑛
  𝑌𝑖 − 𝐹𝑖 

2

𝑛

𝑖=1

               (6) 

3. Theil Inequality Coefficient: 

 

𝑇𝐼𝐶 =
 1
𝑛
  𝑌𝑖 − 𝐹𝑖 

2𝑛
𝑖=1   

 1
𝑛
  𝑌𝑖 

2𝑛
𝑖=1 +  1

𝑛
  𝐹𝑖 

2𝑛
𝑖=1

     (7) 

4. Coefficient of Determination: 

 

𝑅2 =

 
 
 
 

  𝑌𝑖 − 𝑌   𝐹𝑖 − 𝐹  𝑛
𝑖=1

   𝑌𝑖 − 𝑌  2𝑛
𝑖=1   𝐹𝑖 − 𝐹  2𝑛

𝑖=1  
 
 
 

2

(8) 

5. Coefficient of Efficiency: 

𝐸 = 1 −
  𝑌𝑖 − 𝐹𝑖 

2𝑛
𝑖=1

  𝑌𝑖 − 𝑌  2𝑛
𝑖=1

               (9) 

3. Results and Discussion 

The time series model development consists of three stages: identification, estimation and diagnostic check [8]. 

In the identification stage, data transformation is often needed to make the time series stationary. During the 

estimation stage the model parameters are calculated. Finally, diagnostic test of the model is performed to reveal 

possible model inadequacies to assist in the best model selection.  

 

3.1. Model Identification  

Model computation was made with streamflow monthly data from between January 1972 and December 2006. 

The data set from January 2007 to December 2009 was considered in forecasting estimations of the model. 

The time series plot was conducted using the monthly streamflow data for Rahad River at El Hawata gauge 

station to assess the stability of the data, and Figure 1 was obtained. The plot shows that there is a seasonal cycle 

of the series and the series is non-stationary. The seasonal fluctuations occur every 12 months, resulting in 

period of time series S =12.  The time-plot shows no noticeable trend. 

Non-stationary is also confirmed by the Augmented Dickey- Fuller Unit Root Test (ADF) on the monthly 

streamflow data in Table 1. The ADF Test was done on the entire streamflow data. The table displays results of 

the test: statistic value -1.04065 greater than critical vales -2.57019, -1.94154, -1.61621 all at 1%, 5%, and 10% 

respectively. This indicates that the series is non-stationary and also confirm that the data needs differencing in 

order to be stationary. 

From the plot of the ACF and PACF of the monthly data, Figure 2, it has been found that the data must be 

differenced by one seasonal degree of differencing to achieve stationary (D = 1, S = 12). Differencing for non-

seasonal ARIMA was not done due to absence of trends in the data sets. Figure 3 confirms that the ACF and 

PACF plots for the differenced and de-seasonalized data were stable and the SARIMA model (p,0,q)(P,1,Q)12 

could be identified for further analysis. 
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Figure 1: Time series of monthly streamflow of Rahad River (1970–2009) in (Mm

3
) 

 

Table 1: ADF-Unit Root Test for Rahad River Monthly Flow 

Station Variable ADF test Level of Confidence Critical Value Probability Result 

EL Hawata Monthly 

Flow 

 

-1.04065 1% -2.57019 0.2687 Non-stationary 

5% -1.94154 

10% -1.61621 

Once the time series was adjusted for stationarity, the order of autoregressive and moving average was estimated 

using the autocorrelation and partial autocorrelation function plots, Figure3. The autocorrelation structure 

suggests many multiplicative SARIMA models.  

The optional models, the Akaike Information Criterion (AIC) and the Schwarz Criterion (SC) values are shown 

in Table 2.  The model that gives the minimum AIC and SC is selected as best fit model. Obviously, model 

SARIMA (2,0,0) (0,1,1)12  has the smallest values of AIC and SC, then one would temporarily have a model 

SARIMA (2,0,0)x(0,1,1)12 . 

 

3.2. Parameter Estimation 

After the identification of model using the AIC and SC criteria, estimation of parameters is done. The value of 

the parameters, associated standard errors, t-ratios and p-values (< 5 %) are listed in Table 3. The result 

indicated that the parameters are significant since its p-values are smaller than alpha level (0.05) and should be 

retained in the model. 

Table 2: Comparison of AIC and SC for the Selected Models 

Variable Station Model AIC SC 

Monthly Flow EL Hawata 

 

SARIMA(2,0,0)x(0,1,1)12 10.4142 10.4438 
 

SARIMA(2,0,0)x(1,1,1)12 10.4306 
 

  10.4710 
  

SARIMA(1,0,0)x(0,1,1)12 10.4290 
 

  10.4487 
  

SARIMA(2,0,0)x(0,1,0)12 10.9879 
 

11.0076 
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Figure 2: ACF and PACF Plots for Rahad River 

Monthly Flow 

Figure 3: ACF and PACF Plots after one Seasonal 

Difference 

 

                                   Table 3: Estimation of the SARIMA (2, 0, 0)x(0, 1, 1)12 Model 

Dependent Variable: D(RAHAD,0,12)  

Method: Least Squares   

Sample (adjusted): 1973M03 2006M12  

Included observations: 406 after adjustments  

Convergence achieved after 14 iterations  

MA Backcast: 1972M03 1973M02   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     AR(1) 0.631616 0.049298 12.81226 0.0000 

AR(2) -0.148952 0.049431 -3.013314 0.0027 

MA(12) -0.966407 0.008976 -107.6645 0.0000 

     
     R-squared 0.624067     Mean dependent var 1.522149 

Adjusted R-squared 0.622202     S.D. dependent var 71.60754 

S.E. of regression 44.01379     Akaike info criterion 10.41424 
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Sum squared resid 780697.1     Schwarz criterion 10.44385 

Log likelihood -2111.092     Hannan-Quinn criter. 10.42596 

Durbin-Watson stat 1.993533    

     
     Inverted AR Roots  .32-.22i      .32+.22i  

Inverted MA Roots       0.99      .86+.50i    .86-.50i  .50+.86i 

  .50-.86i      .00+1.00i   -.00-1.00i -.50+.86i 

 -.50-.86i     -.86-.50i   -.86+.50i      -0.99 

     
      

 
Figure 4: ACF and PACF Plots for SARIMA (2, 0, 0)x(0, 1, 1)12 Residuals 

3.3. Diagnostic Check 

Once an appropriate model is selected and its parameters are estimated, the Box Jenkins methodology requires 

examining the residuals of the model to verify that the model is an adequate one for the series. An adequate 

model should have uncorrelated residuals. This is the minimal condition. For a good forecasting model, the 

residuals must satisfy the requirements of a white noise process. Several tests were carried out on the residual 

series. The tests are summarized briefly in the following paragraphs. 

3.3.1. ACF and PACF of Residuals 

The ACF and PACF of residuals of the model SARIMA (2,0,0)x(0,1,1)12  are shown in Figure 4. Most of the 

values of the RACF and RPACF lies within confidence limits except very few individual correlations appear 

large compared with the confidence limits. The figure indicates no significant correlation between the residuals. 
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3.3.2 Portmantateau Lack-Of-Fit Test (The Ljung–Box Test) 

The goodness-of-fit of the selected model was tested using the Ljung-Box statistic test. The test is employed for 

checking independence of residual. From Figure 4, the goodness of fit values for the autocorrelations of 

residuals from the model up to lag 24was ≥ 0.05. The result proves the acceptance of the null hypothesis of 

model adequacy at the 5% significance level and the set of autocorrelations of residuals was considered white 

noise. 

3.3.3 The Breusch-Godfrey Serial Correlation LM Test 

The Breusch-Godfrey Serial Correlation LM test accepts the hypothesis of no serial correlation in the residuals, 

as shown in Table 4.  

The graph showing the observed and fitted values is presented in Figure 5. The Figure shows a very close 

agreement between the fitted model and the actual data. Since the model diagnostic tests show that all the 

parameter estimates are significant and the residual series is white noise, the estimation and diagnostic checking 

stages of the modeling process are complete. 

 

4. Forecasting Of Monthly Streamflow 

SARIMA model can also be used for forecasting future values based on the historical data. The SARIMA 

(2,0,0)x(0,1,1)12 model was tested for its validity to forecast 36 observations obtained for the years 2007−2009 

for Rahad river. The observed streamflow was found to be closely aligned to the forecasted values, Figure 6. 

Table 4: The Breusch-Godfrey Serial Correlation LM Test 

Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 0.210056 Prob. F(2,401) 0.8106 

Obs*R-squared 0.424327 Prob. Chi-Square(2) 0.8088 

     
     

 

Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 0.840840 Prob. F(12,391) 0.6082 

Obs*R-squared 10.21304 Prob. Chi-Square(12) 0.5973 

     
      

      
Figure 5: Comparison of Observed Data and SARIMA Model Flow (1972-2006) 
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4.1. Forecasting Accuracy 

If the fitted SARIMA (2, 0, 0)x(0, 1, 1)12 model has to perform well in forecasting, the forecast error will be 

relatively small .To check goodness of the prediction, Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), Theil inequality coefficient, Coefficient of Determination (R
2
) and Nash Sutcliffe Efficiency Criteria 

(E) were used. Table 5 illustrates all of the statistic measures. From the statistics measurement, Table 5, it is 

observed that the model has lower values of RMSE and MAE. Theil inequality coefficient turns out to be 0.149, 

which is relatively close to zero. The Theil inequality coefficient always lies between zero and one, where zero 

indicates a perfect fit. The Coefficient of Determination (R
2
) value of 0.91, Figure 9, and Nash Sutcliffe 

Efficiency Criteria (E) value of 89.3% showed the very good performance of the model. 

 
Figure 6: Forecasting of monthly streamflow using developed SARIMA model (2,0,0)x(0,1,1)12,  (2007−2009) 

Table 5: Forecasting Accuracy Statistic 

Statistic Measures Value 

MAE 30.25 

RMSE 52.87 

Theil inequality coefficient 0.149 

R
2
 0.91 

E 89.3% 

 
Figure 7: Calibration results of SARIMA model (2,0,0)x(0,1,1)12 
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Conclusion 

In this paper, linear stochastic model known as Multiplicative Seasonal Autoregressive Integrated Moving 

Average model, SARIMA, was used to simulate and forecast monthly streamflow for Rahad River, Sudan. The 

tentative model that best fits the criteria and meets the requirement is model SARIMA (2,0,0)x(0,1,1)12. By 

analyzing the forecasted values, it was found that use of SARIMA model for forecasting monthly streamflow is 

admirably good. The fitting of stochastic ARIMA models to streamflow time series could result in a better tool 

which can be used for water resource planning. SARIMA model has the ability to predict accurately the future 

monthly streamflow for all streamflow gauge stations in Sudan. 
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