Different Approaches on the Matrix Division and Generalization of Cramer's Rule

Hasan Keles

Karadeniz Technical University, Faculty of Science, Department of Mathematics, Ortahisar, Trabzon, Turkey

[^0]KeywordsMatrix, Division, Matrix Division, Cramer's Rule, Generalization of Cramer's Rule

I. Introduction

Recently, matrix division has been described as $\frac{A}{B}:=\left[\frac{\left({ }_{B}^{A} i_{j}\right)_{j i}}{|B|}\right]_{n \times n}$ for A and $B \in M_{n}^{n}(\mathbb{R})$ matrices, with $|B| \neq 0$, where $\left[{ }_{B}^{A} i_{j}\right]$ is the co-divisor matrix on B of A.

II. Different Approaches on the Matrix Division

Now, different computation of $\frac{A}{B}$ for A and $B \epsilon M_{n}^{n}(\mathbb{R})$ with A and B regular matrices, to find $\frac{A}{B}$, if it exist, proceed as follows:
Step 1. Form the augmented matrix $[B \mid A]$.
 as $\left[I_{n} \left\lvert\, \frac{A}{B}\right.\right]_{n \times n}$. Otherwise $\frac{A}{B}$ dos not exist.
Similarly, $[A \mid B] \sim\left[I_{n} \left\lvert\, \frac{B}{A}\right.\right]$.
Lemma 1. Let A and B be regular matrices, with $n \times n$. Then, matrix division $\frac{A}{B}$ is regular too.
Proof. For A and B be regular matrices is $|A| \neq 0$ and $|B| \neq 0$. Then, matrix of $\frac{A}{B}$ is regular from define.

Example 1. Graphs of matrices $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & -1\end{array}\right]$ and their divisions $\frac{A}{B}, \frac{B}{A}$.

Figure 1: Graph of Matrix A

Figure 2: Graph of Matrix B

$$
[B \mid A] \sim\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 1 & -1 \\
2 & 0 & 1 & 1 & 0 & -1 \\
1 & 1 & -1 & -1 & -1 & -1
\end{array}\right] \Leftrightarrow \frac{A}{B}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & -1 \\
1 & 0 & 1
\end{array}\right]
$$

Figure \therefore Graph of Matrix $\frac{A}{B}$.

$$
[A \mid B] \sim\left[\begin{array}{ccc|ccc}
1 & 1 & -1 & 1 & -1 & 1 \\
1 & 0 & -1 & 2 & 0 & 1 \\
-1 & -1 & -1 & 1 & 1 & -1
\end{array}\right] \Leftrightarrow \frac{B}{A}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right]
$$

Figure 4: Graph of Matrix $\frac{B}{A}$.
Now, we have established with following theorem equivalent relation. We summarize the main ones in a new Theorem 1. for easy reference.
Theorem 1.Let A and B be $n \times n$ regular matrices. Then, the following are equivalent.
i. The system $A X=B$ has a unique solution.
ii. The matrix $\frac{B}{A}$ is invertible.
iii. The unknown matrix X is equal to $\frac{B}{A}$.

Proof.i.) \Rightarrow iii.) It is obvious.
iii.) \Rightarrow ii.) If the system $A X=B$ has a unique solution then the solutions

$$
[A \mid B] \sim\left[I_{n} \left\lvert\, \frac{B}{A}\right.\right] \Leftrightarrow X=\frac{B}{A}
$$

ii.) \Rightarrow i.) If there is $\frac{B}{A}$ then matrix $\frac{B}{A}$ is invertible and $\left[\left.\frac{B}{A} \right\rvert\, I_{n}\right] \sim\left[I_{n} \left\lvert\, \frac{A}{B}\right.\right] \Leftrightarrow\left(\frac{B}{A}\right)^{-1}=\frac{A}{B}$,

$$
\left[\left.\frac{A}{B} \right\rvert\, I_{n}\right] \sim\left[I_{n} \left\lvert\, \frac{B}{A}\right.\right] \Leftrightarrow\left(\frac{B}{A}\right)\left(\frac{A}{B}\right)=I_{n} \Leftrightarrow\left(\frac{A}{B}\right)^{-1}=\frac{B}{A} .
$$

If $A=I_{n}$ then we certainly write A^{-1} as $\frac{I_{n}}{A}$. In [5] it is clamed that this can not be written.

III. Generalization of Cramer's Rule

Consider a systems of $n \times n$ linear equations for n^{2} unknowns, represented in matrix multiplication form as follows:

$$
A X=B,|B| \neq 0
$$

where the n by n matrix A has a nonzero determinant, and the $X=\left[\begin{array}{ccc}x_{11} & \cdots & x_{1 n} \\ \vdots & \cdots & \vdots \\ x_{n 1} & \cdots & x_{n n}\end{array}\right]$ is a matrix of column vectors.

Then the following theorem states that in this case the system has a unique solution, whose individual values for the unknowns are given by:

$$
x_{j i}=\frac{\operatorname{det}\left(\left[\left({ }_{B}^{A} i_{j}\right)_{j i}\right]\right)}{\operatorname{det}(B)}, i, j=1, \ldots, n .
$$

Theorem 2.Let a system be $A X=B, A, B$ regular matrices. Then, $x_{j i}=\frac{\operatorname{det}\left(\left[\left(\begin{array}{c}A \\ B\end{array} i_{j}\right)_{j i}\right]\right)}{\operatorname{det}(B)}$,
$i, j=1, \ldots, n$, where $\left[{ }_{B}^{A} i_{j}\right]$ is the co-divisor matrix on B of A.
Proof. Let $A=\left[\begin{array}{ccc}a_{12} & \cdots & a_{1 n} \\ \vdots & \cdots & \vdots \\ a_{n 1} & \cdots & a_{n n}\end{array}\right], X=\left[\begin{array}{ccc}x_{11} & \cdots & x_{1 n} \\ \vdots & \vdots & \vdots \\ x_{n 1} & \cdots & x_{n n}\end{array}\right], B=\left[\begin{array}{ccc}b_{11} & \cdots & b_{1 n} \\ \vdots & \vdots & \vdots \\ b_{n 1} & \cdots & b_{n n}\end{array}\right],|A|,|B| \neq 0$ be squares matrices. It is clear that $x_{j i}=\frac{\operatorname{det}\left(\left[\left(\begin{array}{l}\left.\left.{ }_{B}^{A} i_{j}\right)_{j i}\right]\end{array}\right)\right.\right.}{\operatorname{det}(B)}, i, j=1, \ldots, n$ from division of matrices.

IV. Conclusions

The matrix division in [1] defined before by determinant coincides with the definition of matrices division given by writing the Gauss-Jordan method.

References

[1]. Keles, H., (2010). The Rational Matrices, New Trends in Nanotechnology and Nonlinear Dynamical Systems, Ankara, paper58, 2010.
[2]. Keles, H., (2015). Çözümlü Lineer Cebire Giriş-I-, Bordo and Akademi, Trabzon.
[3]. Kimura T. and Suzuki T., (1993). A parabolic inverse problem arising in a mathematical model for chromotography, SIAM J. Appl. Math., 53(6), 1747-1761.
[4]. Bolian, L. and Hong-Jian L., (2000). Matrices in Combinatorics and Graph Theory. Kluwer Academic.
[5]. Vasantha Kandasamy W.B., (2003). Linear Algebra and Smarandache Linear Algebra, American Research Press.
[6]. John B. Frateigh and Raymond A. Beauregerd., (1995). Linear Agebra, Addiso-Wesley Publishing Company.
[7]. Sabuncuoğlu, A., (2011). Lineer Cebir, Nobel Yayınları, Ankara,.
[8]. Keleş, H. (2016). On The Linear Transformation of Division Matrices, Journal of Scientific and Engineering Research. Shriganganagar, Rajasthan, India. 3(5): 101-104.

[^0]: Abstract In this study, the different approaches of the matrix division and the generalization of Cramer's rule and some examples are given.

