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I. Introduction 

Recently, matrix division has been described as
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for A  and 𝐵𝜖𝑀𝑛
𝑛( ℝ )matrices, with 

0B  , where  
A

B ji   is the co-divisor  matrix on B  of A .       

II. Different Approaches on the Matrix Division 

Now, different computation of
A

B
 for A  and 𝐵𝜖𝑀𝑛

𝑛( ℝ ) with A and B  regular matrices, to find 
A

B
, if  it 

exist, proceed as follows: 

Step 1. Form the augmented matrix B A   . 

Step 2. Apply the Gauss-Jordan method to attempt to reduce B A   to 
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Lemma 1. Let A  and B be  regular matrices, with n n . Then, matrix division 
A

B
 

is regular too. 

Proof. For A  and B be  regular matrices is 0A   and 0B  . Then,  

matrix of  
A

B
  is regular from define. 
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Example 1.  Graphs of matrices
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and their  

divisions 
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A
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Figure 1: Graph of  Matrix A 

 
Figure 2: Graph  of  Matrix  B 
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Figure :. Graph of  Matrix 
A

B
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Figure 4: Graph of  Matrix 
B

A
. 

Now, we have established with following theorem equivalent relation. We summarize the main ones in a 

new Theorem 1. for easy reference. 

Theorem 1.Let A  and B  be n n  regular matrices. Then, the  following are equivalent. 

i. The system AX B  has a unique solution. 

ii. The matrix 
B

A
 is invertible. 

iii. The unknown matrix X  is equal to 
B

A
. 

Proof.i.)  iii.)  It is obvious. 

 iii.)  ii.)   If the system AX B  has a unique solution then the solutions  
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ii.)  i.)  If there is 
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A
 then matrix 
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. 

If nA I  then we certainly write 
1A
as 

nI

A
. In [5] it is clamed that this can not be written. 

III. Generalization of Cramer’s Rule 

 

 

 

 

 

 

 

 

 

 

Consider  a  systems of n n  linear   equations  for  
2n   unknowns, represented in matrix  multiplication  

form  as  follows: 
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, 0AX B B   

where the n by n matrix A  has a nonzero determinant,  and the 
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is a matrix of column 

vectors.  

Then the following theorem states that in this case the system has a unique solution, whose individual 

values for the unknowns are given by: 
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Theorem 2.Let a system be AX B , ,A B  regular matrices. Then,  
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, 1,...,i j n  , where 
A

B ji   is the co-divisor matrix on B  of A .        

Proof. Let 
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 be  squares 

matrices. It is clear that  
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   from division of matrices. 

IV. Conclusions 

The matrix division in [1] defined before by determinant coincides with the definition of matrices division given 

by writing the Gauss-Jordan method. 
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