Journal of Scientific and Engineering Research, 2017, 4(3):105-108

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

Different Approaches on the Matrix Division and Generalization of Cramer's Rule

Hasan Keleş

Karadeniz Technical University, Faculty of Science, Department of Mathematics, Ortahisar, Trabzon, Turkey

Abstract In this study, the different approaches of the matrix division and the generalization of Cramer's rule and some examples are given.

KeywordsMatrix, Division, Matrix Division, Cramer's Rule, Generalization of Cramer's Rule

I. Introduction

Recently, matrix division has been described as $\frac{A}{B} := \left[\frac{\left(\frac{A}{B}i_{j}\right)_{ji}}{|B|}\right]_{n \times n}$ for A and $B \in M_{n}^{n}(\mathbb{R})$ matrices, with

 $|B| \neq 0$, where $\begin{bmatrix} A \\ B \\ i \end{bmatrix}$ is the co-divisor matrix on B of A.

II. Different Approaches on the Matrix Division

Now, different computation of $\frac{A}{B}$ for A and $B \in M_n^n(\mathbb{R})$ with A and B regular matrices, to find $\frac{A}{B}$, if it exist, proceed as follows:

Step 1. Form the augmented matrix $\begin{bmatrix} B \\ A \end{bmatrix}$.

Step 2. Apply the Gauss-Jordan method to attempt to reduce $\begin{bmatrix} B & A \end{bmatrix}$ to $\begin{bmatrix} I_n & \left(\frac{A}{B} i_j \right)_{ji} \\ \hline & B \end{bmatrix}$. This is written uniquely

as
$$\left[I_n \middle| \frac{A}{B} \right]_{n \times n}$$
. Otherwise $\frac{A}{B}$ dos not exist
Similarly, $\left[A \middle| B\right] \sim \left[I_n \middle| \frac{B}{A}\right]$.

Lemma 1. Let A and B be regular matrices, with $n \times n$. Then, matrix division $\frac{A}{B}$

is regular too.

Proof. For A and B be regular matrices is $|A| \neq 0$ and $|B| \neq 0$. Then,

matrix of $\frac{A}{B}$ is regular from define.

Journal of Scientific and Engineering Research

Now, we have established with following theorem equivalent relation. We summarize the main ones in a new Theorem 1. for easy reference.

Theorem 1.Let A and B be $n \times n$ regular matrices. Then, the following are equivalent.

i. The system AX = B has a unique solution.

ii. The matrix
$$\frac{B}{A}$$
 is invertible.

iii. The unknown matrix X is equal to
$$\frac{B}{A}$$

Proof.i.) \Rightarrow iii.) It is obvious.

iii.) \Rightarrow ii.) If the system AX = B has a unique solution then the solutions $\begin{bmatrix} & |_{P} \end{bmatrix} = B$

$$\begin{bmatrix} A|B \end{bmatrix} \frown \begin{bmatrix} I_n & \frac{B}{A} \end{bmatrix} \Leftrightarrow X = \frac{B}{A}.$$

ii.) \Rightarrow i.) If there is $\frac{B}{A}$ then matrix $\frac{B}{A}$ is invertible and $\begin{bmatrix} \frac{B}{A} & I_n \end{bmatrix} \frown \begin{bmatrix} I_n & \frac{A}{B} \end{bmatrix} \Leftrightarrow \begin{pmatrix} \frac{B}{A} & 1 \end{bmatrix}^{-1} = \frac{A}{B}$
$$\begin{bmatrix} \frac{A}{B} & I_n \end{bmatrix} \frown \begin{bmatrix} I_n & \frac{B}{A} \end{bmatrix} \Leftrightarrow \begin{pmatrix} \frac{B}{A} & \frac{B}{B} \end{bmatrix} = I_n \Leftrightarrow \begin{pmatrix} \frac{A}{B} & \frac{B}{B} \end{bmatrix} = \frac{B}{A}.$$

If $A = I_n$ then we certainly write A^{-1} as $\frac{I_n}{A}$. In [5] it is clamed that this can not be written.

III. Generalization of Cramer's Rule

Consider a systems of $n \times n$ linear equations for n^2 unknowns, represented in matrix multiplication form as follows:

$$AX = B, |B| \neq 0$$

where the *n* by *n* matrix *A* has a nonzero determinant, and the $X = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \cdots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{bmatrix}$ is a matrix of column

vectors.

Then the following theorem states that in this case the system has a unique solution, whose individual values for the unknowns are given by:

$$x_{ji} = \frac{\det\left(\left\lfloor \left(\begin{smallmatrix} A \\ B \end{smallmatrix} i_{j} \right)_{ji} \right\rfloor\right)}{\det\left(B\right)}, i, j = 1, ..., n.$$

Theorem 2.Let a system be AX = B, A, B regular matrices. Then, $x_{ji} = \frac{\det\left(\left[\begin{pmatrix} A \\ B \end{pmatrix}_{ij}\right]\right)}{\det\left(B\right)}$,

i, j = 1, ..., n, where $\begin{bmatrix} A \\ B \\ i \end{bmatrix}$ is the co-divisor matrix on B of A. **Proof.** Let $A = \begin{bmatrix} a_{12} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$, $X = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \vdots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{bmatrix}$, $B = \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \vdots & \vdots \\ b_{n1} & \cdots & b_{nn} \end{bmatrix}$, $|A|, |B| \neq 0$ be squares matrices. It is clear that $x_{ji} = \frac{\det\left(\left[\begin{pmatrix} A \\ B \end{pmatrix}_{ji} \right]\right)}{\det(B)}, i, j = 1, ..., n$ from division of matrices.

IV. Conclusions

The matrix division in [1] defined before by determinant coincides with the definition of matrices division given by writing the Gauss-Jordan method.

References

- [1]. Keles, H., (2010). The Rational Matrices, New Trends in Nanotechnology and Nonlinear Dynamical Systems, Ankara, paper58, 2010.
- [2]. Keles, H., (2015). Çözümlü Lineer Cebire Giriş-I-, Bordo and Akademi, Trabzon.
- Kimura T. and Suzuki T., (1993). A parabolic inverse problem arising in a mathematical model for [3]. chromotography, SIAM J. Appl. Math., 53(6), 1747-1761.
- [4]. Bolian, L. and Hong-Jian L., (2000). Matrices in Combinatorics and Graph Theory. Kluwer Academic.
- [5]. Vasantha Kandasamy W.B., (2003). Linear Algebra and Smarandache Linear Algebra, American Research Press.
- John B. Frateigh and Raymond A. Beauregerd., (1995). Linear Agebra, Addiso-Wesley Publishing [6]. Company.
- Sabuncuoğlu, A., (2011). Lineer Cebir, Nobel Yayınları, Ankara,. [7].
- Keles, H. (2016). On The Linear Transformation of Division Matrices, Journal of Scientific and [8]. Engineering Research. Shriganganagar, Rajasthan, India. 3(5): 101-104.