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1.  Introduction and Main Results 

The classical Morrey spaces ,pM  have been introduced by Morrey in [26] to study the local behavior of 

solutions of second order elliptic partial differential equations (PDEs). Later, there are many applications of 

Morrey space to the Navier-Stokes equations (see [24]), the Schrödinger equations (see [32]) and the elliptic 

problems with discontinuous coefficients (see [2, 29]). 

We recall the definition of classical Morrey spaces ,pM  as  
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where )( nloc

pLf R , n 0  and  <1 p . 

Note that )(=,0

n

pp LM R  and )(=,

n

np LM R . If 0<  or n> , then =,pM , where   

is the set of all functions equivalent to 0  on 
nR . 

We also denote by )(,,

n

pp WMWM R   the weak Morrey space of all functions )( nloc

pWLf R  
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where )),(( rxBWLp  denotes the weak pL -space of measurable functions f  for which  
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where 
g  denotes the non-increasing rearrangement of a function g . 

Throughout the paper we assume that 
nx R  and 0>r  and also let ),( rxB  denotes the open ball 

centered at x  of radius r , ),( rxBC
 denotes its complement and |),(| rxB  is the Lebesgue measure of the 

ball ),( rxB  and 
n

nrvrxB |=),(| , where |(0,1)=| Bvn . 

For the boundedness of the Hardy–Littlewood maximal operator, the fractional integral operator and 

the Calderón–Zygmund singular integral operator on these spaces, we refer the readers to [1, 5, 31]. For further 

properties and applications of classical Morrey spaces, see [6, 7, 14, 17] and references therein. 

After studying Morrey spaces in detail, researchers have passed to generalized Morrey spaces. 

Mizuhara [25] has given generalized Morrey spaces ,pM  considering  r  instead of 
r  in the above 

definition of the Morrey space. Later, Guliyev [12], Guliyev et al. [13] and Karaman [22] have defined the 

generalized Morrey spaces ,pM  with normalized norm as follows: 

 

Definition 1 (Generalized Morrey space) Let ),( rx  be a positive measurable function on 

)(0,nR  and  <1 p . We denote by )(,,

n

pp MM R   the generalized Morrey space, the space of 

all functions )( nloc

pLf R  with finite quasinorm  
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Also by )(,,

n

pp WMWM R   we denote the weak generalized Morrey space of all functions 
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According to this definition, we recover the Morrey space ,pM  and weak Morrey space ,pWM  

under the choice 
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During the last decades various classical operators, such as maximal, singular and potential operators have been 

widely investigated in generalized Morrey spaces (see [8, 12, 13, 18, 22, 28, 34] for details). 

Suppose that 
1nS  is the unit sphere on 

nR  2)( n  equipped with the normalized Lebesgue measure 

d . Let )( 1 n

s SL  with s<1  be homogeneous of degree zero. We define 
1

=
s

s
s'

 for any 
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1>s . Suppose that ,T ,  n0,  represents a linear or a sublinear operator, which satisfies that for any 

)(1

nLf R  with compact support and suppfx   
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 (1.1) 

 where 0c  is independent of f  and x . 

For a locally integrable function b  on 
nR , suppose that the commutator operator ,,bT ,  n0,  

represents a linear or a sublinear operator, which satisfies that for any )(1

nLf R  with compact support and 

suppfx   
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 where 0c  is independent of f  and x . 

We point out that the condition (1.1) in the case of 1 , 0=  has been introduced by Soria and 

Weiss in [35]. The conditions (1.1) and (1.2) are satisfied by many interesting operators in harmonic analysis, 

such as fractional Marcinkiewicz operator, fractional maximal operator, fractional integral operator (Riesz 

potential) and so on (see [23], [35] for details). 

In 1971, Muckenhoupt and Wheeden [27] defined the fractional integral operator with rough kernel 

,T  by  
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and a related fractional maximal operator with rough kernel ,M  is given by  
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where )( 1 n

s SL  with s<1  is homogeneous of degree zero on 
nR  and also ,T  and ,M  

satisfy condition (1.1). 

If 0= , then   MM ,0  is the Hardy-Littlewood maximal operator with rough kernel and ,T  

also becomes a Calderón-Zygmund singular integral operator with rough kernel. It is obvious that when 1 , 

 MM 1,  and  TT 1,  are the fractional maximal operator and the fractional integral operator, 

respectively. 

In recent years, the mapping properties of ,T  on some kinds of function spaces have been studied in 

many papers (see [4, 9, 10, 27] for details). In particular, the boundedness of ,T  in Lebesgue spaces has been 

obtained. 

 

Lemma 1 [4, 9, 27] Let n<<0  , 


n
p <<1  and 

npq




1
=

1
. If )( 1 n

s SL , 
n

n
s > , 

then we have  
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Corollary 1 Under the assumptions of Lemma 1, the operator ,M  is bounded from )( n

pL R  to 

)( n

qL R . Moreover, we have  
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where  1>)( 1 sSL n
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  is homogeneous of degree zero on 
nR . It is easy to see that, for 

∼
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, Lemma 1 

is also hold. On the other hand, for any 0>t , we have  
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 Taking the supremum for 0>t  on the inequality above, we get 
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For )(1

nlocLb R , the commutator ],[ Tb  of fractional integral operator (also known as the Riesz 

potential) is defined by  
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for any suitable function f . 

The function b  is also called the symbol function of ],[ Tb . The characterization of  
qp LL , -

boundedness of the commutator ],[ Tb  of fractional integral operator has been given by Chanillo [3]. A well 

known result of Chanillo [3] states that the commutator ],[ Tb  is bounded from )( n

pL R  to )( n

qL R , 

<<<1 qp , 
nqp


=

11
  if and only if )( nBMOb R . There are two major reasons for considering the 

problem of commutators. The first one is that the boundedness of commutators can produce some 

characterizations of function spaces (see [3, 15, 16, 20, 30, 33]). The other one is that the theory of commutators 

plays an important role in the study of the regularity of solutions to elliptic and parabolic PDEs of the second 

order (see [6, 7, 34]). 

Many authors are interested in the study of commutators for which the symbol functions belong to 

)( nBMO R  spaces, see [3, 13, 18, 19, 20, 22, 30] for example. 

Let us recall the defination of the space of )( nBMO R  (bounded mean oscillation). 
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Definition 2 Suppose that )(1

nlocLb R , let  

 ,<|)(|
|),(|

1
sup= ),(

),(0>,





dybyb

rxB
b rxB

rxBrnx R

 

where  

 .)(
|),(|

1
=

),(

),( dyyb
rxB

b
rxB

rxB   

Define  

 }.<:)({=)( 1 


bLbBMO nlocn RR  

If one regards two functions whose difference is a constant as one, then the space )( nBMO R  is a Banach 

space with respect to norm 
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Remark 1 [22] (1)  The John-Nirenberg inequality [21]: there are constants 1C , 0>2C , such that 
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 for <<1 p . 

(3)  Let )( nBMOb R . Then there is a constant 0>C  such that  

 ,<2<0 for ln),(),( tr
r

t
bCbb txBrxB 

  (1.4) 

 where C  is independent of b , x , r  and t .  

 

 

Remark 2 [22] Note that )( nL R  is contained in )( nBMO R  and we have  
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Moreover, BMO  contains unbounded functions, in fact the function log x  on 
nR , is in BMO  but it is not 

bounded, so )()( nn BMOL RR  .  

 

Let b  be a locally integrable function on 
nR , then for n<<0   and f  is a suitable function, we 

define the commutators generated by fractional integral and maximal operators with rough kernel and b  as 

follows, respectively: 
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satisfy condition (1.2). The proof of boundedness of ],[ ,Tb  in Lebesgue spaces can be found in [9] (by 

taking 1=w  there). 

 

Theorem 1 [9] Suppose that )( 1 n

s SL , s<1 , is homogeneous of degree zero and has 

mean value zero on 
1nS . Let n<<0  , 



n
p <1 , and 

npq




1
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1
 and )( nBMOb R . If ps' <  or 

sq < , then the operator ],[ ,Tb  is bounded from )( n

pL R  to  n

qL R .  

 

 

Remark 3 Using the method in the proof of Corollary 1 we have that 
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 By (1.5) we see that under the conditions of Theorem 1, the consequences of  
qp LL , -boundedness still hold 

for ,,bM .  

 

Remark 4 [33] When   satisfies the specified size conditions, the kernel of the operator ,T  has no 

regularity, so the operator ,T  is called a rough fractional integral operator. In recent years, a variety of 

operators related to the fractional integrals, but lacking the smoothness required in the classical theory, have 

been studied. These include the operator ],[ ,Tb . For more results, we refer the reader to [3, 9, 10, 11, 15, 

18, 19].  

 

There are many papers discussing the conditions on ),( rx  to obtain the boundedness of operators on 

the generalized Morrey spaces. For example, in [28] by Nakai the following condition has been imposed on 

),( rx :  

 ),(),(),(1 rxctxrxc  
 (1.6) 

 whenever rtr 2 , where 1)(c  does not depend on t , r  and 
nx R , jointly with the condition:  
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 where 0)(>C  does not depend on r  and 
nx R ,  <1 p , 

p

n
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1
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1
. Under the 

above conditions, in [28] has been obtained the boundedness of the operator T  is bounded from ,pM  to 

,qM  for 1>p  and from 1,M  to ,qWM  for 1=p . Later, Guliyev [12] has shown that the boundedness 

of the operator T  from 
1

,pM  to 
2

,qM  for 1>p  and from 
1

1,M  to 
2

,qWM  for 1=p  by considering 

the following condition (1.8) instead of conditions (1.6) and (1.7) 
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. But, Guliyev’s results [12] 

are different from the main results in [28] as the definitions of generalized Morrey spaces of Guliyev and Nakai 

are different from each other. On the other hand, in [13], Guliyev et al. have introduced a weaker condition for 

the boundedness of certain sublinear operators, including fractional integral operators, and their commutators 

under generic size conditions on generalized Morrey spaces. It can be formulated to their main results as 

follows: 

 

Theorem 2 [13] Let  <1 p , 
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 where C  does not depend on x  and r . Let T  be a sublinear operator satisfying condition (1.1) (by taking 

1  there), bounded from )( n
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Theorem 3 [13] Let <<1 p , 
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where C  does not depend on x  and r . Let ,bT  be a sublinear operator satisfying condition (1.2) (by taking 

1  there) and bounded from )( n

pL R  to )( n

qL R . Then the operator ,bT  is bounded from 
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Remark 5 If the pair ),( 21   satisfies condition (1.8), then ),( 21   satisfies condition (1.9). But the 

opposite is not true. In general, condition (1.9) does not imply condition (1.8). For example, see Remark 5.6. in 

[13].  

 

After the establishment of the generalized Morrey boundedness of T  under generic size conditions in 

Theorem 2, a natural question is: Can this result be generalized? In other words, what properties does the more 

general operators ,T  under generic size conditions have on the generalized Morrey space? We give an answer 

as follows: 

 

Theorem 4 (Our main result) Suppose that )( 1 n

s SL , s<1 , is homogeneous of degree 
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 and for sq <  the pair ),( 21   satisfies the condition 
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 where C  does not depend on x  and r . 

Then the operator ,T  is bounded from 
1
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for 1=p . Moreover, we have for 1>p  

2
,

,



q

M
fT ≲ ,

1
,p

M
f�  

and for 1=p  

 

2
,

,



q

WM
fT ≲ .

1
1,M

f�  

 

Corollary 2 Suppose that )( 1 n

s SL , s<1 , is homogeneous of degree zero. Let 

n<<0  , 


n
p <1  and 

npq




1
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1
. For ps'   the pair  21,  satisfies condition (1.10) and for 

sq <  the pair  21,  satisfies condition (1.11). Then the operators ,M  and ,T  are bounded from 

1
,pM  to 

2
,qM  for 1>p  and from 

1
1,M to 

2
,qWM  for 1=p .  
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On the other hand, the result of Theorem 3 can also be generalized. We can state the BMO  estimates 

for the commutator operators ,,bT  under generic size conditions on the generalized Morrey space as follows: 

 

Theorem 5 (Our main result) Suppose that )( 1 n

s SL , s<1 , is homogeneous of degree 

zero and ,,bT  is a sublinear operator satisfying condition (1.2) and bounded from )( n
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 and for sq <  the pair ),( 21   satisfies the condition 
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 where C  does not depend on x  and r . 

 Then, the operator ,,bT  is bounded from 
1

,pM  to 
2

,qM . Moreover 
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Corollary 3 Suppose that )( 1 n

s SL , s<1 , is homogeneous of degree zero. Let 

<<1 p  
p

n
<<0  , 

npq




1
=

1
 and  nBMOb R . If for ps'   the pair ),( 21   satisfies the 

condition (1.12) and for sq <  the pair ),( 21   satisfies the condition (1.13). Then, the operators ,,bM  

and ],[ ,Tb  are bounded from 
1

,pM  to 
2

,qM .  

 

Inspired by [18], in this paper we consider the boundedness of sublinear operators with a rough kernel 

generated by fractional integrals and give BMO  space estimates for commutators with rough kernel on 

generalized Morrey spaces. 

Finally, we present a relationship between essential supremum and essential infimum. 

 

Lemma 2 (see [41] page 143) Let f  be a real-valued nonnegative function and measurable on E . 

Then 

   
 

.
1

=
1

xf
esssupxfessinf ExEx 



  (1.14) 

 

By A≲B  we mean that CBA  with some positive constant C  independent of appropriate 

quantities. If A≲ B  and B ≲ A , we write BA   and say that A  and B  are equivalent. 
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2  Proof of theorems 

 

To prove the theorems (Theorems 4 and 5), we need the following lemmas. 

 

Lemma 3 [15] Suppose that )( 1 n

s SL , s<1 , is homogeneous of degree zero. Let 
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holds for any ball  rxB ,0  and for all  nlocLf R1 .  

 

Lemma 4  Suppose that )( 1 n
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Proof. For  txBx ,0 , notice that   is homogenous of degree zero and )( 1 n

s SL , 1>s . 

Then, we obtain 
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 Applying the Hölder’s inequality and by (1.3), (1.4), (2.2) we get 
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By (1.3), we get 
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Applying the Hölder’s inequality, we get 
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 By combining the above inequalities, we obtain 

 
)),

0
((,, rxB

q
Lb fT   ≲ dtft

r

t
rb

txB
p

L

q

n

r

q

n

)),
0

((

1

2

ln1
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 By combining the above estimates, we complete the proof of Lemma 4.  

 

The Proof of Theorem 4. Since 
1

,pMf  , by (1.14) and the non-decreasing, with respect to t , of 

the norm   txB
p

L
f

,
0

, we get 

 
  

p

n

t

txB
p

L

xessinf

f

 ),( 01<<<0

,
0



 

 
  

p

n

txB
p

L

t

x

f

esssup





),( 01

,
0

<<<0   

 
  

p

n

xB
p

L

x

f

esssup







),( 01

,
0

<<0   

 .
1

,p
M

f  

 For  <ps'
, since ),( 21   satisfies (1.10), we have 

    t

dt
tf q

n

txB
p

L

r



 ,
0

 

 
  

t

dt

t

xessinf

xessinf

f

q

n

p

n

t

p

n

t

txB
p

L

r









),(

),(

01<<

01<<

,
0 





  

 
t

dt

t

xessinf
fC

q

n

p

n

t

r
p

M





),( 01<<

1
,





  

 ).,( 02

1
,

rxfC
p

M



  

 Then by (2.1), we get 

  
  rxB

q
L

q

rnxq
M

fTrxBrxfT
,

0
,

1

0

1

02

0>,
02

,
, |),(|,sup= 


  








R

 



GÜRBÜZ F                                               Journal of Scientific and Engineering Research, 2017, 4(2):145-163 

 

Journal of Scientific and Engineering Research 

160 

 

      t

dt
tfrxC q

n

txB
p

L

rrnx







,
0

1

02

0>,
0

,sup 
R

 

 .
1

,p
M

fC  

 For the case of sqp <<1= , we can also use the same method, so we omit the details. This completes the 

proof of Theorem 4. 

The Proof of Theorem 5. The statement of Theorem 5 follows by Lemma 4 and (1.14) in the same 

manner as in the proof of Theorem 4. 

Now, we give the applications of Theorem 4 and Theorem 5 for the Marcinkiewicz operator. 

Suppose that   satisfies the following conditions. 

(a)   is the homogeneous function of degree zero on {0}\nR , that is,  

 {0}.\0,>  forany  ),(=)( nxxx R   

(b)   has mean zero on 
1nS , that is,  
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(c) )( 1 nSLip , 1<0  , that is there exists a constant 0>M  such that,  
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In 1958, Stein [36] defined the Marcinkiewicz integral of higher dimension   as  
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Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been extensively studied as a research 

topic and also provides useful tools in harmonic analysis [37, 38, 39]. 

The Marcinkiewicz operator is defined by (see [40])  
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The sublinear commutator of the operator  ,  is defined by  
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Thus,  ,  satisfies the condition (1.1). It is known that for  nBMOb R  the operators  ,  and 

],[ ,b  are bounded from )( n

pL R  to )( n

qL R  for 1>p , and bounded from )(1

nL R  to )( n

qWL R  for 

1=p  (see [40]), then from Theorems 4 and 5 we get 

 

Corollary 4 Suppose that )( 1 n

s SL , s<1 , is homogeneous of degree zero. Let 

n<<0  , 


n
p <1  and 

npq




1
=

1
. Let also, for ps'   the pair ),( 21   satisfies the condition 

(1.10) and for sq <  the pair ),( 21   satisfies the condition (1.11) and   satisfies conditions (a)–(c). Then 

 ,  is bounded from 
1

,pM  to 
2

,qM  for 1>p  and from 
1

1,M to 
2

,qWM  for 1=p .  

 

 

Corollary 5 Suppose that )( 1 n

s SL , s<1 , is homogeneous of degree zero. Let 

<<1 p , 
p

n
<<0  , 

npq




1
=

1
 and  nBMOb R . Let also, for ps'   the pair ),( 21   satisfies 

the condition (1.12) and for sq <  the pair ),( 21   satisfies the condition (1.13) and   satisfies the 

conditions (a)–(c). Then the operator ],[ ,b  is bounded from 
1

,pM  to 
2

,qM .  
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