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1 . Introduction and Main Results 

Heisenberg groups play an important role in several branches of mathematics, such as quantum physics, Fourier 

analysis, several complex variables, geometry and topology; see [23] for more details. It is a remarkable fact 

that the Heisenberg group, denoted by nH , arises in two aspects. On the one hand, it can be realized as the 

boundary of the unit ball in several complex variables. On the other hand, an important aspect of the study of the 

Heisenberg group is the background of physics, namely, the mathematical ideas connected with the fundamental 

notions of quantum mechanics. In other words, there is its genesis in the context of quantum mechanics which 

emphasizes its symplectic role in the theory of theta functions and related parts of analysis. Analysis on the 

groups is also motivated by their role as the simplest and the most important model in the general theory of 

vector fields satisfying Hörmander’s condition. Due to this reason, many interesting works have been devoted to 

the theory of harmonic analysis on nH  in [6, 8, 9, 19, 20, 23, 26, 27]. 

We start with some basic knowledge about Heisenberg group in generalized Morrey spaces and refer the reader 

to [8, 11, 9, 23] and the references therein for more details. The Heisenberg group nH  is a non-commutative 

nilpotent Lie group, with the underlying manifold RR n2
 and the group structure is given by  
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Using the coordinates  txg ,=  for points in nH , the left-invariant vector fields for this group structure are 
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These vector fields generate the Lie algebra of nH  and the commutators of the vector fields  nXX 21 ,,  

satisfy the relation 

   ,,1,=,4=, 12 njXXX njnj    

with all other brackets being equal to zero. 

The inverse element of  txg ,=  is  txg  ,=1
 and we denote the identity (neutral) element of nH  as 

  120,0=  ne R . The Heisenberg group is a connected, simply connected nilpotent Lie group. One-

parameter Heisenberg dilations :r  nH  nH  are given by    trrxtxr

2,=,  for each real number 

0>r . The Haar measure on nH  also coincides with the usual Lebesgue measure on 
12 nR . These dilations 

are group automorphisms and Jacobian determinant of r  with respect to the Lebesgue measure is equal to 
Qr , 

where 22= nQ  is the homogeneous dimension of nH . We denote the measure of any measurable set 

  nH  by  . Then 

     .=,= dxrxdr Q

r

Q

r    

The homogeneous norm on nH  is defined as follows 
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and the Heisenberg distance is given by 

     .=,0=, 11 hghgdhgd 
 

This distance d  is left-invariant in the sense that   hghgd 1=, 
 remains unchanged when g  and h  are 

both left-translated by some fixed vector on nH . Moreover, d  satisfies the triangular inequality (see [15], page 

320) 

       .,,,,,, nHhxghxdxgdhgd   

Using this norm, we define the Heisenberg ball 

    rhgHhrgB n <:=, 1  

with center  txg ,=  and radius r  and denote by    rgBHrgB n

C ,\=,  its complement, and we denote 

by    rhHhreBB nr <:=,=   the open ball centered at e , the identity (neutral) element of nH , with 

radius r . The volume of the ball  rgB ,  is 
Q

Qrc , where nc  is the volume of the unit ball 1B : 
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For more details about Heisenberg group, one can refer to [8]. 

In the study of local properties of solutions to of second order elliptic partial differential equations (PDEs), 

together with weighted Lebesgue spaces, Morrey spaces  np HL ,  play an important role, see [10, 16]. They 

were introduced by Morrey in 1938 [18]. For the properties and applications of classical Morrey spaces, see [4, 

5, 13] and the references therein. We recall its definition on a Heisenberg group as  
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where )( n

loc

p HLf  , Q 0  and  <1 p . 

Note that )(=,0 npp HLL  and )(=, nQp HLL  . If 0<  or Q> , then =,pL , where   is the set 

of all functions equivalent to 0  on nH  . It is known that )(, np HL   is an expansion of )( np HL  in the sense 

that )(=,0 npp HLL . 

We also denote by )(,, npp HWLWL    the weak Morrey space of all functions )( n

loc

p HWLf   for which  
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where )),(( rgBWLp  denotes the weak pL -space of measurable functions f  for which  
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Here 
g  denotes the non-increasing rearrangement of a function g . 

Note that 
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Let |),(| rgB  be the Haar measure of the ball ),( rgB . Let f  be a given integrable function on a ball 

  GrgB , . The fractional maximal function fM , Q<0  , of f  is defined by the formula  

 .|)(||),(|sup=)(
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In the case of 0= , the fractional maximal function fM  coincides with the Hardy-Littlewood maximal 

function fMMf 0  (see [8, 23]) and is closely related to the fractional integral 
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The operators M  and T  play an important role in real and harmonic analysis (see [7, 8, 23, 26]). 

The classical Riesz potential I  is defined on 
nR  by the formula 

   ,<<0,= 2 nffI 





  

where   is the Laplacian operator. It is known that 
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where  
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. The Riesz potential on the Heisenberg group is defined in terms of the sub-

Laplacian L  
n

H= . 

 

Definition 1 For Q<<0   the Riesz potential I  is defined by on the Schwartz space  nHS  by 

the formula 

       ,=
1
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is the semigroups of the operator L .  

 

In [26], relations between the Riesz potential and the heat kernel on the Heisenberg group are studied. 

The following assertion  4.2 Theorem[26],  yields an expression for I , which allows us to discuss the 

boundedness of the Riesz potential. 

 

Theorem 1 Let  gqs  be the heat kernel on nH . If Q<0  , then for  nHSf   
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The Riesz potential I  satisfies the estimate  4.2 Theorem[26],
 

 gfI  ≲  gfT �
 

 

 which provides a suitable estimate for the Riesz potential on the Heisenberg group. It is well known 

that, see [8, 23] for example, T  is bounded from  np HL  to  nq HL  for all 1>p  and 
p

1
 =
1

q
 

0>
Q


, and T  is also of weak type 









Q

Q
1, (i.e. Hardy-Littlewood Sobolev inequality). 

Spanne (published by Peetre [21]) and Adams [1] have studied boundedness of the fractional integral 

operator T  on  n

pL R, . This result has been reproved by Chiarenza and Frasca [3], and also studied in [12]. 

After studying Morrey spaces in detail, researchers have passed to generalized Morrey spaces. Recall 

that the concept of the generalized Morrey space )(,, npp HMM    on Heisenberg group has been 

introduced in [11]. 
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Definition 2 [11] Let ),( rg  be a positive measurable function on )(0,nH  and  <1 p . 

We denote by )(,, npp HMM    the generalized Morrey space, the space of all functions )( n

loc

p HLf   

with finite quasinorm  
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Also by )(,, npp HWMWM    we denote the weak generalized Morrey space of all functions 
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According to this definition, we recover the Morrey space ,pL  and weak Morrey space ,pWL  under 
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In  [11], Guliyev et al. prove the Spanne type boundedness of Riesz potentials I ,  Q0,  from one 

generalized Morrey space  np HM
1

,  to another  nq HM
2

, , where <<<1 qp , 
Qqp


=

11
 , Q  is 

the homogeneous dimension of nH  and from the space  nHM
1

1,  to the weak space  nHWM
2

1, , where 

<<1 q , 
Qq


=

1
1 . They also prove the Adams type boundedness of the Riesz potentials I , 

 Q0,  from  n

p
p

HM 1

,

 to another  n

q
q

HM 1

,

 for <<<1 qp  and from the space  nHM 1,  

to the weak space  n

q

HWM 1

1,

 for <<1 q . 

For a locally integrable function b  on nH , suppose that the commutator operator ,bT ,  Q0,  

represents a linear or a sublinear operator, which satisfies that for any )(1 nHLf   with compact support and 

suppfx   

 ,
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Q

n
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   (1.1) 

 where 0c  is independent of f  and g . 

The condition (1.1) is satisfied by many interesting operators in harmonic analysis, such as fractional 

maximal operator, fractional Marcinkiewicz operator, fractional integral operator and so on (see [17], [22] for 

details). 

Let T  be a linear operator. For a locally integrable function b  on nH , we define the commutator 

],[ Tb  by  

 ))(()()(=)(],[ xbfTxTfxbxfTb   
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for any suitable function f . 

Let b  be a locally integrable function on nH , then for Q<<0  , we define the linear commutator 

generated by fractional integral operator and b  and the sublinear commutator of the fractional maximal 

operator as follows, respectively (see also [17]).  
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Now, we will examine some properties related to the space of functions of Bounded Mean Oscillation, BMO , 

introduced by John and Nirenberg [14] in 1961. This space has become extremely important in various areas of 

analysis including harmonic analysis, PDEs and function theory. BMO -spaces are also of interest since, in the 

scale of Lebesgue spaces, they may be considered and appropriate substitute for L . Appropriate in the sense 

that are spaces preserved by a wide class of important operators such as the Hardy-Littlewood maximal 

function, the Hilbert transform and which can be used as an end point in interpolating pL  spaces. 

Let us recall the defination of the space of )( nHBMO  (see, for example, [8, 17, 24]). 

 

Definition 3 Suppose that )(1 n

loc HLb , let  
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Endowed with the norm given in (1.2), )( nHBMO  becomes Banach space provided we identify functions 

which differ a.e. by constant; clearly, 0=


b  for   chb =  a.e. in nH .  

 

Remark 1 Note that )( nHL  is contained in )( nHBMO  and we have  

 .2


 bb  

Moreover, BMO  contains unbounded functions, in fact the function log h  on nH , is in BMO  but it is not 

bounded, so )()( nn HBMOHL  .  

 

 

Remark 2   (1)  The John-Nirenberg inequality [14]: there are constants 1C , 0>2C , such that for 

all )( nHBMOb  and 0>   
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  (2)  The John-Nirenberg inequality implies that  
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  (3)  Let )( nHBMOb . Then there is a constant 0>C  such that  
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 where C  is independent of b , g , r  and  .  

 

Inspired by [11], in this paper, provided that  nHBMOb  and ,bT ,  Q0,  satisfying 

condition (1.1) is a sublinear operator, we find the sufficient conditions on the pair ),( 21   which ensures the 

Spanne type boundedness of the commutator operators ,bT  from  np HM
1

,  to  nq HM
2

, , where 

<<<1 qp , 
p

Q
<<0  , 

Qpq




1
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1
. We also find the sufficient conditions on   which ensures the 

Adams type boundedness of the commutator operators ,bT  from  n

p
p

HM 1

,

 to another  n

q
q

HM 1

,

 for 

<<<1 qp . In all the cases the conditions for the boundedness of ,bT  are given in terms of Zygmund-

type (supremal-type) integral inequalities on  21,  and   which do not assume any assumption on 

monotonicity of 21,  and   in r . Our main results can be formulated as follows. 

 

Theorem 2 (Spanne type result) Let <<1 p , 
p

Q
<<0  , 

Qpq




1
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1
 and  nHBMOb . 

Let ,bT  be a sublinear operator satisfying condition (1.1) and bounded from )( np HL  to )( nq HL . Let also, 

the pair ),( 21   satisfies the condition 
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From Theorem 2 we get the following new result. 
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Corollary 1 Let <<1 p , 
p

Q
<<0  , 

Qpq




1
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1
,  nHBMOb  and the pair ),( 21   

satisfies condition (1.5). Then, the operators ,bM  and ],[ Tb  are bounded from  np HM
1

,  to 

 nq HM
2

, .  

 

 

Theorem 3 (Adams type result) Let <<<1 qp , 
p

Q
<<0  ,  nHBMOb  and let   ,g  

satisfies the conditions 
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 where C  does not depend on nHg  and 0>r . Let also ,bT  be a sublinear operator satisfying condition 

(1.1) and the condition 

                                                                �gfT rgBb ,,  ≲  gfMr b


 (1.8) 

 holds for any ball  rgB , . 

Then the operator ,bT  is bounded from  n
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From Theorem 3, we get the following new result. 

 

Corollary 2 Let <<1 p , 
p

Q
<<0  , qp < ,  nHBMOb  and let also   ,x  satisfies 

conditions (1.6) and (1.7). Then the operators ,bM  and ],[ Tb  are bounded from  n

p
p

HM 1

,

 to 

 n

q
q

HM 1

,

.  

At last, throughout the paper we use the letter C  for a positive constant, independent of appropriate 

parameters and not necessarily the same at each occurrence. By A≲B  we mean that CBA  with some 

positive constant C  independent of appropriate quantities. If A≲B  and B ≲ A , we write BA   and say 

that A  and B  are equivalent. 
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2.  Some Lemmas 

To prove the main results (Theorems 2 and 3), we need the following lemmas. Firstly, for the proof of 

Spanne type results, we need following Lemma 1. 

Lemma 1 (Our main lemma) Let <<1 p , 
p

Q
<<0  , 

Qpq
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,bT  is a sublinear operator satisfying condition (1.1) and bounded from )( np HL  to )( nq HL . Then, the 

inequality  
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 We have the following estimation of 1J . When 1=
11
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, by the Fubini’s theorem 
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 Applying the Hölder’s inequality, we get 

 

 

 
dw

wg

wf
Q

CB


 1

2

 

 ≲
  

.
1

,

2





q

QgB
p

L

r

d
f






�  (2.2) 

 

Thus, by (2.2) 

 �2J ≲
  

.
1

,

2




 
q

QgB
p

L

r

q

Q
d

frb






 

Summing up 1J  and 2J , for all   1,p  we get 
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 which completes the proof of Lemma 1 by (2.4).  

 

Secondly, for the proof of Adams type results, we need some lemmas and theorems about the estimates 

of sublinear commutator of fractional maximal operator in generalized Morrey spaces on Heisenberg groups. 
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Proof. Let <<1 p , 
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. For an arbitrary ball  rgBB ,=  we set 

21= fff  , where  Bff 21 =  ,  
 CB

ff
22 =   and  rgBB ,2=2 . Hence, 

 
     

.2,1,, B
q

LbB
q
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q

Lb fMfMfM    

From the boundedness of ,bM  from )( np HL  to )( nq HL  (see, for example, [2, 8, 24]) it follows that: 
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Let h  be an arbitrary point in B . If     
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Applying the Hölder’s inequality, by (1.3), (1.4) and 1=
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 In order to estimate 2J  note that 
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Summing up 1J  and 2J , for all   1,p  we get 
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Finally, we have the following 
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 which completes the proof.  

 

Similarly to Lemma 2 the following lemma can also be proved. 

 

Lemma 3 Let <<1 p ,  nHBMOb  and bM  is bounded on )( np HL . Then the inequality 
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holds for any ball ),( rgB  and for all )( n

loc

p HLf  .  

 

The following theorem is true. 

 

Theorem 4 Let <<1 p , 
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where C  does not depend on g  and r . Then the operator ,bM  is bounded from  np HM
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Proof. By Theorem 4.1 in [11] and Lemma 2, we get 
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In the case of 0=  and qp = , we get the following corollary by Theorem 4. 

 

Corollary 3 Let <<1 p ,  nHBMOb  and  21,  satisfies the condition 
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where C  does not depend on g  and r . Then the operator bM  is bounded from  np HM
1

,  to  np HM
2

,

. Moreover 

 

2
,p

Mb fM ≲ .
1

,p
M

fb


 

3.  Proofs of the main results 

3.1. Proof of Theorem 2. 

Proof. To prove Theorem 2, we will use the following relationship between essential supremum and 

essential infimum 
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 This completes the proof of Theorem 2.  
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3.2.  Proof of Theorem 3. 

Proof. Let <<1 p , 
p

Q
<<0   and 

Qpq




1
=

1
, qp <  and 

p
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Mf 1

,

 . For an arbitrary 

ball  rgBB ,=  we set 21= fff  , where  Bff 21 =  ,  
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ff
22 =   and  rgBB ,2=2 . Then we 

have  
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Analogously to Section 2, for all   1,p  and Bg  we get 
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Consequently the statement of the theorem follows in view of the boundedness of the commutator of the 

maximal operator bM  in  n

p
p

HM 1

,

 provided by Corollary 3 in virtue of condition (1.6). 

Therefore, we have 
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Remark 3 In the case of   Qrrg  =, , Q<<0   from Theorem 3 we get the following Adams 

type result ([1]) for the commutators of fractional maximal and integral operators.  

Corollary 4 Let Q<<0  , 


Q
p <<1 , pQ  <<0 , 








Qqp
=

11
 and 

 nHBMOb . Then, the operators ,bM  and ],[ Tb  are bounded from  np HL ,  to  nq HL , .  
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