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Abstract In this paper, we propose an improved collocation method based on the Morgan-Voyce polynomials 

for the approximates solution of generalized pantograph equations. The method is based  on the improvement of 

Morgan-Voyce the polynomial solutions with the aid of the residual error function. As a beginning, the Morgan-

Voyce collocation method is applied to the generalized pantograph equations and then Morgan-Voyce 

polynomial solutions are obtained. Next, an error problem is constructed by means of the residual error function 

and this error problem is solved by using the Morgan-Voyce collocation method. By summing the Morgan-

Voyce polynomial solutions of the original problem and the error problem, we have the improved Morgan-

Voyce polynomial solutions. When the exact solution of problem is not known, the absolute error can be 

approximately computed by the Morgan-Voyce polynomial solution of the error problem. We give numerical 

examples. We have applied all of the numerical computations on computer using a program written in 

MATLAB (R2013a). 

 

Keywords Morgan-Voyce polynomials; Pantograph equations; approximate methods, residual error function 

1. Introduction 

These equations arise in many applications such as population studies, number theory, electrodynamics, 

astrophysics, nonlinear dynamical systems, probability theory on algebraic structures, quantum mechanics and 

cell growth, among others. In particular, it was used by Ockendon and Tayler [1] to study how the electric 

current is collected by the pantograph of an electric locomotive. The name pantograph originated from this 

work.  Properties of the analytic solution of these equations with variable coefficients are treated in [2-4]. In 

recent years, there has been a growing interest in the numerical treatment of pantograph equations of the 

retarded and the advanced type. A special feature of this type is the existence of compactly supported solutions 

[5]. This phenomenon was studied in [6] and has direct applications to approximation theory and to wavelets. 

Pantograph equations are characterized by the presence of a linear functional argument and play an important 

role in explaining many ODEs based model fails. These equations arise in industrial applications [1,7,8]  and in 

studies based on biology, economy, control and electrodynamics [9,10]. 

The Taylor method has been used to find the approximate solutions of differential, difference, integral and 

integro-differential-difference, multi-pantograph and generalized pantograph equations [11-20]. The Morgan-

Voyce method has been used to find the approximate solutions of differential, integral and integro-differential 

equations [21]. The basic motivation of this work is to apply the the Morgan-Voyce method to the 

nonhomogenous and the homogenous generalized pantograph equations with variable coefficients, which is 

extented of the multi-pantograph equations given in [5, 22]. 

In this study, we consider generalized pantograph equations of type [5,23,24] 
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Here ( )jkP t   and  ( )g t  are continuous functions defined in the interval 0 ; , ,ik i jkt b c    , and jk  are 

real or complex constants. 

In this paper, by improving the Morgan-Voyce collocation method with the aid of residual error function used in 

[25-28], we obtain an approximate solution of (1) expressed in the truncated Morgan-Voyce series form 

, ,( ) ( ) ( )N M N N My t y t e t                                                          (3) 
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is the Morgan-Voyce polynomial solution of the error problem obtained with the aid of the residual error 

function. Here 
*, , 0,1,2,...,n na a n N  are the unknown Morgan-Voyce coefficients. N  and M are any 

chosen positive integers such that 2M N  ; and ( ), 0,1,2,....nB t n N  are the Morgan-Voyce 

polynomials defined by 
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2. Fundamental Matrix Relations 

Firstly, the Morgan-Voyce polynomials ( )nB t  can be written in the matrix form as follows, 
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We consider the desired solution ( )y t  of Eq. (1) defined by the truncated Morgan-Voyce series (4). So the 

finite series (4) can be written in the matrix form 

( ) ( )y t t B A ;  
0 1[     ...  ]T

Na a aA  

or from Eq. (5) 

( ) ( ) Ty t tT R A .                                                                                         (6) 

On the other hand, from [29,30] the relation between the matrix ( )tT  and its derivative 
(1) ( )tT  is 

(1) (0)( ) ( ) ,        ( ) ( )Tt t t t T T C T T
       

(7) 
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It follows from (6) and (7) that 
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Using the relations (8) and (9), we have recurrence relations  
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Similarly, the matrix relations are obtained as follows 
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and for  0jk   and 0jk  , 
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3. Method of Solution 

Now, we can construct the fundamental matrix equation for Eq. (1). For this purpose, we substitute the matrix 

relations (10) and (11) into Eq. (1) and obtain the matrix equation 
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The collocation points it  are defined as 
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Substituting Eq. (13) in Eq. (12), we obtain the system of matrix equations 
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Thus, the fundamental matrix equation (14) for Eq. (1) can be written in the form  
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Here, Eq. (15) corresponds to a system of 1N   linear algebraic equations with unknown Morgan-Voyce 

coefficients 0 1,  ,...,  Na a a . 

By means of the relation (10), for the conditions (2), we can obtain the matrix forms as follows, 

 
1

0

(0) ,   0,1,2,... 1.
m

ik i

k

c i m




   T k T
T (C ) R A  

On the other hand, we can write the matrix form for conditions as 

 i iU A    or   ; ,   0,1,2,..., 1i i m  
i

U                                  (16) 

where 
1

0 1 2

0

(0) [       ...  ],    0,1,2,..., 1
m

i ik i i i iN

k

c u u u u i m




    T k T
U T (C ) R  



İlhan Ö                                                    Journal of Scientific and Engineering Research, 2017, 4(10):320-332 

 

Journal of Scientific and Engineering Research 

324 

 

Under conditions (2), to obtain the solution of Eq. (1), we replace the row matrices (16) by the last m rows of 

the matrix (15) and have the new augmented matrix [15,30], 
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If rank [ ] 1rank N   W W;G , then we can write   -1
A (W) G . Thus, we uniquely determine the matrix 

A  (thereby the coefficients 0 1, ,..., Na a a ). So Eq. (1) with conditions (2) has  a unique solution and this 

solution is given by Morgan-Voyce series solution (4). On the other hand, when 0W , that is if rank 

[ ] < 1rank N  W W;G ,then one can be found a particular solution. Otherwise if rank  

[ ] < 1rank N  W W;G ,then there is no solution. 

 

4. Residual Correction and Error Estimation 

In this section, we will give an error estimation for the Morgan-Voyce polynomial solution (4) with the residual 

error function [25-28] and will improve the Morgan-Voyce polynomial solution (4) with the help of the residual 

error function. For this purpose, we get the residual function of the Morgan-Voyce collocation method as 
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Here ( )Ny t  is the Morgan-Voyce polynomial solution given by (4) of problem (1) and (2). Thus, ( )Ny t  
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Also, the error function ( )Ne t  

( ) ( ) ( )N Ne t y t y t               (19) 

such that ( )y t  is the exact solution of problem (1) and (2). 

By using Eqs. (1), (2), (18) and (19) we can get the error differential equation 
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or clearly, the error problem is  
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Here, we note that the nonhomogeneous condition 
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has been reduced to the homogeneous condition 

1
( )

0

(0) 0,    0,1,..., 1.
m

k

ik N

k

c e i m




    

By solving problem (20) with the method introduced section (2) and (3), we get the approximation  

*

,

0

( ) ( )
M

N M n n

n

e t a B t


 M N  

to ( )Ne t . 

Consequently, by means of the polynomials ( )Ny t  and , ( ),   ( )N Me t M N , we get the correct Morgan-

Voyce polynomial solution , ,( ) ( ) ( )N M N N My t y t e t  . Also, we construct the error function 

( ) ( ) ( )N Ne t y t y t  , the correct error function , , ,( ) ( ) ( ) ( ) ( )N M N N M N ME t e t e t y t y t     and the 

estimated error function , ( )N Me t . 

If the exact solution of Eq. (1) unknown, then the absolute errors ( ) ( ) ( ) ,(0 )N i i N i ie t y t y t x b     is 

not found. However the absolute errors can be approximately computed with the aid of the estimated absolute 

error function 
, ( )N Me t  

 

5. Numerical Examples 

In this section, we want to show the accuracy and efficiency properties of the present method. For this reason, 

we give several numerical examples. We have performed all calculations on MATLAB. The values of the exact 

solution ( )y t , the polynomial approximate solution ( )Ny t , the corrected Morgan-Voyce polynomial solution 

, ,( ) ( ) ( )N M N N My t y t e t  ,  the absolute error function ( ) ( ) ( )N Ne t y t y t  , the corrected absolute error 

function , ,( ) ( ) ( )N M N ME t y t y t   and the estimated absolute error function  , ( )N Me t  have been 

illustrated in the Tables and Figures at the selected points of the given interval. 

Example 1: (Sezer and Akyüz-Daşcıoğlu [30]). : With the exact solution ( ) cos( )y t t [24], we consider the 

pantograph equation of third order  

( ) (2 ) ( ) ( ) cos(2 ) cos( ),
2 2

t t
y t ty t y t y t t        0 1t  .  (21) 

The initial conditions are (0) 1,   (0) 0,   (0) 1.y y y      

The approximate solution 7 ( )y t by the truncated Morgan-Voyce series for 7N  is given by 



İlhan Ö                                                    Journal of Scientific and Engineering Research, 2017, 4(10):320-332 

 

Journal of Scientific and Engineering Research 

326 

 

7

7

0

( ) n n

n

y t a B

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Now, let us compute the coefficients ,  ( 0,1,2,..., )na n N  of the approximate solution in the above form. 

First, the set of collocation points (4) for 0.1,  1a b   and 7N   is calculated as 

0 1 2 3 4 5 6 7

1 8 5 17 43 26 61
, , , , , , , 1
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t t t t t t t t
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        
   

and from Eq. 14, the fundamental matrix equation of the problem is 
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2

02 02
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 
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So, by applying the procedure given in Section 2 and 3, we get the Morgan-Voyce polynomial solution 

 

2

7

3 4 5

6 7

( ) 1 (0.433355608343 16) 0.499999999999

          (0.292958337116 6) (0.415238563586 2) (0.359406712252 4)

          (0.182525669465 3) (0.183940111353 4)

y t e t t

e t e t e t

e t e t

   

     

   

 

Since, we compute the corrected Morgan-Voyce polynomial solution, let us first consider the error problem 

7 7 7 7

7 7 7
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t t
e t te t e t e t t R t

e e e


        


    

 

Such that the residual function is 

7 7 7 7 7( ) ( ) (2 ) ( ) ( ) cos(2 ) cos( )
2 2

t t
R t y t ty t y t y t t         

By solving the error problem (20) for 10M  with the method in Sections 2 and 3, the estimated Morgan-

Voyce error function approximation 7,10( )e t  to 7 ( )e t  is obtained as 

2

3

,10

4 5

6

7 (0.693607751936 15) (0.343664303350 14) (0.236539244477 17)

(0.292961608873 04) (0.142893886870 03) (0.36012

( )

     598167      

           (

2 03)

(0.439066507396 03) 0.18881518

e t e e t e t

e t e t e t

e t

    

    









 7 8

9 10

4812 03) 0.285169208951 04)

           (0.134151800991 05) (0.732360508292 07)

(e t e t

e t e t

 

   

 

Hence, we calculate the corrected Morgan-Voyce polynomial solution 

2

7,10

3 4 5

6 7

( ) 1.0000000000000008 (0.386999864184 14) 0.49999999999

          (0.327175726047 09) 0.041666750245 (0.71926942003186352 06)

          (0.138619018725 02) (0.487507345842 05)

y t e t t

e t t e t

e t e t

   

    

     8

9 10

(0.285169208951 04)

          (0.134151800991 05) (0.732360508292 08)

e t

e t e t



   

 

In Table 1, we compare the numerical values of the exact solution, the Morgan-Voyce polynomial solutions and 

corrected Morgan-Voyce polynomial solutions. In Table 2, the actual absolute errors are compared with 

absolute errors estimated by the presented technique. These errors are almost identical. Table 3 shows the 

corrected absolute errors by our method 

 for 7,10N   and 10,13,15M  . Also the actual error function 
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and the estimated error function for 7,10N   and 10,13,15M   are compared in Figures 1a and 1b. 

Figures 1c and 1d display the corrected absolute error functions for 7,10N   and 10,13,15M   

Table 1: Numerical results of the exact and the approximate solutions for 7,10N   and 10,13,15M    Eq. (21) 

Exact solution  Morgan-Voyce polynomial solution         Corrected Morgan-Voyce polynomial solution   it

( ) cos( )i iy t t 7( )iy t 7,10( )iy t 7,15( )iy t  

 

0        1                                             1                                                            0.9999999999990.999999999999                  

0.2     0.98006657784                      0.980066673090.9800665778610.980066577841 

0.4     0.92106099400                   0.921061391100.921060993927                 0.921060994003 

0.6     0.825335614910.825335757120.825335609283                 0.825335614910 

0.8     0.69670670935                   0.696701036370.6967066576520.696706709347 

1        0.54030230587                   0.540271242320.540302067554 0.540302305869 

 

( ) cos( )i iy t t 10( )iy t 10,13( )iy t 10,15( )iy t  

0        1                                              11                        1 

0.2     0.98006657784                    0.980066577802               0.9800665778410.980066577841 

0.4     0.92106099400                    0.9210609938040.921060994003 0.921060994003 

0.6     0.82533561491             0.825335613768                                 0.8253356149110.825335614910 

0.8     0.69670670935                    0.6967067021140.6967067093590.696706709347 

1        0.54030230587                   0.5403022751980.5403023059220.540302305868 

 

Table 2: Comparison of the absolute error functions for 7,10N   and 10,13,15M   of Eq. (21) 

Absolute errors for Morgan-Voyce   Estimated absolute errors for Morgan-Voyce 

 polynomial solution                                           polynomial solution   

 

it 7 7( ) ( ) ( )i i ie t y t y t 
7,10( )ie t 7,15( )ie t  

 

0             6.4835e-172.2413e-0163.5477e-016 

0.2          9.5244e-08 9.5224e-0089.5244e-008 

0.4      3.9709e-07 3.9717e-0073.9709e-007 

0.6          1.4221e-071.4784e-007 1.4221e-007 

0.8          5.6730e-065.6213e-0065.6730e-006 

1             3.1064e-053.0825e-0053.1064e-005 

  

10 10( ) ( ) ( )i i ie t y t y t 
10,13( )ie t 10,15( )ie t  

0            5.1088e-16 1.2804e-0163.4645e-016 

0.2          3.9585e-113.9587e-0113.9585e-011 

0.4     1.9885e-101.9889e-0101.9885e-010 

0.6          1.1415e-091.1428e-0091.1415e-009 

0.8          7.2329e-09 7.2448e-0097.2329e-009 

1             3.0671e-083.0725e-0083.0671e-008 

 

Table 3: Numerical results of the corrected error functions for 7,10N   and 10,13,15M   Eq. (21) 

it Improved absolute errors , ,( ) ( ) ( )N M i i N M iE t y t y t   
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7,10( )iE t 7,15( )iE t 10,13( )iE t 10,15( )iE t  

 

0                7.7716e-0168.8818e-0164.4409e-016   0 

0.2               2.0102e-0112.2204e-016 1.3323e-015                      0 

0.4               7.5690e-0117.7716e-016 4.3077e-014 2.2204e-016 

0.6               5.6266e-009 2.8311e-014 1.3413e-0124.4409e-015 

0.8               5.1696e-0082.5269e-013 1.1908e-0113.9968e-014 

 1      2.3831e-0071.1473e-0125.4110e-0111.8063e-013 

 

 

Figure.1a. Comparison of the absolute error functions ( ) ( ) ( )N Ne t y t y t   and the estimated error functio

, ( )N Me t  for 7N   and 10,15M   of  Eq. (21). 

 

Figure 1b: Comparison of the absolute error functions ( ) ( ) ( )N Ne t y t y t   and the estimated error functio

, ( )N Me t  for 10N   and 13,15M   of  Eq. (21). 
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Figure 1c: Comparison of the improved absolute error functions 
, ,( ) ( ) ( )N M N ME t y t y t  for 7N   and 

10,15M   of  Eq. (21). 

 

Figure 1d: Comparison of the improved absolute error functions , ,( ) ( ) ( )N M N ME t y t y t  for 10N   

and 13,15M   of  Eq. (21). 

 

Example 2. Consider the pantograph equation of first order  

21 1
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2 2 2

t
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y t e y y t t     .                            (22) 
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with the boundary condition (0) 1y  . The exact solution of the problem is ( ) ty t e . 

By applying the presented method for 10N  , 12M   and 15M  , we obtain the approximate solutions. 

We compute the approximate solution for 10N   and 12M   as follows, 

2 3

4 5 6

7

10,12 0.999999999999 0.999999999999 0.499999999999 0.166666666669

            (0.416666666469 2) (0.833333343867 3) (0.138888855692 3)

            (0.198413280567 4) (0.24

( )

80126271

t t t

e t e t e t

y

t

t

e

  

    





   8 9

10 11 12

21 5) (0.275491205118 6)

            (0.277608273630 7) (0.230382578085 8) 0.30460838156 9( 2 )

e t e t

e t e t e t

  

    

 

In the table 4, we compare the absolute errors obtained by the present method, Spline method [32], Adomian 

Method [23], Taylor Method [30], Variational method [31]. In addition, the absolute error functions are 

compared in the Figure.2. 

 

Table 4: Comparison of the solutions and the absolute errors of Eq. (22) 

 

 

it  

Spline method     Adomian method                                      Variational 

0.001h  with 13 terms[23]   Taylor method[30]   Method [31]       Present method 

3[32]m  12N 
10,12( )iE t 10,15( )iE t  

 

0.2      1.37e-11             0.00                              2.220e-16                   2.44e-05             2.220e-16           0 

0.4      3.27e-11             2.22e-16                       1.332e-15                   2.28e-04             2.220e-16           2.220e-16      

0.6      5.86e-11             2.22e-16                       2.189e-13                   9.00e-04             2.220e-16           0 

0.8      9.54e-11             1.33e-15                       9.361e-12                   2.50e-03             8.882e-16           4.441e-16 

1         1.43e-10             4.88e-15                       1.729e-10                   5.71e-03             4.441e-16           8.882e-16 

 

Figure 2: Comparison of the absolute error functions ( ) ( ) ( )N Ne t y t y t   and

, ,( ) ( ) ( )N M N ME t y t y t  for 10N   and 12,15M   of  Eq. (22) 
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6. Conclusions 

In this article, we have improved the Morgan-Voyce collocation method, based on Morgan-Voyce polynomials, 

for generalized  pantograph equations. This improvement is based on the residual error function. In addition, an 

error estimation is given with the residual error function. Morever, if the exact solution of the problem is 

unknown, then the absolute errors ( ) ( ) ( )N i i N ie t y t y t  , ( 0 t b  ) can be estimated by the 

approximation , ( )N Me t . It is seen from Tables 1-3 that the estimated absolute errors , ( )N M ie t  are quite close 

to the actual absolute errors ( ) ( ) ( )N i i N ie t y t y t  . We see from the tables and the figures that the errors 

decrease when N  and M  are increased. The comparisons of the present method by the other methods show 

that our method is very effective. A consirable advantage of the method is that the approximate solutions are 

computed very easily by using a well-known symbolic software such as Matlab, Maple and Mathematica. 
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