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Abstract In this paper, we propose an improved collocation method based on the Morgan-Voyce polynomials
for the approximates solution of generalized pantograph equations. The method is based on the improvement of
Morgan-Voyce the polynomial solutions with the aid of the residual error function. As a beginning, the Morgan-
Voyce collocation method is applied to the generalized pantograph equations and then Morgan-Voyce
polynomial solutions are obtained. Next, an error problem is constructed by means of the residual error function
and this error problem is solved by using the Morgan-Voyce collocation method. By summing the Morgan-
Voyce polynomial solutions of the original problem and the error problem, we have the improved Morgan-
Voyce polynomial solutions. When the exact solution of problem is not known, the absolute error can be
approximately computed by the Morgan-Voyce polynomial solution of the error problem. We give numerical
examples. We have applied all of the numerical computations on computer using a program written in
MATLAB (R2013a).

Keywords Morgan-Voyce polynomials; Pantograph equations; approximate methods, residual error function

1. Introduction

These equations arise in many applications such as population studies, number theory, electrodynamics,
astrophysics, nonlinear dynamical systems, probability theory on algebraic structures, quantum mechanics and
cell growth, among others. In particular, it was used by Ockendon and Tayler [1] to study how the electric
current is collected by the pantograph of an electric locomotive. The name pantograph originated from this
work. Properties of the analytic solution of these equations with variable coefficients are treated in [2-4]. In
recent years, there has been a growing interest in the numerical treatment of pantograph equations of the
retarded and the advanced type. A special feature of this type is the existence of compactly supported solutions
[5]. This phenomenon was studied in [6] and has direct applications to approximation theory and to wavelets.
Pantograph equations are characterized by the presence of a linear functional argument and play an important
role in explaining many ODEs based model fails. These equations arise in industrial applications [1,7,8] and in
studies based on biology, economy, control and electrodynamics [9,10].

The Taylor method has been used to find the approximate solutions of differential, difference, integral and
integro-differential-difference, multi-pantograph and generalized pantograph equations [11-20]. The Morgan-
Voyce method has been used to find the approximate solutions of differential, integral and integro-differential
equations [21]. The basic motivation of this work is to apply the the Morgan-Voyce method to the
nonhomogenous and the homogenous generalized pantograph equations with variable coefficients, which is
extented of the multi-pantograph equations given in [5, 22].

In this study, we consider generalized pantograph equations of type [5,23,24]
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J m-1

LIy®I=y™ ®) - D> Py (At + ) = g(t) 0<t<b (1)

j=0 k=0
in with initial conditions

m-1
> ay¥0)=4, i=01..m-1. @)
k=0

Here P, (t) and g(t) are continuous functions defined in the interval 0 <t <b;c,, 4,4, , and s, are

real or complex constants.
In this paper, by improving the Morgan-Voyce collocation method with the aid of residual error function used in
[25-28], we obtain an approximate solution of (1) expressed in the truncated Morgan-Voyce series form

Ynom (t) =Y (t) +eN,M (t) 3)
where
N
yN (t) = Z an Bn (t) (4)
n=0

is the Morgan-Voyce solution and

M
ey ()= B, (1)
n=0
is the Morgan-Voyce polynomial solution of the error problem obtained with the aid of the residual error

function. Here an,a;,n=0,1,2,...,N are the unknown Morgan-Voyce coefficients. N and M are any

chosen positive integers such that M >N 2>2; and B (t),n=0,1,2,...N are the Morgan-Voyce
polynomials defined by

nn+k+1
B@:Z( :_: }k, nel

k=0

2. Fundamental Matrix Relations
Firstly, the Morgan-Voyce polynomials Bn (t) can be written in the matrix form as follows,

B'(t)=RT'(t) < B(t)=T(t)R" (5)
where
B(t) =[B,(t) B,(t) ... By(), T(t)=[1 t" t* ... t"];
- i}
0 0 0
0
J Lo
0 0
1 0
e GG
0
2 1 0
n+1 n+2 n+3 2n+1
()R- (9
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We consider the desired solution y(t) of Eqg. (1) defined by the truncated Morgan-Voyce series (4). So the

finite series (4) can be written in the matrix form

y)=BMA: A=[a, & .. a,T
or from Eg. (5)

yO)=TOR'A. (6)
On the other hand, from [29,30] the relation between the matrix T (t) and its derivative T® (t) is
TOM=TOC’, TOM=TO ™)
where

010 - 000
002 .- 000
cT - 000 - 00O0DO
000 - 0O0N
000 - 00 O
It follows from (6) and (7) that
TOM)=T()
TOM)=T@®)CT
TOM)=TOMC" =TE)(C" )’

il (8)
TOM=T“?OC") " =T@OC" )
and therefore

BYM)=T®W®)R" =T(t)(C")“R" 9)
Using the relations (8) and (9), we have recurrence relations

y“(t)=B A

=TOMHR'A

=T@t)(C")*R'A, k=0,1,2,..m (10)
Similarly, the matrix relations are obtained as follows

T(ﬂjkt +:ujk) =T(t)B(ﬂ’jk'/ujk)

Y(/Ijkt"'/v‘jk) :T(ﬂ*jkt"':ujk)RTA (11)
y(k)(ﬂ’jkt + 1) :T(t)B(;tjkuujk)(CT)k RTA
where for 4, #0 and z;, #0,

(0 0 o (1 0 1 N 0 N
(Oj(ﬂ’jk) (,Ujk) (OJ(/Ijk) (;ujk) [Oj(ﬂ’jk) (,ujk)

[3XY

1 0 N 1 N-1
B(Ajr 15) = ° (J(ijk) NS (1](/1jk) (#45)

N N 0
0 0 (Nj(/ljk) (/ujk)

\
)

I

A
=/
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and for A, #0 and 4, =0,

(ﬂbjk)0 0o ... 0
B(4;,0) = 0 (ﬁ{k)l 0
0 0o .. (xij.k)N

3. Method of Solution
Now, we can construct the fundamental matrix equation for Eq. (1). For this purpose, we substitute the matrix
relations (10) and (11) into Eq. (1) and obtain the matrix equation

m-1

TOC) R A-S S P, OT B, 1,)(CT) R A= g(t) 1)

j=0 k=0
The collocation points t; are defined as

b. .
t=—i, 1=0,1,....N. 13
N (13)

Substituting Eq. (13) in Eq. (12), we obtain the system of matrix equations

T(ti)(CT)'“RTA—imi P (t)T (t)B(A, 14,)(CT)*RTA= g(t;), i=0,1..N

j=0 k=0
or briefly the fundamental matrix equation
J m-1
{T(CT )R =" P TB(A, 3 )(CT )R } A=G (14)
j=0 k=0
where
ij(to) 0 0 a(t,) T(t,) 1t - té\‘
R A L
0 O e ij (tN) g(tN) T(tN) 1 tN ce tNN
Thus, the fundamental matrix equation (14) for Eq. (1) can be written in the form
WA=G or [W;G] (15)
where

J m-1
W =T(CT)"R" = > > P, TB(A;, 13 )(CT )*R™, W =[W,; ], i, j=0,1,..N

j=0 k=0

Here, Eq. (15) corresponds to a system of N +1 linear algebraic equations with unknown Morgan-Voyce
coefficients a,,a, ,..., ay.

By means of the relation (10), for the conditions (2), we can obtain the matrix forms as follows,

fcikT O)YC")R"A=[4] i=012,..m-1.

k=0

On the other hand, we can write the matrix form for conditions as

UA=[4] or [U;4], 1=012,..,m-1 (16)
where
m-—1
U =>cTO(C )R =[u, U, U, ... uy], i=012,..,m-1
k=0
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Under conditions (2), to obtain the solution of Eq. (1), we replace the row matrices (16) by the last M rows of
the matrix (15) and have the new augmented matrix [15,30],

Woo Wor "' Won , g ('[0) ]
Wio Wiy "' Win ; g (t1)
W(N—l—m)O W(N—l—m)l W(N—l—m)N ; g(tN—l—m)
W:GCl=| Winmpo  Wonemp " Wnemn 5 9(tm) 17)
Ugo Uoy e Uon ; Ay
Uy Uy, e Uy ; A
| Umoan Uimn-1)2 Unyn s A

If rank W = rank[W;G]= N +1, then we can write A= (W)™G . Thus, we uniquely determine the matrix
A (thereby the coefficients a,,d,,...,ay). So Eq. (1) with conditions (2) has a unique solution and this

solution is given by Morgan-Voyce series solution (4). On the other hand, when ’\/\7‘ =0, that is if rank

V\7:rank[\A7;G]<N+1,then one can be found a particular solution. Otherwise if rank

W = rank[W;G] < N +1 then there is no solution.

4. Residual Correction and Error Estimation

In this section, we will give an error estimation for the Morgan-Voyce polynomial solution (4) with the residual
error function [25-28] and will improve the Morgan-Voyce polynomial solution (4) with the help of the residual
error function. For this purpose, we get the residual function of the Morgan-Voyce collocation method as

Ry (®) =LLyy®]-9(). (18)
Here Y, (t) is the Morgan-Voyce polynomial solution given by (4) of problem (1) and (2). Thus, Y, (t)
satisfies the problem

m-1

L1 =y 023 Py 0y (At +11,) = 90+ Ry 0

j=0 k=0
m-1
> e’ 0)=4, i=01..,m-1
k=0

Also, the error function € (t)

ey (1) = y(t) —yy (1) (19)
such that y(t) is the exact solution of problem (1) and (2).
By using Egs. (1), (2), (18) and (19) we can get the error differential equation

Lley (O] = LIy(O] - LLyn (0] =Ry (1)

with the condition

m-1

D ce’0)=0, i=01..m-1
k=0

or clearly, the error problem is
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J m-1

er(\lm) ®- ZZ ij (t)el(\lk) (ljkt + :ujk) =-Ry(t)
j=0 k=0 (20)

m-1
> el (0)=0, i=01..,m-1.
k=0
Here, we note that the nonhomogeneous condition
m-1
>y 0 =4, i=01..,m-1,
k=0
and

Eciky(Nk’(O) =4, 1=01..,m-1

r::s been reduced to the homogeneous condition

%Ciker(\nk)(o) =0, i=01...m-1.

é;oso|ving problem (20) with the method introduced section (2) and (3), we get the approximation
M

€ m (O =Zoa:Bn(t) M >N
=

to e, (t).
Consequently, by means of the polynomials Yy, (t) and €y, (t), (M =N), we get the correct Morgan-
Voyce polynomial solution Y \ (t) =y, (t)+€y (). Also, we construct the error function

e, ()= |y(t) - Yy (t)| , the correct error function E , (t) =€y (t)—ey () =y({t) -y () and the
estimated error function €y , (t).
If the exact solution of Eq. (1) unknown, then the absolute errors |eN (ti)| = |y(ti) - Yy (ti)|,(0 <x <b) is

not found. However the absolute errors can be approximately computed with the aid of the estimated absolute

error function ‘eN’M (t)‘

5. Numerical Examples
In this section, we want to show the accuracy and efficiency properties of the present method. For this reason,
we give several numerical examples. We have performed all calculations on MATLAB. The values of the exact

solution y(t), the polynomial approximate solution Y, (t), the corrected Morgan-Voyce polynomial solution
Y () =Yy () +ey, (t), the absolute error function €, (t) = |y(t) - Yy (t)| , the corrected absolute error

function ‘EN'M (t)‘:‘y(t)_yN,M (t)‘ and the estimated absolute error function €, (t) have been

illustrated in the Tables and Figures at the selected points of the given interval.
Example 1: (Sezer and Akyiiz-Dascioglu [30]). : With the exact solution y(t) = cos(t) [24], we consider the

pantograph equation of third order
Y (1) =ty"(2t) — y'(t) — y(%) T tcos(2t) + cos(%), 0<t<1. @)

The initial conditions are y(0) =1, y'(0)=0, y"(0)=-1.
The approximate solution Y, (t) by the truncated Morgan-Voyce series for N = 7 is given by
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7
Y, (1) =2 a,B,
n=0

Now, let us compute the coefficients a,, (n =0,12,..., N) of the approximate solution in the above form.
First, the set of collocation points (4) for a=0.1, b=1and N =7 is calculated as
{to =%,tl =%,t2 =%,t3 =%,t4 =;1—§,t5 =%,t6 =%,t7 =l}
and from Eq. 14, the fundamental matrix equation of the problem is
{rc’ )3 R' - Poo TB (Ao /Joo)(CT )O R" - P TB(Aos. :u01)(CT )R
— P TB (A, ,uoz)(CT )2 R'}A=G
So, by applying the procedure given in Section 2 and 3, we get the Morgan-Voyce polynomial solution
y, (t) =1—(0.433355608343e —16)t — 0.499999999999t >
+(0.292958337116e — 6)t3 +(0.415238563586¢€ — 2)t4 +(0.359406712252¢ — 4)t5
—(0.182525669465e — 3)t6 +(0.183940111353e — 4)t’

Since, we compute the corrected Morgan-Voyce polynomial solution, let us first consider the error problem

&) —te! (2t) + ) (t) + e(%) _tcos(2t)— cos(%) —_R()

e,(0)=0, &,/(0)=0, e,"(0)=0

Such that the residual function is
", " [ t t
R7 (t) =Y (t) _tY7 (Zt) +Y; (t) +Y,; (E) -t COS(Zt) - COS(E)

By solving the error problem (20) for M =10 with the method in Sections 2 and 3, the estimated Morgan-
Voyce error function approximation €, (t) to €, (t) is obtained as

e, ,,(t) = (0.693607751936¢ — 15) - (0.343664303350e — 14)t — (0.236539244477e —17)t*

—(0.292961608873e — 04)t* + (0.142893886870e — 03)t* — (0.360125981672e — 03)t°
+(0.439066507396€ — 03)t° — (0.188815184812e — 03)t” + (0.285169208951e — 04)t*

—(0.134151800991e — 05)t° — (0.732360508292¢ — 07)t*°
Hence, we calculate the corrected Morgan-Voyce polynomial solution

Y, 10 (t) =1.0000000000000008 - (0.386999864184e —14)t —0.49999999999t
—(0.327175726047e — 09)t* + 0.041666750245t* — (0.71926942003186352¢ — 06)t°
—(0.138619018725e — 02)t° — (0.487507345842¢ — 05)t” + (0.285169208951e — 04)t?
—(0.134151800991e — 05)t° — (0.732360508292¢ — 08)t"

In Table 1, we compare the numerical values of the exact solution, the Morgan-Voyce polynomial solutions and
corrected Morgan-Voyce polynomial solutions. In Table 2, the actual absolute errors are compared with

absolute errors estimated by the presented technique. These errors are almost identical. Table 3 shows the

for N=7,10 and M =10,13,15. Also the actual error function
corrected absolute errors by our method

\
)

I

=/
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and the estimated error function for N =7,10 and M =10,13,15 are compared in Figures 1a and 1b.
Figures 1c and 1d display the corrected absolute error functions for N =7,10 and M =10,13,15
Table 1: Numerical results of the exact and the approximate solutions for N =7,10 and M =10,1315 Eq. (21)

Exact solution Morgan-Voyce polynomial solution Corrected Morgan-Voyce polynomial solution t;

y(t) =cos(t;) v, (t) Y710(t) Y7u5(t)

0 1 1 0.9999999999990.999999999999
0.2 0.98006657784 0.980066673090.9800665778610.980066577841

0.4 0.92106099400 0.921061391100.921060993927 0.921060994003

0.6 0.825335614910.825335757120.825335609283 0.825335614910

0.8 0.69670670935 0.696701036370.6967066576520.696706709347

1 0.54030230587 0.540271242320.540302067554 0.540302305869

y(ti) = COS(ti) Yio (ti) Y1043 (ti) Y1015 (ti)

0 1 11 1

0.2 0.98006657784 0.980066577802 0.9800665778410.980066577841

0.4 0.92106099400 0.9210609938040.921060994003 0.921060994003

0.6 0.82533561491 0.825335613768 0.8253356149110.825335614910
0.8 0.69670670935 0.6967067021140.6967067093590.696706709347

1 0.54030230587 0.5403022751980.5403023059220.540302305868

Table 2: Comparison of the absolute error functions for N =7,10 and M =10,13,15 of Eq. (21)

Absolute errors for Morgan-Voyce Estimated absolute errors for Morgan-Voyce
polynomial solution polynomial solution

L |e7 (ti)| :|y(ti) — Yy (ti)| ‘97,10 (ti)‘ ‘e7,15(ti)‘

0 6.4835e-172.2413e-0163.5477e-016
0.2 9.5244e-08 9.5224e-0089.5244e-008
0.4  3.9709e-07 3.9717e-0073.9709e-007

0.6 1.4221e-071.4784e-007 1.4221e-007
0.8 5.6730e-065.6213e-0065.6730e-006
1 3.1064e-053.0825e-0053.1064e-005

€20 ()] =1Y(t) = Vi ()] [E1015 ()] [B1015 ()]
0 5.1088e-16 1.2804e-0163.4645e-016
0.2 3.9585e-113.9587e-0113.9585e-011
0.4 1.9885e-101.9889e-0101.9885e-010

0.6 1.1415e-091.1428e-0091.1415e-009
0.8 7.2329e-09 7.2448e-0097.2329e-009

1 3.0671e-083.0725e-0083.0671e-008

Table 3: Numerical results of the corrected error functions for N =7,20 and M =10,13,15 Eq. (21)

t. Improved absolute errors ‘EN'M (ti)‘ :‘y(ti)— Yam (ti)‘
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‘ E7,1o ( )‘ ‘ E7,15 (t, )‘ ‘ E10,13 (t )‘ ‘ E10,15 (t, )‘

0 7.7716e-0168.8818e-0164.4409e-016 0

0.2 2.0102e-0112.2204e-016 1.3323e-015 0
0.4 7.5690e-0117.7716e-016 4.3077e-014 2.2204e-016
0.6 5.6266e-009 2.8311e-014 1.3413e-0124.4409e-015
0.8 5.1696e-0082.5269e-013 1.1908e-0113.9968e-014

1 2.3831e-0071.1473e-0125.4110e-0111.8063e-013

10" —
/59/
10
/ T
10°
/

10 /
. /
<] /)
o -12 /"

10

/
/
10+
/
i/
10_161 / —o— le, 0
—— |e7’10(t)|
“ leyg 150l
10-18 i

0 0.1 0.2 03 04 0.5 06 07 0.8 0.9 1
t

Figure.1a. Comparison of the absolute error functions |eN (t)| = | y(t) -y, (t)| and the estimated error functio

[ex i ()] for N =7 and M =10,15 of Eq. (21).

10°
. P
10
1020 / ¢
s
@ /
/A
10—12 A
//
4
/
A
/
e
10 7 —o— eyl
'/
7 ——leyg.130)
/
74 ey 150l
107%F '

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Figure 1b: Comparison of the absolute error functions |eN (t)| = | y(t) -y, ('[)| and the estimated error functio
ey ()] for N'=10 and M =13,15 of Eq. (21).
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10°

10® —

10"

error
~

-12 /
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u —

eﬁ/ // © |E7,1o(t)|

T |E7Y 15(t)|

10

10™°

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Figure 1c: Comparison of the improved absolute error functions ‘EN’M (t)‘ = ‘y(t) —Yam (t)‘ for N=7 and

M =10,15 of Eq. (21).
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_ / 4
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b & 10,130l
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t

Figure 1d: Comparison of the improved absolute error functions ‘EN,M (t)‘ = ‘ y(t) = Yam (t)‘ for N =10

and M =13,15 of Eq. (21).

Example 2. Consider the pantograph equation of first order

15 ,t. 1
"M== =)+=y(t), 0<t<1. 22
y'(t) 2e y(2)+2y() (22)

\
)

=

i
)

Y Journal of Scientific and Engineering Research

329



ilh

ano

Journal of Scientific and Engineering Research, 2017, 4(10):320-332

with the boundary condition y(0) =1. The exact solution of the problem is y(t) =¢€".

By applying the presented method for N =10, M =12 and M =15, we obtain the approximate solutions.
We compute the approximate solution for N =10 and M =12 as follows,

Y101, (£) =0.999999999999 + 0.999999999999t + 0.499999999999t* + 0.166666666669t>
+(0.416666666469e — 2)t* + (0.833333343867¢e — 3)t° + (0.138888855692¢ — 3)t°
+(0.198413280567¢e — 4)t” +(0.248012627121e - 5)t° + (0.275491205118e — 6)t°

+(0.277608273630e — 7)t* + (0.230382578085¢ — 8)t** + (0.304608381562¢ — 9)t*

In the table 4, we compare the absolute errors obtained by the present method, Spline method [32], Adomian
Method [23], Taylor Method [30], Variational method [31]. In addition, the absolute error functions are
compared in the Figure.2.

Table 4: Comparison of the solutions and the absolute errors of Eq. (22)

Spline method ~ Adomian method

h =0.001with 13 terms[23] Taylor method[30] Method [31]

Variational

Present method

t
! m=3[32] N =12 ‘Elo,lz (ti)‘ ‘E10,15 (ti)‘
0.2 1.37e-11 0.00 2.220e-16 2.44e-05 2.220e-16 0
04 3.27e-11 2.22e-16 1.332e-15 2.28e-04 2.220e-16 2.220e-16
0.6 5.86e-11 2.22e-16 2.189%e-13 9.00e-04 2.220e-16 0
0.8 9.54e-11 1.33e-15 9.361e-12 2.50e-03 8.882e-16 4.441e-16
1 1.43e-10 4.88e-15 1.729%-10 5.71e-03 4.441e-16 8.882e-16
-2
10 ——
/////
10" | Spline method
— —F— Adomian method
10_6 P |e12(t)| with Taylor method
Variational method
. —+— |E4g 1ot with present method
10 ’ .
E h h
5 | 10’15(t)| with present method
]
107" S
s
10"
P
10" -
-y g = < R
16T ‘ - T
10
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
Figure 2: Comparison of the absolute error functions |eN (t)| = |y(t) - Yy (t)| and
|Eym ®)]=|Y() = Yy (©)]for N=10 and M =12,15 of Eq. (22)
;Q\:”‘\;;:
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6. Conclusions

In this article, we have improved the Morgan-Voyce collocation method, based on Morgan-Voyce polynomials,
for generalized pantograph equations. This improvement is based on the residual error function. In addition, an
error estimation is given with the residual error function. Morever, if the exact solution of the problem is

unknown, then the absolute errors |eN (ti)| = | y(t)— Yy (ti)| , (0<t<Db) can be estimated by the
approximation ‘eNYM (t)‘ . It is seen from Tables 1-3 that the estimated absolute errors ‘eN'M (ti)‘ are quite close

to the actual absolute errors |eN (ti)| :|y(ti) -Yy (ti)|. We see from the tables and the figures that the errors

decrease when N and M are increased. The comparisons of the present method by the other methods show
that our method is very effective. A consirable advantage of the method is that the approximate solutions are
computed very easily by using a well-known symbolic software such as Matlab, Maple and Mathematica.
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