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Abstract The purpose of this study is to apply the Euler matrix method to linear second order partial differential 

equations (PDEs) under the most general conditions. Error analysis of the method is presented. By using the 

residual correction procedure, the absolute error may be estimated. The effectiveness of the method is illustrated 

in numerical examples. Numerical results are overlapped with the theoretical results. 
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1. Introduction 

There are some well-known numerical methods such as finite difference methods, finite element methods, 

polynomial approximate methods, spectral methods, Galerkin, and collocation methods to numerically solve 

PDEs [1-2]. However, recently various approximate methods are discussed in the literature such as the 

differential transform method, Legendre-wavelet method, Chebyshev-tau method and Adomian decomposition 

method [3-13]. In this paper, we have developed a matrix method which is based on Euler polynomials. The 

method was given by error estimation and error analysis. 

Let   be a rectangular region,  ( , ) : 0 ,x y x y b     and   is the boundary of  . In general 

form, for all ( , )x y  , linear partial differential equations with variable coefficients follow as, 

2 2 2

2 2
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

u u u u u
P x y Q x y R x y S x y T x y V x y u G x y

x x y y x y

    
     

     
   (1.1) 

In this paper, we consider (1.1) with the following conditions in three complicated forms [12]: 

Case 1: Conditions defined at the points kx   and ky  , where ,k k   , 

                                                

1 1
( , )

,

1 0 0

( , )
t

k i j

i j k k k

k i j

a u   
  

                                                  (1.2) 

Case 2: Conditions defined at the points ky  , where k  , 

1 1
( , )

,

1 0 0

( ) ( , ) ( )
p

k i j

i j k k

k i j

b x u x g x
  

                                         (1.3) 

Case 3: Conditions defined at the points kx  , where k  , 

1 1
( , )

,

1 0 0

( ) ( , ) ( )
m

k i j

i j k k

k i j

c y u y h y
  

                                        (1.4) 
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Here ( , ), ( , ), ( , ), ( , ), ( , ), ( , )P x y Q x y R x y S x y T x y V x y  and ( , )G x y  are functions defined in  . 

( )kg x  and , ( )k

i jb x  are defined in 0 x b   . ( )kh y  and , ( )k

i jc y  are defined in 0 x b   . ,

k

i ja  

and k  are constants, , ,t p m Z  . Also 
(0,0) ( , ) ( , )u x y u x y  and 

( , ) ( , )
( , )

i j
i j

i j

u x y
u x y

x y




 
 where 

, 0,1,2.i j    

In this study, our purpose is to develop a new matrix method, which is based on the Euler polynomials for 

solving (1.1). Let consider the approximate solution of (1.1)      

                                       
, ,

0 0

( , ) ( , )
N N

r s r s

r s

u x y a E x y
 

                                              (1.5) 

where , ( , ) ( ) ( )r s r sE x y E x E y  and ,r sa ’s are unknown constants to be determined. Here, ( )rE x  and 

( )sE y  denote the Euler polynomials of degree r and s, respectively defined by. We choose the collocation 

points as  

                                           ; 0,1,..., , 0,1,...,n l

b
x y n N l N

N
    .                      (1.6) 

The rest of this paper is organized as follows. Some necessary definitions and theorems are given in Section 2. 

The method is constituted in Section 3 and Section 4. A comprehensive error analysis is given in Section 5. To 

verify the theoretical results given in Section 5, an example is presented in Section 6. In the last Section, a brief 

summary of the paper are given. 

 

2. Preliminaries and Notations 

2.1. Euler polynomials 

Euler numbers and polynomials are very useful in classical analysis and numerical mathematics. In many 

respects, they are closely related to the theory of Bernoulli polynomials and numbers. Euler polynomials and 

numbers are summarized as follows [14-17]. The classical Euler polynomials ( )nE x  is usually defined by 

means of the following generating function:   

0

2
( ) ,

1 !

xt n

nt
n

e t
E x t

e n






 


  

Euler numbers n   can be obtained by the generating function  

0

2

!

n

nt t
n

t

e e n










  

and the relation between Euler polynomials and Euler numbers is given 

(1/ 2) 2 , 0,1,2,...n

n nE n   

Euler polynomials can be obtained by the following formula recursively; 

0

( ) ( ) 2 , 1,2,...
n

n

n k

k

n
E x E x x n

k

 
   

 
  

The first four such Euler polynomials are 

2

0 1 2

3 2 4 3

3 4

1
( ) 1, ( ) , ( ) ,

2

3 1
( ) , ( ) 2 ,...

2 4

E x E x x E x x x

E x x x E x x x x

    

     

 

and the first Euler numbers are  
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0 1 2 3 4 5 6 71, 0, 1, 0, 5, 0, 61, 0,...                  

Euler polynomials satisfy the following interesting properties 

1( ) ( ), 1

( 1) ( ) 2 , 1

n n

n

n n

E x nE x n

E x E x x n


  

   
 

3. Fundamental Relations 

To find the numerical solution of PDEs with Euler matrix method, it is necessary to evaluate the unknown 

coefficients of the approximate solution. For convenience, the relation (1.5) can be written in the matrix form. 

Lemma 3.1.  [12] Let consider the approximate solution of (1.1) via by Euler polynomials such that, 

, ,

0 0

( , ) ( , )
N N

r s r s

r s

u x y a E x y
 

  

can be written as a matrix form 

                                              ( , ) ( ) ( )u x y x y AE F                    (3.1)  

where  

 0 1 1 ( 1)
( ) ( ) ( )N x N

E x E x E x


 E  

and 

2

0

0

0 ( 1) ( 1)

( ) ( ) 0 0 0 0

0 0 ( ) ( ) 0 0

0 0 0 0 ( ) ( )

N

N

N N x N

E y E y

E y E y

E y E y
 

 
 
 
 
 
 

   

   

  

   

F  

and A  is unknown coefficients matrix 

20,0 0,1 0, 1,0 1,1 1, ,0 ,1 , ( 1) 1

T

N N N N N N N x
a a a a a a a a a


     A= . 

Proof: We can prove it easily from the matrix multiplication such as 

00 0 0 01 0 1 0 0

10 1 0 11 1 1 1 1

0 0 1 1

,

0 0

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( )

N N

N N

N N N N NN N N

N N

r s r s

r s

u x y E x F y a E x E y a E x E y a E x E y

a E x E y a E x E y a E x E y

a E x E y a E x E y a E x E y

a E x E y
 

     

   

  



A

  

To solve PDEs approximately, an explicit relationship between the solution function ( , )u x y  and its partial 

derivatives essentially needed. In the next part we present these relations. 

 

3.1. Matrix Relations for Euler polynomials 

The matrix form for derivatives of (3.1), 

                                          
( , ) ( , )

, ,

0 0

( , ) ( , )
N N

i j i j

r s r s

r s

u x y a E x y
 

                                

can be written by Lemma 3.1 as  

                                             
( , ) ( ) ( )( , ) ( ) ( )i j i ju x y x y Ε F A .                           (3.2) 

We present the following lemma to show the relation between the matrix ( )xE , ( )yF  and theirs derivatives. 



Yuksel G                                                    Journal of Scientific and Engineering Research, 2016, 3(6):163-172 

 

Journal of Scientific and Engineering Research 

166 

 

Lemma 3.2 [12] Let ( , )u x y  and its ( )i j th -ordered partial derivatives be denoted by (3.1) and (3.2), 

respectively. Then there is relation such as 

                                               ( , ) ( , ) ( ) ( )i ju x y x y
ji

T
AE M F M                                   (3.3) 

where 

 

 

 

 

2 2( 1) ( 1)

0 0

0 0
,

0 0
N x N 

 
 
 
 
 
 

T

T

T





   



M

M
M

M

 

  

 

 

 

 

Proof: It is clearly seen that the relation between the matrix ( )xE  and its derivative 
(1) ( )xE  is  

(1) ( ) ( )x x T
E E M  

where M  is a ( 1) ( 1)N N    matrix such that, 

 

 

 

 

 

 

 

 

 

 

 

 

The second derivative of ( )xE  as follows, 

(2) (1)( ) ( ) ( )x x x T T 2
E E M E (M )  

If we take derivative iteratively, we get the following formula for i th  derivatives of ( )xE : 

( ) ( 1)( ) ( ) ( )i i ix x x T T
E E (M ) E (M ) . 

Similarly, we can obtain a formula for j th  derivatives of ( )yF  as follows, 

( 1) ( 1)

0 1 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 3 0 0 0

0 0 0 0 4 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0
N x N

N

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

M













       





N even 

N odd 

N even 

N odd 

( 1) ( 1)

0 1 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 3 0 0 0

0 0 0 0 4 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0
N x N

N

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

M
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y y

y y y

y y y

(1)

2
(2) (1)

(j) (j-1) j

( ) = ( )

( ) = ( ) = ( )

( ) = ( )( ) = ( )( )



F F M

F F M F M

F F M F M

 

where M  is a 
2 2( 1) ( 1)N N    block diagonal matrix such that 

2 2( 1) ( 1)

0 0

0 0

0 0
N x N 

 
 
 
 
 
 

T

T

T





   



M

M
M

M

 

Finally, substituting 
( ) ( )i xE  and 

j y( )
F ( )  in (3.2), we obtain the fundamental matrix equation 

   ( , ) ( ) ( )( , ) ( ) ( ) ( ) ( )i j i ju x y x y x y 
ji

T
A AE F E M F M . 

 

 

3.2 Matrix Forms of the Conditions 

We investigate the conditions in three parts. From Lemma 3.1 and Lemma 3.2, the fundamental matrix relations 

associated with the condition in Case 1 becomes, 

                  

1 1 1 1
( , )

, ,

1 0 0 1 0 0

( , ) ( )( ) )( )
t t

k i j k i j

i j k k i j k k k

k i j k i j

a u a    
     

 
  
 

  T
E M F( M A  ,       (3.4)       

Similarly the fundamental matrix relations for Case 2 and Case 3 respectively, 

1 1 1 1
( , )

, ,

1 0 0 1 0 0

( ) ( , ) ( ) ( )( ) ( )( ) ( ),
p p

k i j k i j

i j k i j k k

k i j k i j

b x u x b x x g x 
     

 
  
 

  T
E M F M A      (3.5) 

and 

1 1 1 1
( , )

, ,

1 0 0 1 0 0

( ) ( , ) ( ) ( )( ) ( )( ) ( )
m m

k i j k i j

i j k i j k k

k i j k i j

c y u y c y y h y 
     

 
  
 

  T
E M F M A .      (3.6) 

Hence, we shall obtain the linear algebraic equations, substituting the collocation points into the fundamental 

equations in the following section. 

4. Method of the Solution 

      Each term in (1.1) can be given in the matrix equation via (3.3) 

2

2

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( , )

P x, y x y Q x, y x y

R x, y x y S x, y x y

T x, y x y V x, y x y x y

 

 

 

T T

T

E M F A E M F M A

E F M A E M F A

E F M A E F A G

                           (4.1) 

By substituting the collocation points (1.6) into (4.1), we obtain the linear algebraic equation 

                  

2

2

( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

0,1,..., , 0,1,..., .

n l n l n l n l

n l n l n l n l

n l n l n l n l n l

P x , y x y Q x , y x y

R x , y x y S x , y x y

T x , y x y V x , y x y x , y

n N l N

 

 

 

 

T T

T

E M F A E M F M A

E F M A E M F A

E F M A E F A G
                 (4.2) 
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The fundamental matrix equation of (4.2) follows as 

                                   
P Q R

S T V

T 2 T 2

T

E(M ) F A+ E(M )F( M )A+ EF( M ) A+

E(M )F A+ EF( M )A+ EF A = G
                        (4.3) 

Here, (4.3) corresponds to a system of 
2( 1)N   linear algebraic equations with unknown Euler coefficients 

0,0 0,1 0, 1,0 1,1 1, ,0 ,1 ,, , , , , , , ,..., , , , .N N N N N Na a a a a a a a a    

Also, we can write (4.3) such that  

                                      
P Q R

S T V

  
 
  

T 2 T 2

T

W

E(M ) F + E(M )F( M )+ EF( M ) +
A = G

E(M )F + EF( M )+ EF
                (4.4) 

                                                                          W A = G                                                        (4.5)                 

Similarly, by substituting the collocation points (1.6) into (3.4), (3.5) and (3.6) for the complicated conditions, 

we obtain respectively, 

                      

1 1

,

1 0 0

( )( ) )( )
t

k i j

i j k k

k i j

a  
  

 
 

 



T

k

Z
1,k

E M F( M A λ                  

or shortly  

1,k kZ A λ                                                           (4.6) 

For Case 2, 

1 1

,

1 0 0

( ) ( )( ) ( )( ) ( ), 0,1,...
p

k i j

i j n n k k n

k i j

b x x g x n N
  

 
  

 



T

Z2,k

E M F M A  

or shortly 

2,k kZ A g                                                         (4.7) 

For Case 3 

1 1

,

1 0 0

( ) ( )( ) ( )( ) ( ) , 0,1,...,
m

k i j

i j l k l k l

k i j

c y y h y l N
  

 
  

 



T

Z3,k

E M F M A  

or shortly 

3,k kZ A h                                                         (4.8) 

We notice that the conditions associated with PDEs may be given by either of them, or both of them, or all of 

them. Now, combining the (4.6), (4.7) and (4.8), we can show the matrix equations of conditions in a new 

matrix form 



   
   

   
     

1,k k

2,k k

3,k k

RZ

Z λ

Z A g

Z h

 

or shortly 

Z A = R .                                                         (4.9) 



Yuksel G                                                    Journal of Scientific and Engineering Research, 2016, 3(6):163-172 

 

Journal of Scientific and Engineering Research 

169 

 

To obtain Euler polynomials solution of (1.1) under conditions (1.2), (1.3) and (1.4), it is formed the augmented 

matrix from (4.5) and (4.9) as follows, 

                                                      
 

     
 

 Z ; R
W;G

W ; G
.                                                    

Therefore, the unknown coefficients are obtained as 

                                                                   
1


 A W G                                                       

where  
  

 W; G  is generated by using the Gauss elimination method  and then removing zero rows of 

augmented matrix   
 

W; G . The reason of using the gauss elimination for this direct solution that beware of 

the non-invertible case of the matrix W
 . When the conditions are added to linear algebraic system, some rows 

can be same because of the symmetry of collocation points. These terms can be eliminated by Gauss elimination 

method. 

 

5. Error Analysis 

Since the Euler polynomial (1.5) is an approximate solution of (1.1), this solution is substituted in (1.1). The 

resulting equation must be satisfied approximately, that is, for    0,1 0,1r sx x , y y    : 

,

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) 0

N N r s

r s xx r s r s xy r s r s yy r s r s x r s

r s y r s r s r s r s

E (x , y )

P x y u x y Q x y u x y R x y u x y S x y u x y

T x y u x y V x y u x y G x y



  

   

 

and  

, ( , ) 10 ik

N N r sE x y


    ( ik  positive integer). 

If max (10 ) 10ik k ( k positive integer) is prescribed, then the truncation limit N is increased until 

the difference ,N N r sE (x , y )  at each of the points becomes smaller than the prescribed 
k10

. We can also 

calculate the maximum errors of the method as follows 

                  *

, , ,sup ( , ) ( , ) , ( , )N N N N N Ne u u u x y u x y x y


                                         (5.1) 

where, 
*u  is the exact solution of the problem and , ( , )N Nu x y   is the computed results for N. 

5.1 Residual correction procedure 

First, adding and subtracting the term 
2 2 2

, , , , ,

,2 2
( , ) : ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

N N N N N N N N N N

N N

u u u u u
R x y A x y B x y C x y D x y E x y F x y u

x x y y x y

    
     

     
 

in (1.1) yields the following differential equation 

                                     

2 2 2

2 2

e e e e e
A B C D E Fe G R

x x y y x y

    
      

     
                         (5.2) 

                                                  

1 1
( , )

,

1 0 0

( , ) 0
t

k i j

i j k k

k i j

a e
  

                                                    (5.3) 

1 1
( , )

,

1 0 0

( ) ( , ) 0
p

k i j

i j k

k i j

b x e x
  

                                                 (5.4) 
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1 1
( , )

,

1 0 0

( ) ( , ) 0
m

k i j

i j k

k i j

c y e y
  

                                                 (5.5) 

where , ,:N N N Ne e f u   . Let ,M Me  is solution of (5.2)-(5.5) via Euler matrix method. If 

, ,N N M Me e    is sufficiently small, the absolute error can be estimated by ,M Me . Hence, measuring in any 

norm the error functions ,M Me  for different values N ,  gives the optimal N   for the absolute error in that 

norm [13]. 

Corallary 5.1: If ,N Nu  is Euler matrix method solution of (1.1), then , ,N N M Mu e   is also an  approximate 

solution for (1.1). Moreover, its error function is , ,N N M Me e . 

Note that, if 
, , ,N N M M N Ne e f u   , then the approximate solution , ,N N M Mu e  gives better 

approximation than ,N Nu  in the norm. 

 

6. Numerical Examples: 

Example 1.  [18] Consider the second-order hyperbolic partial differential equation with variable coefficients on 

domain  ( , ) : 0 , 1x y x y     

2 2
2

2 2

1
0

2

u u
x

y x

 
 

 
 

subject to the initial conditions 

2

( ,0)

( ,0)y

u x x

u x x




 

with the exact solution 
2

( , ) sinhu x t x x y   . By taking N=5, 7 and 10 we solved the above problem by 

means of the fundamental matrix equation. In Table 1, we present supremum norms of the absolute errors for 

N=5, 7 and 10. Moreover, supremum norms of the estimated absolute errors with residual correction procedure 

are given in the same table. As seen from Table 1, the residual correction procedure estimates the absolute errors 

well. However, the absolute errors of present method are compared with Chebyshev method in Table 2. 

 

Table 1: Comparison of the maximum errors ,N Ne


, estimated absolute errors 
*

,M Me


 and error functions 

*

, ,N N M Me e


  for Example 1 (Digits:50) 

 

Present Method 5

7

N

M




 

7

7

N

M




 

10

12

N

M




 

,N Ne
  

5.0 E-3 8.0 E-5 5.0 E-7  

*

,M Me


 
8.0 E-5 1.0 E-6 2.5 E-9 

*

, ,N N M Me e




 

5.0 E-3 8.0 E-5 6.0 E-7 

Table 2: Comparison of the maximum errors ,N Ne


of present method with Chebyshev method for Example 1 
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Chebyshev 

Method [19] 

 7N   10N   

,N Ne
  

 6.0 E-5 6.16 E-7  

 

Example 2. [13] Let consider the following elliptic equations with Dirichlet boundary conditions : 

2 2
2 2 2 2

2 2
2 xyu u

x y x y e
x y

 
 

 
 

( ,0) 1, ( ,1)

(0, ) 1, (1, )

x

y

u x u x e

u y u y e

 

 
  

where the exact solution  of the problem is ( , ) xyu x y e . By taking 6,8N   and 10  the problem is solved 

with present method. In table 3, the absolute errors and the estimated absolute errors are compared with Berstein 

series solution [13]. As seen from the Table 3, for 6,8N   and 10, the present method gives better results than 

Berstein series solutions. However, , ,N N M Mu e  is a more accurate solution than ,N Nu  since 6N    and 

8N   for the present method. 

Table 3: Comparison of the maximum errors 
,N Ne


, estimated absolute errors 

*

,M Me


 and error functions 

*

, ,N N M Me e


  for Example 2 with Berstein series solution (Digits:40) 

Present Method 6

10

N

M




 

8

10

N

M




 

10

10

N

M




 

Berstein  

Series Sol. 

6

10

N

M




 

8

10

N

M




 

10

10

N

M




 

,N Ne
  

2.5 E-7 3.5 E-10 3.0 E-13  
,N Ne

  

4.0 E-7 5.0E-10 2.0E-13 

*

,M Me
  

8.0 E-8 1.6 E-10 7.0 E-15 *

,M Me
  

1.0 E-7 3.5E-10 1.8E-13 

*

, ,N N M Me e



 

2.0 E-7 1.8 E-10 3.0 E-13 *

, ,N N M Me e




 

3.6.E-7 5.0E-10 2.5E-13 

 

7. Conclusion 

Euler polynomials and Euler numbers have widespread use in many areas in mathematics. In this study Euler 

Polynomials are used to provide a numerical solution for linear second order PDEs with complicated conditions.   

The error analysis of the method is presented and also the absolute error can be estimated by residual correction 

procedure even if f  is unknown. One can obtain more accurate results with the aid of Corollary 5.1. Finally, as 

seen from the example, numerical results are consistent with the theoretical results.  
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