Journal of Scientific and Engineering Research, 2016, 3(4):499-505

ISSN: 2394-2630
Research Article
CODEN(USA): JSERBR

Some Generalised Results for Emanant in Argand Plane

Roshan Lal

Depatment of Mathematics, Govt. Degree College Chaubattakhal Pauri Garhwal, Uttarakhand, India
Abstract Let $p(z)$ be a polynomial of degree n and let α be any real or complex number, then the polar derivative of $p(z)$ denoted by $D_{\alpha} p(z)$, is defined as

$$
D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)
$$

The polynomial $D_{\alpha} p(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative $p^{\prime}(z)$ of $p(z)$ in the sense that

$$
\operatorname{Lim}_{\alpha \rightarrow \infty} \frac{D_{\alpha} p(z)}{\alpha}=p^{\prime}(z)
$$

For a polynomial $\mathrm{p}(\mathrm{z})$ having all its zeros in $|z|<k, k \leq 1$ and for all $\quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{t, 1} \leq t \leq n \quad$ with $\left|\alpha_{1}\right| \geq k$, $\left|\alpha_{1}\right| \geq k \quad,\left|\alpha_{2}\right| \geq k, \ldots . .,\left|\alpha_{t}\right| \geq k, 1 \leq t<n$, A. Zireh [J. Ineq. and Appl., 2011, 1-9] proved that $\frac{\max }{|z|=1}\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \geq \frac{n(n-1) \ldots \ldots(n-t+1)}{(1+k)^{t t}}$

$$
\begin{aligned}
& \left.\quad \times\left[\left\{\left(\left|\alpha_{1}\right|-k\right) \ldots . . .\left|\alpha_{t}\right|-k\right)\right\} \frac{\max }{|z|=1}|p(z)|+\left\{\begin{array}{l}
(1+k)^{t}\left(\left|\alpha_{1}\right|\left|\alpha_{2}\right| \ldots . \alpha_{t} \mid\right) \\
-\left\{(|\alpha|-k) \ldots\left(\left|\alpha_{t}\right|-k\right)\right\} k^{-n} \frac{\min }{|z|=k}|p(z)|
\end{array}\right\}\right] \\
& \text { In this paper, we extend this result to the lacunary type of polynomial }
\end{aligned}
$$ $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, \quad 1 \leq \mu \leq n$, having all its zeros in $|z|<k, k \leq 1$.

Our results generalize some of the well-known inequalities for the polar derivative of polynomials.
Keywords Polynomials; Polar derivative; Inequalities; Zeros, Maximum modulus.
AMS Subject Classification: 30A10, 30C10, 30D15.

Introduction

Let $p(z)$ be a polynomial of degree n, then according to a famous result known as Bernstein's inequality (for reference see [1]),

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1} p(z) \mid \tag{1.1}
\end{equation*}
$$

The result is best possible and equality holds for $p(z)=\lambda z^{n}, \lambda(\neq 0)$ being a complex number.

Turan [2] considered the class of polynomials having all the zeros in $|z| \leq 1$ and proved the following
Theorem A.If $p(z)$ is a polynomial of degree n, having all its zeros in $|z| \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|p(z)| \tag{1.2}
\end{equation*}
$$

The result is sharp and equality in (1.2) holds for the polynomial $p(z)=(1+z)^{n}$.
The following interesting refinement of Theorem A was proved by Aziz and Dawood [3].
Theorem B. If $p(z)$ is a polynomial of degree n, which has all its zeros in $|z| \leq 1$, then
$\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2}\left\{\max _{|z|=1}|p(z)|+\min _{|z|=1}|p(z)|\right\}$.
Malik [4] obtained the following generalization of (1.2).
Theorem C. If $p(z)$ is a polynomial of degree n, having all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{|z|=1}|p(z)| \tag{1.4}
\end{equation*}
$$

The result is sharp and extremal polynomial is $p(z)=(z+k)^{n}$.
Inequality (1.4) was generalized by Chan and Malik [5] to the lacunary type of polynomial and proved that if $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, \quad 1 \leq \mu \leq n$, having all zeros in $|z|<k, k \leq 1$, then
$\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k^{\mu}} \max _{|z|=1}|p(z)|$
Let $p(z)$ be a polynomial of degree n, and let α be any real or complex number, then the polar derivative of $p(z)$ denoted by $D_{\alpha} p(z)$, is defined as
$D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)$
The polynomial $D_{\alpha} p(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative $p^{\prime}(z)$ of $p(z)$ in the sense that
$\operatorname{Lim}_{\alpha \rightarrow \infty} \frac{D_{\alpha} p(z)}{\alpha}=p^{\prime}(z)$
The polynomial $D_{\alpha} p(z)$ is called by Laguerre [6] the "emanant" of $p(z)$, by Polya and Szegö [7] the "derivative of $p(z)$ with respect to the point α ", and by Marden [8] simply the "polar derivative" of $p(z)$. It is obviously of interest to obtain estimates concerning growth of $D_{\alpha} p(z)$.
Shah [9] extended Theorem A due to Turan to the polar derivative of polynomial $p(z)$ by proving the following
Theorem D. If all the zeros of a polynomial $p(z)$ of degree n, lie in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \geq 1$,

$$
\begin{equation*}
\left.\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{2}(|\alpha|-1) \max _{|z|=1} p(z) \right\rvert\, \tag{1.8}
\end{equation*}
$$

The result is best possible and extremal polynomial is $p(z)=(z-1)^{n}$ with real $\alpha \geq 1$.
As a refinement of Theorem D, Aziz and Rather [10] also proved the following result.

Theorem E. If all the zeros of the $n^{\text {th }}$ degree polynomial $p(z)$ lie in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \geq 1$,
$\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{2}\left\{(|\alpha|-1) \max _{|z|=1}|p(z)|+(|\alpha|+1) \min _{|z|=1}|p(z)|\right\}$.
Govil [11] extended Theorem C to the polar derivative of a polynomial by proving the following result.
Theorem F. If $p(z)$ is a polynomial of degree n having all its zeros in $|z|<k, k \leq 1$, , then for every real or complex number α with $|\alpha| \geq k$,
$\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq n\left(\frac{|\alpha|-k}{1+k}\right) \max _{|z|=1}|p(z)|$.
Next result due to Dewan and Upadhye [12] extends the above result to polar derivative and also generalizes it to lacunary type of polynomial and proved
Theorem G. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, \quad 1 \leq \mu \leq n$, is a polynomial having all zeros in $|z|<k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq k^{\mu}$,
$\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq n\left(\frac{|\alpha|-k^{\mu}}{1+k^{\mu}}\right) \max _{|z|=1}|p(z)|$.
As an extension of of inequality (1.11) Jain [13] proved that if $\mathrm{p}(\mathrm{z})$ is a polynomial of degree n , having all its zeros in $|z| \leq 1$, then for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t, 1} \leq t \leq n$, with $\left|\alpha_{1}\right| \geq 1, \quad\left|\alpha_{2}\right| \geq 1,\left|\alpha_{3}\right| \geq 1, \ldots \ldots,\left|\alpha_{t}\right| \geq k, 1 \leq t$ $<n$, we have

$$
\left.\begin{array}{rl}
\left.\frac{\max }{|z|=1} \right\rvert\, D_{\alpha_{t}} \ldots & D_{\alpha_{2}} D_{\alpha_{1}} p(z) \left\lvert\, \geq \frac{n(n-1) \ldots \ldots .(n-t+1)}{(2)^{t t}}\right. \\
& \times\left[\left\{\left(\left|\alpha_{1}\right|-1\right) \ldots . .\left(\left|\alpha_{t}\right|-1\right)\right\} \frac{\max }{|z|=1}|p(z)|+\left\{\begin{array}{l}
2^{t}\left(\left|\alpha_{1}\right|\left|\alpha_{2}\right| \ldots .\left|\alpha_{t}\right|\right) \\
-\left\{\left(\left|\alpha_{1}\right|-1\right) \ldots . .\left(\alpha_{t} \mid-1\right)\right\} \frac{\min }{|z|=1}|p(z)|
\end{array}\right\}\right. \tag{1.12}
\end{array}\right] .
$$

Inequality (1.12) is generalized by Zireh [14] and proved that if a polynomial $\mathrm{p}(\mathrm{z})$ having all its zeros in $|z|<k, k \leq 1$, and for all $\quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{t, 1} \leq t \leq n \quad$ with $\left|\alpha_{1}\right| \geq k, \quad\left|\alpha_{1}\right| \geq k \quad,\left|\alpha_{2}\right| \geq k, \ldots \ldots,\left|\alpha_{t}\right| \geq k$, $1 \leq t<n$, then we have

$$
\begin{align*}
\left.\frac{\max }{|z|=1} \right\rvert\, D_{\alpha_{t}} . & D_{\alpha_{2}} D_{\alpha_{1}} p(z) \left\lvert\, \geq \frac{n(n-1) \ldots \ldots(n-t+1)}{(1+k)^{t t}}\right. \\
& \times\left[\left\{\left(\left|\alpha_{1}\right|-k\right) \ldots . .\left(\left|\alpha_{t}\right|-k\right)\right\} \frac{\max }{|z|=1}|p(z)|+\left\{\begin{array}{l}
(1+k)^{t}\left(\left|\alpha_{1} \| \alpha_{2}\right| \ldots . \alpha_{t} \mid\right) \\
-\left\{(|\alpha|-k) \cdot .\left(\left|\alpha_{t}\right|-k\right)\right\} k^{-n} \frac{\min }{|z|=k}|p(z)|
\end{array}\right\}\right] \tag{1.13}
\end{align*}
$$

In this paper, we consider the lacunary type of polynomial $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, \quad 1 \leq \mu \leq n$, and generalize inequality (1.13) for polar derivative of polynomial.
Theorem1. If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n$, is a polynomial having all its zeros in $|z|<k, k \leq 1$, and for all $\quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{t, 1} \leq t \leq n \quad$ with $\left|\alpha_{1}\right| \geq k^{\mu},\left|\alpha_{2}\right| \geq k^{\mu}, \ldots \ldots,\left|\alpha_{t}\right| \geq k^{\mu}, 1 \leq t<n$, and $|z|=1$ then we have

$$
\begin{align*}
&\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \geq \frac{n(n-1) \ldots \ldots .(n-t+1)}{\left(1+k^{\mu}\right)^{t t}} \\
& \times\left[\left\{\left(\left|\alpha_{1}\right|-k^{\mu}\right) \ldots . .\left|\left|\alpha_{t}\right|-k^{\mu}\right)\right\} \frac{\max }{|z|=1}|p(z)|+\left\{\begin{array}{l}
\left(1+k^{\mu}\right)^{t}\left(\left|\alpha_{1} \| \alpha_{2}\right| \ldots . \alpha_{t} \mid\right) \\
-\left\{\left(|\alpha|-k^{\mu}\right) . .\left|\left|\alpha_{t}\right|-k^{\mu}\right)\right\} k^{-n} \frac{\min }{|z|=k}|p(z)|
\end{array}\right\}\right] . \tag{1.14}
\end{align*}
$$

Equality in (1.14) holds for $p(z)=\left(z-k^{\mu}\right)^{n}$.
Remark2.If we take $\mu=1$ in above theorem, we get inequality (1.13) due to Zireh [14]. For $k=1$ above theorem reduces to inequality (1.12) proved by Jain [13].
If we divide the inequality (1.14) by $\left|\alpha_{1} \alpha_{2} \ldots \ldots . \alpha_{t}\right|$ and letting $\left|\alpha_{1} \alpha_{2} \ldots \ldots . \alpha_{t}\right| \rightarrow \infty$, we get the following
Corollary3. If $\left.p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n\right)$ is a polynomial having all its zeros in $|z|<k, k \leq 1$ then for $|z|=1$
$\left|p^{p}(z)\right| \geq \frac{n(n-1) \ldots \ldots . .(n-t+1)}{\left(1+k^{\mu}\right)^{t t}} \times\left[\frac{\max }{|z|=1}|p(z)|+\left\{\left(\left(1+k^{\mu}\right)^{t}-1\right) k^{-n} \frac{\min }{|z|=k}|p(z)|\right\}\right]$.
If we take $t=1$ in Corollary 3, we get the following result, which improves upon the bound of inequality (1.11) due to Dewan and Upadhye [12].
Corollary4. If $\left.p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, 1 \leq \mu \leq n\right)$ is a polynomial having all its zeros in $|z|<k, k \leq 1$ then for $|z|=1$
$\left.\left|p^{\prime}(z)\right| \geq \frac{n}{1+k^{\mu}}\right)\left\{\max _{|z|=1}|p(z)|+\frac{1}{k^{n-\mu}} \min _{|z|=1}|p(z)|\right\}$.
Remark5. If we take $\mu=1$ in corollary 4 , it reduces to an inequality, which sharpen upon the bound of inequality (1.10) due to Govil [11].

1. Lemmas

We need the following lemmas for the proof the theorem.
Lemma 1. If all the zeros of a polynomial of degree n lie in a circular region C and w is any zero of $D_{\alpha} p(z)$, then at most one of the points w and α may lie outside C.
The above Lemma is due to Laguerre (for reference see [6] , p. 52).
Lemma 2. If . If $p(z)=a_{n} z^{n}+\sum_{j=\mu}^{n} a_{n-j} z^{n-j}, \quad 1 \leq \mu \leq n$, is a polynomial having all its zeros in $|z|<k, k \leq 1$, and for all $\quad \alpha_{1}, \alpha_{2,}, \ldots, \alpha_{t,} 1 \leq t \leq n \quad$ with $\left|\alpha_{1}\right| \geq k^{\mu},\left|\alpha_{2}\right| \geq k^{\mu}, \ldots \ldots,\left|\alpha_{t}\right| \geq k^{\mu}, 1 \leq t<n$, and $|z|=1$ then we have
$\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \geq \frac{n(n-1) \ldots \ldots . .(n-t+1)}{\left(1+k^{\mu}\right)^{t t}}\left[\left\{\left(\left|\alpha_{1}\right|-k^{\mu}\right) \ldots \ldots .\left(\left|\alpha_{t}\right|-k^{\mu}\right)\right\} \frac{\max }{|z|=1}|p(z)|\right]$.

Proof of Lemma 2. If $\left|\alpha_{j}\right|=k^{\mu}$ for at least one $j ; 1 \leq j \leq t$, then inequality () is trivial. Therefore, we assume that $\left|\alpha_{j}\right|>k^{\mu}$ for $j ; 1 \leq j \leq t$. In the rest, we proceed by mathematical induction. The result is true for $t=1$, by inequality (), that means if $\left|\alpha_{1}\right|>k^{\mu}$, then

$$
\begin{equation*}
\left|D_{\alpha_{1}} p(z)\right| \geq n\left(\frac{\left|\alpha_{1}\right|-k^{\mu}}{1+k^{\mu}}\right) \max _{|z|=1}|p(z)| \tag{2.2}
\end{equation*}
$$

Now for $\mathrm{t}=2$, since
$D_{\alpha_{1}} p(z)=\alpha_{1} n a_{n} z^{n-1}+\mu a_{n-\mu} z^{n-\mu}+\left\{(\mu+1) a_{n-\mu-1}+\alpha_{1}(n-\mu) a_{n-\mu}\right\} z^{n-\mu-1}+\ldots \ldots .\left\{2 \alpha_{1} a_{2}+(n-1) a_{1}\right\} z+\alpha_{1} a_{1}+n a_{0}$ and $\left|\alpha_{1}\right|>k^{\mu}, D_{\alpha_{1}} p(z)$ is a polynomial of degree (n-1). Since all the zeros of $\mathrm{p}(\mathrm{z})$ lie in $|z|<k, k \leq 1$, therefore by Lemma1, all the zeros of $D_{\alpha_{1}} p(z)$ lie in $|z|<k, k \leq 1$.
applying Inequality (2.2) to $D_{\alpha_{1}} p(z)$, a polynomial of degree ($\mathrm{n}-1$), and $\left|\alpha_{2}\right| \geq k^{\mu}$, we conclude that

$$
\left|D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \geq(n-1)\left(\frac{\left|\alpha_{2}\right|-k^{\mu}}{1+k^{\mu}}\right) \max _{|z|=1}\left|D_{\alpha_{1}} p(z)\right|
$$

Substituting the term $D_{\alpha_{1}} p(z)$ from (2.2) in this inequality, we obtain

$$
\begin{equation*}
\left|D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \geq n(n-1) \frac{\left(\left|\alpha_{1}-k^{\mu}\right|\right)\left(\left|\alpha_{2}\right|-k^{\mu}\right)}{\left(1+k^{\mu}\right)^{2}} \max _{|z|=1}|p(z)| \tag{2.3}
\end{equation*}
$$

This implies that result is true for $\mathrm{t}=2$. Now we assume that the result is true for $\mathrm{t}=\mathrm{s}<\mathrm{n}$: it means that for $|z|=1$ we have

$$
\begin{equation*}
\left|D_{\alpha_{s t}} . . D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \geq \frac{n(n-1) \ldots \ldots .(n-s+1)}{\left(1+k^{\mu}\right)^{t s}}\left[\left\{\left(\left|\alpha_{1}\right|-k^{\mu}\right) \ldots .\left(\left|\alpha_{s t}\right|-k^{\mu}\right)\right\} \frac{\max }{|z|=1}|p(z)|\right] . \tag{2.4}
\end{equation*}
$$

Now we shall prove that the result is true for $\mathrm{t}=\mathrm{s}+1<\mathrm{n}$. According to the above procedure, using Lemma1, the polynomial $D_{\alpha_{s t}} . . D_{\alpha_{2}} D_{\alpha_{1}} p(z)$ is a polynomial of degree (n -s) for all $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s t}, 1 \leq s \leq n$, with $\left|\alpha_{1}\right| \geq k^{\mu}$ $\left|\alpha_{2}\right| \geq k^{\mu}, \ldots \ldots .\left|\alpha_{s}\right| \geq k^{\mu}$,
$1 \leq s<n$, and has all zeros in $|z|<k, k \leq 1$ Therefore, for $\left|\alpha_{s+1}\right| \geq k^{\mu}$, applying inequality (2.4) to $D_{\alpha_{s t}} . . D_{\alpha_{2}} D_{\alpha_{1}} p(z)$, we have

$$
\begin{equation*}
\left|D_{\alpha_{s+1}}\left\{D_{\alpha_{s}} \ldots . . D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right\}\right| \geq \frac{(n-s)\left(\left|\alpha_{s+1}-k^{\mu}\right|\right)}{1+k^{\mu}} \max _{|z|=1}\left|D_{\alpha_{s}} \ldots . . D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \tag{2.5}
\end{equation*}
$$

On combining the inequalities (2.4) and (2.5), we get

$$
\left|D_{\alpha_{s+1}} D_{\alpha_{s}} \ldots \ldots D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \geq \frac{n(n-1) \ldots(n-s)\left(\left|\alpha_{1}-k^{\mu}\right|\right) \ldots\left(\left|\alpha_{s+1}-k^{\mu}\right|\right)}{\left(1+k^{\mu}\right)^{s+1}} \begin{align*}
& \times \max _{|z|=1}\left|D_{\alpha_{s}} D_{\alpha_{s}} \ldots \ldots D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \cdot t r \tag{2.6}
\end{align*}
$$

This implies that the result is true for $t=s+1$. The proof is complete.
3. Proof of the Theorem: Let $m=\min _{|z|=k}|p(z)|$. If $\mathrm{p}(\mathrm{z})$ has a zero on $|z|=k$, then $\mathrm{m}=0$ and the result follows from Lemma2. Therefore, we suppose that all the zeros of $\mathrm{p}(\mathrm{z})$ lie in $|z|<k$, so that $\mathrm{m}>0$. Now $m \leq|p(z)|$ for $|z|=k$, therefore if λ is any real or complex number such that $|\lambda|<1$, then $\left|\lambda m\left(\frac{z}{k}\right)^{n}\right|<|p(z)|$ for $|z|=k$. Since all the zeros of $\mathrm{p}(\mathrm{z})$ lie in $|z|<k$, by Rouche's Theorem, we deduce that all the zeros of the polynomial $G(z)=p(z)-\lambda m\left(\frac{z}{k}\right)^{n}$ lie in $|z|<k$. Applying Lemma 2 for the polynomial $\mathrm{G}(\mathrm{z})$ of degree n which has all zeros in $|z|<k$, and for all $\quad \alpha_{1}, \alpha_{2,}, \ldots, \alpha_{t,} 1 \leq t \leq n \quad$ with $\left|\alpha_{1}\right| \geq k^{\mu},\left|\alpha_{2}\right| \geq k^{\mu}, \ldots \ldots,\left|\alpha_{t}\right| \geq k^{\mu}, 1 \leq t$ $<n$,
$\left|D_{\alpha_{t}} . . D_{\alpha_{2}} D_{\alpha_{1}} G(z)\right| \geq \frac{n(n-1) \ldots \ldots(n-t+1)}{\left(1+k^{\mu}\right)^{t t}}\left[\left\{\left(\left|\alpha_{1}\right|-k^{\mu}\right) \ldots . .\left(\left|\alpha_{t}\right|-k^{\mu}\right)\right\} \frac{\max }{|z|=1}|G(z)|\right]$.
For $|z|=1$.
Equivalently
$\left|D_{\alpha_{t}} . . D_{\alpha_{2}} D_{\alpha_{1}} p(z)-\lambda \frac{m}{k^{n}}\left\{n(n-1) \ldots \ldots(n-t+1) \alpha_{1} \alpha_{2 \ldots \ldots . . \alpha_{t}}\right\} z^{n-t}\right|$
$\geq \frac{n(n-1) \ldots \ldots(n-t+1)}{\left(1+k^{\mu}\right)^{t t}}\left[\left\{\left(\left|\alpha_{1}\right|-k^{\mu}\right) \ldots .\left(\left|\alpha_{t}\right|-k^{\mu}\right)\right\} \frac{\max }{|z|=1}\left|p(z)-\lambda m\left(\frac{z}{k}\right)^{n}\right|\right]$.
By Lemma 1, the polynomial $T(z)=D_{\alpha_{t}} \ldots . . D_{\alpha_{2}} D_{\alpha_{1}} G(z$ has all its zeros in $|z| \leq k$.
That is to say
$T(z)=D_{\alpha_{t}} \ldots . . D_{\alpha_{2}} D_{\alpha_{1}} G(z \neq 0$ for $|z|>k$.
Now substituting $\mathrm{G}(\mathrm{z})$ in $\mathrm{T}(\mathrm{z})$ above, we conclude that for every λ, with $|\lambda|<1$
and $|z|>k$.,
$T(z)=D_{\alpha_{t}} \ldots . D_{\alpha_{2}} D_{\alpha_{1}} p(z)-\lambda \frac{m}{k^{n}}\left\{n(n-1) \ldots \ldots .(n-t+1) \alpha_{1} \alpha_{2} \ldots \alpha_{t}\right\} z^{n-t} \quad \neq 0$.
Thus for $|z|>k$.,
$\left|D_{\alpha_{t}} \ldots . . D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \geq \lambda \frac{m}{k^{n}}\left\{n(n-1) \ldots \ldots(n-t+1) \alpha_{1} \alpha_{2} \ldots \alpha_{t}\right\} z^{n-t}$.
If the above inequality is not true, then there is a point $\mathrm{z}=\mathrm{z}_{0}$ with $\left|z_{0}\right|>k$. such that
$\left|D_{\alpha_{t}} \ldots . D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right|<\lambda \frac{m}{k^{n}}\left\{n(n-1) \ldots \ldots .(n-t+1) \alpha_{1} \alpha_{2} \ldots \alpha_{t}\right\} z^{n-t}$.
Now if we take
$\lambda=\frac{\left|D_{\alpha_{t}} \ldots . D_{\alpha_{2}} D_{\alpha_{1}} p\left(z_{0}\right)\right|}{\frac{m}{k^{n}}\left\{n(n-1) \ldots \ldots(n-t+1) \alpha_{1} \alpha_{2} \ldots \alpha_{t}\right\} z_{0} n-t}$.

Then $|\lambda|<1$ and with choice of λ, we have $T\left(z_{0}\right)=0$ for $\left|z_{0}\right|>k$. from (3.2). But this contradict the fact that $T(z) \neq 0$ for $|z|>k$. . Hence for $|z|>k$., we have
$\left|D_{\alpha_{t}} \ldots . D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \geq \lambda \frac{m}{k^{n}}\left\{n(n-1) \ldots \ldots(n-t+1) \alpha_{1} \alpha_{2} \ldots \alpha_{t}\right\} z^{n-t}$
Taking a suitable choice for the argument of λ, in inequality (3.1), we get
$\left|D_{\alpha_{t}} . . D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right|-\left.|\lambda| \frac{m}{k^{n}}\left\{n(n-1) \ldots \ldots .(n-t+1)\left|\alpha_{1}\right|\left|\alpha_{2}\right| \ldots \ldots . .\left|\alpha_{t}\right|\right\rangle z\right|^{n-t}$
$\geq \frac{n(n-1) \ldots \ldots .(n-t+1)}{\left(1+k^{\mu}\right)^{t}}\left[\left\{\left(\left|\alpha_{1}\right|-k^{\mu}\right) \ldots . .\left(\left|\alpha_{t}\right|-k^{\mu}\right)\right)\left(|p(z)|-|\lambda| \frac{m}{k^{n}}|z|^{n}\right)\right]$. for $|z|=1$.
Thus equivalently for $|z|=1$,

$$
\begin{aligned}
&\left|D_{\alpha_{t}} \ldots D_{\alpha_{2}} D_{\alpha_{1}} p(z)\right| \geq \frac{n(n-1) \ldots \ldots . .(n-t+1)}{\left(1+k^{\mu}\right)^{t t}} \\
& \times\left[\left\{\left(\left|\alpha_{1}\right|-k^{\mu}\right) \ldots \ldots .\left(\left|\alpha_{t}\right|-k^{\mu}\right)\right\} \frac{\max }{|z|=1}|p(z)|+|\lambda|\left\{\begin{array}{l}
\left(1+k^{\mu}\right)^{t}\left(\left|\alpha_{1}\right|\left|\alpha_{2}\right| \ldots . . \alpha_{t} \mid\right) \\
-\left\{\left(|\alpha|-k^{\mu}\right) \ldots\left(\left|\alpha_{t}\right|-k^{\mu}\right)\right\} \frac{m}{k^{n}}
\end{array}\right\}\right] .
\end{aligned}
$$

Finally making $|\lambda| \rightarrow 1$, the theorem follows.

References

[1]. S. Bernstein, Lecons Sur Les Proprietes extrremales et la meillure approximation des functions analytiques d'une functions reele, Paris, 1926.
[2]. P. Turan, Uber die ableitung von polynomen, Compositio Math., 7(1939) 89-95.
[3]. Aziz and Q.M, Dawood, Inequalities for a polynomial and its derivative, J. Approx. Theory, 54(1988) 306-313.
[4]. M.A.Malik, On the derivative of polynomial, J. London Math. Soc., 1(1969) 57-60.
[5]. N.Chan and M.A.Malik, On Erd $\ddot{O} s$-Lax Theorem, Proc. Indian Acad. Sci., 92(3) (1983) 191-193.
[6]. E.Laguerre, "Oeuvres", Gauthier-villars, Paris, (1898).
[7]. G. P \dot{o} lya and G.Szeg \ddot{O}, "Problems and Theorems in Analysis" vol-1, Springler- Verlag, Berlin, 1972.
[8]. M. Marden, Geometry of polynomials, IInd ed. Syrveys, N0-3, Amer. Math. Soc. Providence, R.I., 1966.
[9]. W.M.Shah, A generalization of a Theorem of Paul Turan, J. Ramanujan Math. Soc., 1(1996) 67-72.
[10]. Aziz and N.A. Rather, A refinement of a Theorem of Paul Turan concerning polynomials, Math. Inequal. Appl. 1(1998) 231-238.
[11]. N. K. Govil, Some inequalities for derivative of polynomials, J. Approx. Theory, 66(1991) 29-35.
[12]. K. K. Dewan, C. M. Upadhye, Certain Inequalities for the polar derivative of a polynomial having zeros in closed interior or closed exterior of a circle, Southeast Asian Bull. Math., 31(2007), 461-468.
[13]. V. K. Jain, Gene ralisation of an inequality involving maximum moduli of a polynomial and its polar derivative, Bull. Math. Soc. Sci. Math Roum Tome., 98(2007), 67-74.
[14]. A. Zireh, On the maximum modulus of a polynomial and its polar derivative, J. Inequ. Appl., 2011:111, 1-9.

