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Abstract Let )(zp be a polynomial of degree n and let  be any real or complex number, then the polar 

derivative of )(zp denoted by )(zpD , is defined as 
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The polynomial )(zpD is of degree at most 1n and it generalizes the ordinary derivative )(' zp of )(zp

in the sense that 
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In this paper, we extend this result to the lacunary type of polynomial 
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1,)( , having all its zeros in  .1,  kkz
   

Our results generalize some of the well-known inequalities for the polar derivative of polynomials. 
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Introduction 

Let )(zp be a polynomial of degree n , then according to a famous result known as Bernstein’s inequality (for 

reference see [1]), 
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.                                               (1.1) 

The result is best possible and equality holds for
nzzp )( , )0( being a complex number. 
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Turan [2] considered the class of polynomials having all the zeros in 1z and proved the following  

Theorem A .If )(zp is a polynomial of degree n , having all its zeros in 1z , then 
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.                                         (1.2) 

The result is sharp and equality in (1.2) holds for the polynomial
nzzp )1()(  . 

The following interesting refinement of Theorem A was proved by Aziz and Dawood [3]. 

Theorem B.  If )(zp  is a polynomial of degree n, which has all its zeros in 1z ,  then  
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Malik [4] obtained the following generalization of (1.2). 

Theorem C. If )(zp  is a polynomial of degree n, having all its zeros in 1,  kkz , then  
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The result is sharp and extremal polynomial is 
nkzzp )()(  . 

Inequality (1.4) was generalized by Chan and Malik [5] to the lacunary type of polynomial and proved that if
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1,)( , having all zeros in  1,  kkz
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Let )(zp be a polynomial of degree n , and let   be any real or complex number, then the polar derivative of 

)(zp denoted by )(zpD , is defined as 

)(')()()( zpzzpnzpD                                                            (1.6) 

The polynomial )(zpD is of degree at most 1n  and it generalizes the ordinary derivative )(' zp of

)(zp  in the sense that 
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The polynomial )(zpD is called by Laguerre [6] the “emanant” of )(zp , by Polya and oSzeg   [7] the 

“derivative of )(zp  with respect to the point ”, and by Marden [8] simply the “polar derivative” of )(zp . 

It is obviously of interest to obtain estimates concerning growth of )(zpD . 

Shah [9] extended Theorem A due to Turan to the polar derivative of polynomial )(zp by proving the 

following 

Theorem D . If all the zeros of a polynomial )(zp  of degree n , lie in 1z , then for every real or complex 

number   with 1 ,                                
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.                                       (1.8) 

The result is best possible and extremal polynomial is
nzzp )1()(   with real 1 . 

As a refinement of Theorem D, Aziz and Rather [10] also proved the following result. 
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Theorem E. If all the zeros of the n
th

 degree polynomial )(zp  lie in 1z , then for every real or complex 

number   with 1 , 
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 Govil [11] extended Theorem C to the polar derivative of a polynomial by proving the following result.  

Theorem F. If )(zp  is a polynomial of degree n having all its zeros in 1,  kkz , ,  then for every real or 

complex number   with k ,  
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Next result due to Dewan and Upadhye [12] extends the above result to polar derivative and also generalizes it 

to lacunary type of polynomial and proved  

Theorem G. If 
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As an extension of of inequality (1.11) Jain [13] proved that if p(z) is a polynomial of degree n, having all its 

zeros in 1z , then for all nt
t

 1,,
,,21

 , with 1
1
  ,    1

2
    , 1

3
  ,....., k

t
  , t1

<n, we have 

   

 

    
 

    
.

)(
1

min
1...1

.....2

)(
1

max
1.......1

2

1.........1
)(...

1

max

1

21

1

12



















































zp
z

zp
z

tnnn
zpDDD

z

t

t
t

t

ttt

              

(1.12) 

Inequality (1.12) is generalized by Zireh [14] and proved that if a polynomial p(z) having all its zeros in 

1,  kkz  , and for all   nt
t
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t1 <n ,  then we have 
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In this paper, we consider the lacunary type of  polynomial 
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and generalize inequality (1.13) for polar derivative of polynomial. 

Theorem1. If 
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1,)( , is a polynomial having all its zeros in 
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1z then we have 
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(1.14) 

Equality in (1.14) holds for  nkzzp )( . 

Remark2.If we take 1 in above theorem, we get inequality (1.13) due to Zireh [14]. For k=1 above theorem 

reduces to inequality (1.12) proved by Jain [13]. 

If we divide the inequality (1.14) by t ........21 and letting  t........21 , we get the following 

Corollary3. If 
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If we take t=1 in Corollary 3, we get the following result, which improves upon the bound of inequality (1.11) 

due to Dewan and Upadhye [12]. 

Corollary4. If 
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Remark5. If we take 1 in corollary 4, it reduces to an inequality, which sharpen upon the bound of 

inequality (1.10) due to Govil [11]. 

1. Lemmas 

We need the following lemmas for the proof the theorem. 

Lemma 1. If all the zeros of a polynomial of degree n lie in a circular region C and w is any zero of  )(zpD ,  

then at most one of the points w and    may lie outside C. 

The above Lemma is due to Laguerre (for reference see [6] , p. 52). 

Lemma 2. If . If 
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Proof of Lemma 2. If  kj  for at least one j; tj 1 , then inequality () is trivial. Therefore, we assume 

that  kj  for j; tj 1 . In the rest, we proceed by mathematical induction. The result is true for t=1, by 

inequality (), that means if 
 k1 , then 
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Substituting the term )(
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zpD from (2.2) in this inequality, we obtain 
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This implies that result is true for t=2. Now we assume that the result is true for t=s<n : it means that for 1z  

we have 
 

   

 
     .)(

1

max
.......

1

1.........1
)(... 112



















 


 zp

z
kk

k

snnn
zpDDD sttsts

      (2.4) 

Now we shall prove that the result is true for t=s+1<n. According to the above procedure, using Lemma1, the 

polynomial )(...
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On combining the inequalities (2.4) and (2.5),  we get 
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This implies that the result is true for 1 st . The proof is complete. 
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3. Proof of the Theorem: Let .)(min zpm
kz 

  If p(z) has a zero on kz  , then m=0 and the result follows 
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By Lemma 1, the polynomial zGDDDzT
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Then 1 and with choice of  , we have 0)( 0 zT for .0 kz  from (3.2). But this contradict the fact that 

0)( zT for .kz  . Hence for .kz  , we have 
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Thus equivalently for ,1z  
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Finally making ,1  the theorem follows. 
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