Journal of Scientific and Engineering Research, 2016, 3(3):398-400

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

Two new modular relations for the Göllnitz-Gordon functions

Jing Jin

School of Mathematics, Nanjing Normal University, Taizhou College, Jiangsu,

Abstract In this note, we derive two new modular relations for the Göllnitz-Gordon functions. Our proofs only rely on the Jacobi triple product identity.

Keywords modular relation, Göllnitz-Gordon relation, Jacobi triple product identity.

AMS Subject Classification:11B65, 11F11.

Introduction

Throughout this paper, we let |q| < 1 and for nonnegative integer *n*, we use the standard notation

$$(a;q)_n = \prod_{i=0}^{n-1} (1-aq^i), \quad (a;q)_\infty = \prod_{i=0}^{\infty} (1-aq^i)$$

and

$$(a_1,a_2,\ldots,a_n;q)_{\infty} = (a_1;q)_{\infty}(a_2;q)_{\infty}\cdots(a_n;q)_{\infty}.$$

The Göllnitz-Gordon functions are defined by

$$S(q) = \sum_{n=0}^{\infty} \frac{\left(-q;q^2\right)_n}{\left(q^2;q^2\right)_n} q^{n^2} = \frac{1}{\left(q,q^4,q^7;q^8\right)_{\infty}}$$
(1.1)

and

$$T(q) = \sum_{n=0}^{\infty} \frac{\left(-q;q^2\right)_n}{\left(q^2;q^2\right)_n} q^{n^2+2n} = \frac{1}{\left(q^3,q^4,q^5;q^8\right)_{\infty}}.$$
(1.2)

S(q) and T(q) are known as the Göllnitz-Gordon functions, see [1, 2]. Huang [3] and Chen and Huang [4] derived 21 modular relations involving only S(q) and T(q). Baruah, Bora and Saikia [5] found new proofs of modular relations for S(q) and T(q) established by Chen and Huang [3].

The well-known Jacobi triple product identity [6] is

$$\sum_{n=-\infty}^{\infty} (-1)^n z^n q^{\binom{n}{2}} = (z, q / z, q; q)_{\infty}.$$
 (1.3)

Euler's Pentagonal number theorem is given by

$$f(-q) = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(3n-1)/2} = (q;q)_{\infty},$$

which is a special case of (1.3). For convenience, denote $f(-q^n)$ by f_n for positive *n*.

In this note, we derive two new modular relations for the Göllnitz-Gordon functions, which can be stated as follows.

Theorem 1.1 Let S(q) and T(q) be defined by (1.1) and (1.2), respectively. We have

$$S(q^{3})S(q) - q^{2}T(q^{3})T(q) = \frac{f_{2}^{2}f_{6}f_{8}f_{12}}{f_{1}f_{3}f_{4}^{2}f_{24}},$$
(1.4)

$$S(q^{3})T(q) + qS(q)T(q^{3}) = \frac{f_{2}f_{4}f_{6}^{2}f_{24}}{f_{1}f_{3}f_{8}f_{12}^{2}}.$$
(1.5)

Proof of Theorem 1.1

In this section, we give an elementary proof of Theorem 1.1. Our proof only relies on the Jacobi triple product identity (1.3). We first establish two lemmas.

Lemma 2.1 We have

$$f_1 = f_4 S(-q^2) - q f_4 T(-q^2), \qquad (2.1)$$

$$\frac{1}{f_1} = \frac{f_4^2}{f_2^3} S\left(-q^2\right) + q \frac{f_4^2}{f_2^3} T\left(-q^2\right).$$
(2.2)

Proof. We have

$$f_{1} = (q;q)_{\infty} = \frac{f_{2}}{f_{4}} (q,q^{3},q^{4};q^{4})_{\infty} = \frac{f_{2}}{f_{4}} \sum_{n=-\infty}^{\infty} (-1)^{n} q^{2n^{2}-n} \qquad \text{by}$$
(1.3)
$$= \frac{f_{2}}{f_{4}} \sum_{n=-\infty}^{\infty} (-1)^{2n} q^{2(2n)^{2}-2n} + \frac{f_{2}}{f_{4}} \sum_{n=-\infty}^{\infty} (-1)^{2n+1} q^{2(2n+1)^{2}-2n-1}$$
$$= \frac{f_{2}}{f_{4}} \sum_{n=-\infty}^{\infty} q^{8n^{2}-2n} - q \frac{f_{2}}{f_{4}} \sum_{n=-\infty}^{\infty} q^{8n^{2}+6n},$$
(2.1) and the product of the t

which yields (2.1) by (1.3). For (2.1), replacing q by -q, we see that

$$\frac{f_2^3}{f_1 f_4} = f_4 S(-q^2) + q f_4 T(-q^2).$$

which is nothing but (2.2). **Lemma 2.2** *We have*

$$\frac{f_3}{f_1} = \frac{f_4 f_6 f_{16} f_{24}^2}{f_2^2 f_8 f_{12} f_{48}} + q \frac{f_6 f_8^2 f_{48}}{f_2^2 f_{16} f_{24}}.$$
(2.3)

Proof. We have

$$\frac{f_3}{f_1} = \frac{1}{\left(q, q^2; q^3\right)_{\infty}} = \frac{\left(-q, -q^5, q^6; q^6\right)_{\infty}}{f_2\left(q^2, q^{10}; q^{12}\right)_{\infty}} = \frac{f_4 f_6}{f_2^2 f_{12}} \sum_{n=-\infty}^{\infty} q^{3n^2 - 2n} \quad \text{by}$$

$$= \frac{f_4 f_6}{f_2^2 f_{12}} \left(\sum_{n=-\infty}^{\infty} q^{3(2n)^2 - 4n} + \sum_{n=-\infty}^{\infty} q^{3(2n+1)^2 - 2(2n+1)}\right)$$

$$= \frac{f_4 f_6}{f_2^2 f_{12}} \sum_{n=-\infty}^{\infty} q^{12n^2 - 4n} + q \frac{f_4 f_6}{f_2^2 f_{12}} \sum_{n=-\infty}^{\infty} q^{12n^2 + 8n}$$
(1.3)

which yields (2.3) by (1.3).

We now turn to prove Theorem 1.1.

Proof of Theorem 1.1.1. It follows from (2.1), (2.2) and (2.3) that

$$\frac{f_3}{f_1} = \frac{f_4^2 f_{12}}{f_2^3} \left(S\left(-q^6\right) - q^3 T\left(-q^6\right) \right) \left(S\left(-q^2\right) + q T\left(-q^2\right) \right) \\
= \frac{f_4^2 f_{12}}{f_2^3} \left(S\left(-q^6\right) S\left(-q^2\right) - q^4 T\left(-q^6\right) T\left(-q^2\right) + q \left(S\left(-q^6\right) T\left(-q^2\right) - q^2 S\left(-q^2\right) T\left(-q^6\right) \right) \right) \\
= \frac{f_4 f_6 f_{16} f_{24}^2}{f_2^2 f_8 f_{12} f_{48}} + q \frac{f_6 f_8^2 f_{48}}{f_2^2 f_{16} f_{24}}.$$
(2.4)

Equating even and odd parts of both sides of (2.4), we have

$$S(-q^{6})S(-q^{2}) - q^{4}T(-q^{6})T(-q^{2}) = \frac{f_{2}f_{6}f_{16}f_{24}^{2}}{f_{4}f_{8}f_{12}^{2}f_{48}},$$

$$S(-q^{6})T(-q^{2}) - q^{2}S(-q^{2})T(-q^{6}) = \frac{f_{2}f_{6}f_{8}^{2}f_{48}}{f_{4}^{2}f_{12}f_{16}f_{24}^{2}},$$

which implies (1.4) and (1.5) by replacing q^2 by -q. This completes the proof.

In fact, we can use the same method to prove more modular relations for S(q) and T(q). For example, from (2.1) and the following identity

$$f_1 f_3 = \frac{f_2 f_8^2 f_{12}^4}{f_4^2 f_{24}^2 f_6} - q \frac{f_4^4 f_6 f_{24}^2}{f_2 f_8^2 f_{12}^2},$$
(2.5)

we can derive the following identities which were established by Chen and Huang [4]

$$S(q^{3})S(q) + q^{2}T(q^{3})T(q) = \frac{f_{3}f_{4}}{f_{1}f_{12}},$$
(2.6)

Journal of Scientific and Engineering Research

$$S(q^{3})T(q) - qS(q)T(q^{3}) = \frac{f_{1}f_{12}}{f_{3}f_{4}}.$$
(2.7)

References

- [1]. H. Göllnitz, Partitionen mit Differenzenbedingungen. J. Reine Angew. Math. 225 (1967) 154-190.
- [2]. B. Gordon, Some continued fractions of Rogers-Ramanujan type. Duke Math. J. 32 (1965) 741-748.
- [3]. S.S. Huang, On modular relations for the Göllnitz-Gordon functions with applications to partitions, J. Number Theory 68 (1998) 178-216.
- [4]. S.L. Chen and S.S. Huang, New modular relations for the Göllnitz-Gordon functions, J. Number Theory 93 (2002) 58-75.
- [5]. N.D. Baruah, J. Bora and N. Saikia, Some new proofs of modular relations for the Göllnitz-Gordon functions, Ramanujan J. 15 (2008) 281-301.
- [6]. B.C. Berndt, Number Theory in the Spirit of Ramanujan, American Mathematical Society, Providence, Rhode Island, 2006.