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Introduction 

Throughout this paper, we let 1q   and for nonnegative integer n , we use the standard notation 
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The Göllnitz-Gordon functions are defined by 
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and 
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S(q) and T(q) are known as the Göllnitz-Gordon functions, see [1, 2]. Huang [3] and Chen and Huang [4] 

derived 21 modular relations involving only S(q) and T(q). Baruah, Bora and Saikia [5] found new proofs of 

modular relations for S(q) and T(q) established by Chen and Huang [3]. 

 The well-known Jacobi triple product identity [6] is 
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Euler's Pentagonal number theorem is given by 
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which is a special case of (1.3). For convenience, denote  nf q  by fn for positive n. 

 In this note, we derive two new modular relations for the Göllnitz-Gordon functions, which can be 

stated as follows. 

Theorem 1.1 Let S(q) and T(q) be defined by (1.1) and (1.2), respectively. We have 
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Proof of Theorem 1.1 

In this section, we give an elementary proof of Theorem 1.1. Our proof only relies on the Jacobi triple product 

identity (1.3). We first establish two lemmas. 

Lemma 2.1 We have 
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Proof. We have 
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which yields (2.1) by (1.3). For (2.1), replacing q by -q, we see that 
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which is nothing but (2.2). 

Lemma 2.2  We have  
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Proof. We have 
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which yields (2.3) by (1.3). 

 We now turn to prove Theorem 1.1. 

 Proof of Theorem 1.1.It follows from (2.1), (2.2) and (2.3) that 
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Equating even and odd parts of both sides of (2.4), we have 
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which implies (1.4) and (1.5) by replacing q
2
 by -q. This completes the proof. 

 In fact, we can use the same method to prove more modular relations for S(q) and T(q). For example, 

from (2.1) and the following identity 
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we can derive the following identities which were established by Chen and Huang [4] 
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