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Abstract This study employs a univariate Autoregressive Integrated Moving Average (ARIMA) homoskedastic 

model in conjunction with Box and Jenkins modeling procedure to model and forecast annual Consumer Price 

Index (CPI) data in Nigeria from 1950 to 2014. The annual data on Consumer Price Index is obtained as 

secondary data from Penn World Table, the National Bureau of Statistics and the Central bank of Nigeria over 

the period 1950 to 2014. We examine the graphical, statistical, unit root and stationarity properties of the series 

using time plots, ACF, PACF, Phillips-Perron as well as Dickey-Fuller Generalized Least Squares unit root 

tests. The results show that the CPI data in Nigeria is non-stationary in level but stationary in logged first 

difference and thus integrated of order one, I(1). We then applied Box-Jenkins modeling methodology to search 

for an optimal model and found that ARIMA (3, 1, 0) was the best fitting model to describe CPI data series in 

Nigeria. The model was validated and found to be adequate and good. Based on this model, we forecast the 

future annual CPI in Nigeria for a period of 6 years from 2015 to 2020. The forecasts show a steady increase in 

the annual values of CPI in Nigeria. The study predicts that inflation will increase in Nigeria from 2015 since 

the confidence intervals of the forecast suggest a consistent increase in annual CPI during the forecasted period 

of 2015 to 2020. 

Keywords Consumer Price Index, Inflation, ARIMA model, Forecasting, Nigeria.   

Introduction 

Consumer Price Index (CPI) is the most widely used measure of inflation in financial analysis. A price index is 

a weighted average of the prices of a selected basket of goods and services relative to their prices in some base-

year. A consumer price index measures changes in the price level of a market basket of consumer goods and 

services purchased by households. The CPI is a statistical estimate constructed using the prices of a sample of 

representative items whose prices are collected periodically. The CPI represents prices paid by consumers (or 

households). Prices for a basket of goods are compiled for a certain base period. Price data for the same basket 

of goods is then collected on a monthly basis. This data is used to compare the prices for a particular month with 

the prices from a different time period. The Bureau of Labor Statistics of the United States Department of Labor 

defines CPI as: "a measure of the average change over time in the prices paid by urban consumers for a market 

basket of consumer goods and services."  It defines inflation as: "the overall general upward price movement of 

goods and services in an economy." The difference between the Consumer Price Index (CPI) and inflation is a 

source of confusion for many. The Consumer Price Index is used to calculate inflation. Thus, their similarities 

are better understood based on that relationship even if the details of their differences are not. 

The CPI is not a perfect measure of inflation. Sources of bias include: (i) Quality adjustments - quality of many 

goods such as cars, computers, and televisions, etc., goes up every year. Some price increases may reflect 

quality adjustments that are still counted entirely as inflation. (ii) New goods - new goods may be introduced 

that will be hard to compare to older substitutes. (iii) Substitution - if the price goes up for one good, consumer 

may substitute another good that provides similar utility. Although the CPI will go higher due to the price 

increase in the old commodity, many consumers may not be worse off. Also, when prices go up, consumers may 
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effectively not pay the higher prices by switching to discount stores. The CPI surveys do not check to see if 

consumers are substituting discount or outlet stores. Moreover, the macroeconomic data on developing countries 

can be unreliable due to many reasons: measurement error, imperfect methods of measuring, etc. 

The Consumer Price Index, CPI, a proxy for inflation, has been widely used as a leading indicator of economic 

change. Financial markets continuously assess expectations on the CPI and react to the innovations contained in 

new published data [1]. Inflation is most likely to affect interest rates, stock prices and exchange rates. 

Unexpected inflation causes bond prices to drop and yields to rise. An increasing interest rate will negatively 

affect stock prices. Unexpected inflation also decreases the value of a country's currency in the global market 

and impacts the exchange rate. Therefore, an effective monetary policy depends largely on the ability of 

economists and policy makers to develop a reliable model that could help understand the ongoing economic 

processes and predict future developments. In this regard, this study is important since it is aimed at forecasting 

CPI, which is a component of inflation in the Nigeria economy.  

A Brief Review of Related Works 

According to Enders (2004), there are four basic time series models that may describe the behaviour of a dataset 

[2]. These are Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA) and 

White Noise (WN) models. Wayne (1998) asserts that using vector autoregressive model in forecasting exhibits 

significant degree of forecast accuracy when compared with other forecasting models [3]. This same conclusion 

was reached by Meyler et al. [4]. They Applied the Bayesian VAR approach in forecasting and found that VAR 

modeling approach improves forecasting performance. Liu and Han (2007) used ARIMA (2, 2, 1) to model and 

forecast US CPI for the year 2007. They employed annual CPI data from 1913 to 2006. Their prediction shows 

an annual increase in the value of CPI for US in 2007 [5]. 

Adams, et al. (2014) fitted a time series model to the quarterly data of consumer price index (CPI) in Nigeria’s 

Inflation rate between 1980 and 2010 and provided five years forecast for the expected CPI in Nigeria. They 

applied the Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) model and found that the best 

fitted model is ARIMA (1, 2, 1). The five years forecast showed an average increment of about 2.4% between 

2011 and 2015 with the highest CPI being estimated as 279.90 in the 4
th

 quarter of the year 2015 [6]. Kelikume 

and Salami, (2014) compared Autoregressive Integrated Moving Average model developed by Box and Jenkins 

and multivariate time series model in the form of Vector Autoregressive model to forecast inflation for Nigeria. 

They employed changes in monthly consumer price index for the period 2003 to 2012 to predict movements in 

the general price level. They found that VAR model described inflation situation in Nigeria than ARIMA model. 

Their forecast shows a gradual increase in inflation over the forecast period [7]. 

Many studies on inflation forecasting in different part of the world yielded mixed results. Fritzer et al. (2002), 

found that VAR models perform better than ARIMA models in terms of predictive accuracy [8] whereas 

Bokhari and Feridun (2006), revealed that ARIMA models perform better than the VAR model [9]. Espasa et al. 

(2002), concludes that ARIMA models outperformed the VECM and dynamic factor models [1] while Hubrich 

(2003), found that VAR models outperformed the autoregressive forecasting models [10]. Alnaa and Ahiakpor, 

(2005) conducted a study that followed the same pattern as other models proving the VAR modeling approach 

to be highly efficient in its predictive ability [11].  

There are several evidences in the literature supporting the forecasting strength of ARIMA model approach 

using Box-Jenkins procedure in forecasting [12-15]. Although, recent studies in Nigeria, have shown the VAR 

modeling and forecasting approach to be highly useful in predicting short run forecast [16-17], there is however 

a need to revisit the modeling and forecasting ability of ARIMA model in Nigeria using more recent data. 

 

Materials and Methods 

The theoretical model which serves as a basic framework of our analysis is the Autoregressive Integrated 

Moving Average (ARIMA) model which is a generalization of Autoregressive Moving Average (ARMA) 

model. The ARMA (p, q) is given by: 

𝐶𝑃𝐼𝑡 = 𝛼0 + 𝛼1𝐶𝑃𝐼𝑡−1 + ⋯+ 𝛼𝑝𝐶𝑃𝐼𝑡−𝑝 + 휀𝑡 + 𝜃1휀𝑡−1 + ⋯+ 𝜃𝑞휀𝑡−𝑞     (1) 

Where CPI is the consumer price index at levels, 𝛼𝑖 ′𝑠 are coefficients of AR (p) process while 𝜃𝑖 ′𝑠 are 

coefficients of MA (q) process, 휀𝑡  is the error term. AR (p) is the autoregressive process of order p whereas MA 

(q) is the moving average process of order q. Equation (1) can also be written as:  

 1 −  𝛼𝑖𝐿
𝑖𝑝

𝑖=1  𝐶𝑃𝐼𝑡 =  1 +  𝜃𝑖𝐿
𝑖𝑞

𝑖=1  휀𝑡         (2) 

Where L is the lag operator, define by 𝐿𝐶𝑃𝐼𝑡 = 𝐶𝑃𝐼𝑡−1 , the 𝛼𝑖  are the parameters of the autoregressive part of 

the model, the 𝜃𝑖  are the parameters of the moving average part and 휀𝑡  are error terms which are generally 

assumed to be independent, identically distributed variables sampled from a normal distribution with zero mean. 

Assuming that the polynomial  1 −  𝛼𝑖𝐿
𝑖𝑝

𝑖=1   has a unitary root of multiplicity 𝑑, then it can be written as: 
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 1 −  𝛼𝑖𝐿
𝑖𝑝

𝑖=1  =  1 +  𝜃𝑖𝐿
𝑖𝑝−𝑑

𝑖=1  (1 − 𝐿)𝑑       (3) 

An ARIMA (p,d,q) process expresses this polynomial factorization property, and is given by: 

 1 −  Φ𝑖𝐿
𝑖𝑝

𝑖=1  (1 − 𝐿)𝑑𝐶𝑃𝐼𝑡 =  1 +  𝜃𝑖𝐿
𝑖𝑞

𝑖=1  휀𝑡       (4) 

Autoregressive Model 

The Autoregressive model is a dynamic model in which the independent variables include lagged values of the 

dependent variable. The AR (p) model specifies the dependent variable as a function of "p" past values of itself. 

It can be expressed as 

𝐶𝑃𝐼𝑡 = 𝛼0 + 𝛼1𝐶𝑃𝐼𝑡−1 + 𝛼2𝐶𝑃𝐼𝑡−2 + 3𝐶𝑃𝐼𝑡−3 + ⋯ + 𝛼𝑝𝐶𝑃𝐼𝑡−𝑝 + 휀𝑡     (5) 

where 휀𝑡  is identically and independently distributed and E[휀𝑡] = 0 for all t,  𝐸[(휀𝑡), (휀𝑡−𝑗 )] = 0, for all 𝑡 ≠ 𝑗 

and var[휀𝑡]= 𝜎2  is a constant. An AR (p) process is stationary if   𝛼𝑖 < 1. 

Moving Average Model 

A Moving Average process is a process in which the value of a variable in the current period is a function of the 

value of shocks (innovations) from one or more past periods. The MA (q) model specifies the dependent 

variable as a function of "q" past shocks. It can be expressed as 

𝐶𝑃𝐼𝑡 = 𝜃0 − 𝜃1휀𝑡−1 − 𝜃2휀𝑡−2 − 𝜃3휀𝑡−3 −⋯− 𝜃𝑞휀𝑡−𝑞 + 휀𝑡      (6) 

where 휀𝑡  is identically and independently distributed and E[휀𝑡] = 0 for all t,  𝐸[(휀𝑡), (휀𝑡−𝑗 )] = 0, for all 𝑡 ≠ 𝑗 

and var[휀𝑡]= 𝜎2  is a constant. An MA process is always stationary. 

Stationarity 

Stationarity of Order M: A time series {𝑌𝑡} is stationary of order M if for any admissible set {𝑡1, 𝑡2,… , 𝑡𝑚} 

and for any k, the joint moments of {𝑌𝑡1,𝑌𝑡2,… ,𝑌𝑡𝑚 } up to order M exists, and are equal to the joint moments of 

{𝑌𝑡1+𝑘 ,𝑌𝑡2+𝑘 ,… ,𝑌𝑡𝑚+𝑘} up to order M. That is 𝐸{(𝑌𝑡1)𝛼(𝑌𝑡2)𝛽 … 𝑌𝑡𝑚 )𝛾 = 𝐸{(𝑌𝑡1+𝑘)𝛼(𝑌𝑡2+𝑘)𝛽 …  𝑌𝑡𝑚+𝑘)𝛾  
for all 𝛼,𝛽,… , 𝛾 such that 𝛼 + 𝛽 + …+  𝛾 ≤ 𝑀. 

Weakly or Covariance Stationary: A time series {𝑌𝑡} is said to be weakly or covariance stationary if its mean 

and variance are constant over time and its covariance function depends only on the time lag. A covariance 

stationary series satisfies the following conditions: 

(i) E 𝑌𝑡 = 𝜇, where 𝜇 is a constant (ii) E(𝑌𝑡 − 𝜇)2 = Var 𝑌𝑡 = 𝜎2, where 𝜎2 is a constant and (iii) 𝐸 𝑌𝑡 ,𝑌𝑠 =
𝐸(𝑌𝑡 ,𝑌𝑡+𝑘) is a function of 𝑠 − 𝑡 = 𝑘 only where k is the lag. 

A series which becomes stationary after first differencing is said to be integrated of order one, denoted I(1). 

The Phillips-Perron (PP) Unit Root Test 

Phillips and Perron (1988) propose a nonparametric method of controlling for serial correlation when testing for 

a unit root. The PP method estimates the non-augmented Dickey-Fuller test equation [18]:  

∆𝑌𝑡 = 𝛼𝑌𝑡−1 + 𝑥𝑡
′𝛿 + 휀𝑡          (7) 

Where 𝛼 = 𝜌 − 1 and modifies the 𝑡-ratio of the 𝛼 coefficient so that serial correlation does not affect the 

asymptotic distribution of the test statistic. The PP test is based on the statistic:  

𝑡 𝛼 = 𝑡𝛼  
𝛾0

𝑓0
 −

𝑇 𝑓0−𝛾0 (𝑠𝑒 𝛼  )

2 𝑓0 𝑠
         (8) 

Where 𝛼  is the estimate, and 𝑡𝛼  the t-ratio of 𝛼, 𝑠𝑒(𝛼 ) is coefficient standard error, and 𝑠 is the standard error of 

the test regression. In addition, 𝛾0 is a consistent estimate of the error variance in (7) (calculated as 

(𝑇 − 𝑘)𝑠2 𝑇  where 𝑘 is the number of regressors).The remaining 𝑓0 term, is an estimator of the residual 

spectrum at frequency zero. The PP test evaluate the pair of hypothesis 𝐻0: 𝛼 = 0 against 𝐻1: 𝛼 < 0 

Dickey-Fuller Generalized Least Squares Unit Root Test 

The DFGLS test involves estimating the standard ADF test equation 

∆𝑌𝑡 = 𝛼𝑌𝑡−1 + 𝑥𝑡
′𝛿 + 𝛽1∆𝑌𝑡−1 + 𝛽2∆𝑌𝑡−2 + ⋯+ 𝛽𝑝∆𝑌𝑡−𝑝 + 𝑣𝑡     (9) 

after substituting the GLS detrended 𝑌𝑡
𝑑  for the original 𝑌𝑡 : 

∆𝑌𝑡
𝑑 = 𝛼𝑌𝑡−1

𝑑 + 𝛽1∆𝑌𝑡−1
𝑑 + ⋯+ 𝛽𝑝∆𝑌𝑡−𝑝

𝑑 + 𝑣𝑡       (10) 

Since the 𝑌𝑡
𝑑  are detrended, we do not include the 𝑥𝑡  in the DFGLS test equation. As with the ADF test, we 

consider the t-ratio for 𝛼  from this test equation. ERS (1996) define GLS detrended data 𝑌𝑡
𝑑  using the estimates 

associated with 𝑎 : 
𝑌𝑡
𝑑 ≡ 𝑌𝑡 − 𝑥𝑡

′ (𝑎 )          (11) 
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where 𝑎 =  
1 − 7 𝑇,     if 𝑥𝑡 = {1} 

1 − 13.5 𝑇,    if 𝑥𝑡 = {1, 𝑡} 
        (12) 

Information Criteria for Model Order Selection  

The most common approach for model order selection involves selecting a model order that minimizes one or 

more information criteria evaluated over a range of model orders. The information criteria used in this work for 

model order selection are Akaike Information criterion (AIC) [19], Schwarz information Criterion (SIC), and 

Hannan-Quinn Criterion (HQC), [20]. Each criterion is a sum of two terms, one that characterizes the entropy 

rate or prediction error of the model, and a second term that characterizes the number of freely estimated 

parameters in the model (which increases with increasing model order). By minimizing both terms, we seek to 

identify a model that does not over-fit the data with too many parameters while also accurately modeling the 

data. The information criteria are given below: 

 𝐴𝐼𝐶 = 𝑙𝑜𝑔  
𝑅𝑆𝑆

𝑛
 +  2 ×

𝑘

𝑛
         (13) 

 𝑆𝐼𝐶 = log  
𝑅𝑆𝑆

𝑛
 +  log(𝑛) ×

𝑘

𝑛
         (14) 

 𝐻𝑄𝐶 = log  
𝑅𝑆𝑆

𝑛
 +  2 × log (log 𝑛 ) ×

𝑘

𝑛
  and                                                                   (15) 

Where n is the number of observations; 𝑘 is the number of free parameters to be estimated, RSS is the residual 

sum of squares.  

Forecast Evaluation 

Suppose the forecast sample is 𝑗 = 𝑇 + 1,𝑇 + 2,… ,𝑇 + , and denote the actual and forecasted value in period 

𝑡 as 𝑦𝑡  and 𝑦 𝑡 , respectively. The reported forecast error statistics are computed as follows: 

Root Mean Square Error  RMSE =      𝑦 𝑡 − 𝑦𝑡 
2

𝑇+

𝑡=𝑇+1

/   

Mean Absolute Error MAE =    𝑦 𝑡 − 𝑦𝑡  

𝑇+

𝑡=𝑇+1

/ 

Mean Absolute Percentage Error MAPE =  100 ×   
𝑦 𝑡 − 𝑦𝑡

𝑦𝑡
 

𝑇+

𝑡=𝑇+1

/ 

Theil Inequality Coefficient TIC =
   𝑦 𝑡 − 𝑦𝑡 

2𝑇+
𝑡=𝑇+1 /

  𝑦 𝑡
2𝑇+

𝑡=𝑇+1 / +   𝑦𝑡
2𝑇+

𝑡=𝑇+1 /

   

The smaller the error, the better the forecasting ability of the model according the criterion. The Theil Inequality 

Coefficient always lies between zero and one, the zero value indicates a perfect fit. 

 

Results and Discussion 

Graphical and Statistical Properties of the Series 

In this study we employ the Box-Jenkins modeling procedure to fit ARIMA model to annual time series CPI 

data in Nigeria from 1950-2014. The time plot of the original series is graphed in Figure 1. 
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Figure 1: Plot of CPI Inflation in Nigeria in Level 
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We linearize the exponential growth in the original series and also stabilize the variance of the annual changes 

in the CPI by applying a natural log transformation. The time plot of natural log transform is represented in 

Figure 2. 
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Figure 2: Plot of CPI Inflation in Nigeria (Natural Log) 

From Figure 2, we observe that the variance and mean of the series seemed to be more stable in log units than in 

the original level form. However, the mean and variance of the series appeared to be changing with time. This 

suggests that the CPI series is not covariance stationary. This call for an alternative way of stationarizing the 

series and we therefore applied the first difference operator on the series. The time plot of the first difference of 

the natural log is presented in Figure 3. 
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Figure 3: Plot of CPI Inflation in Nigeria (First Difference of Natural Log) 

In Figure 3, the difference-logged series appeared to be more dynamically stable. This suggests a mean reverting 

series and homoskedasticity of the variance. This also indicates that the first difference of the CPI series is 

covariance stationary. We check whether the difference-logged values of the series are statistically independent 

by plots of ACF and PACF. The plots are presented in Figure 4. 
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Figure 4: Plot of ACF and PACF of CPI Inflation in Nigeria (First Difference) 
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The plots of ACF and PACF in Figure 4 show that the difference-logged values of the series are statistically 

independent meaning that a CPI value in a present year is independent of the previous year. This is justified by 

almost all the sample autocorrelation coefficients of the series falling within the confidence bounds. Figure 4 

also shows that the series is differenced stationary and that the residuals are purely random process. 

We further investigate the unit root and stationarity properties as well as the order of integration of the series by 

applying unit root tests on both the natural log and log difference of the series. Here, we employ Phillips-Perron 

unit root test as well as Dickey-Fuller Generalized Least Squares unit root test already discussed in 

methodology. The results of the tests are reported in Table 1. 

Table 1: Phillips-Perron & Dickey-Fuller GLS Unit Root Tests Result 

Variable Option  PP Adjusted t-statistic DF-GLS Test Statistic 

Y Intercept only 0.09588[0.9639] 1.2789 

Intercept & Trend -1.5663[0.7993] -1.7410 

∆Y Intercept only -4.5410[0.0003]*** -3.8416*** 

Intercept & Trend -3.4977[0.0028]*** -4.1363*** 

Note: *** denotes the significant of the test statistics at 1%, 5% and 10% levels. Numbers in [ ] are p-values. 

∆Y denotes first difference of Y. 

 

Phillips-Perron and Dickey-Fuller GLS unit root tests are applied on both the natural log as well as the logged 

difference series. The Phillips-Perron and Dickey-Fuller GLS unit root results of the natural log series with 

intercept only and with intercept and linear time trend both indicate non-stationarity of the series meaning that 

the natural log of CPI data in Nigeria contains a unit root. However, the Phillips-Perron and Dickey-Fuller GLS 

unit root test results of the logged difference of the series with intercept only and with intercept and time trend 

are both sufficiently negative, thereby rejecting the presence of a unit root in the series. This means that the first 

logged difference of CPI data in Nigeria is stationary. This shows that the order of integration of the series is 

one. At this point, we proceed to model identification of the stationary series. 

 

Model Identification 

Looking carefully at the ACF and PACF plot of Figure 4, we observe that the spikes of ACF decay gradually 

towards zero while the spikes of PACF decay quickly to zero. This suggests an Autoregressive (AR) process. 

From Table 1, we noted that the order of integration, 𝑑 = 1. Therefore we shall fit an ARIMA (p, d, q) in which 

the MA (q) component is zero. 

A Search for an Optimal Model 

The most common approach of searching for an optimal model involves selecting a model order that minimizes 

one or more information criteria evaluated over a range of model orders. The information criteria employed in 

this paper are Akaike Information criterion (AIC), Schwarz information Criterion (SIC) and Hannan-Quinn 

Criterion (HQC). The execution of the model is repeated for different number of lags following this procedure; 

we choose using parsimony the model with the least information criteria. The result is presented in Table 2. 

Table 2: ARIMA Model Order Selection Using Information Criteria 

Model AIC SC HQC R
2
 Adj. R

2
 DW 

ARIMA (1,1,0) 3.6731 3.7355 3.6943 63.78 63.40 2.03 

ARIMA (2,1,0) 3.7022 3.7813 3.7342 63.57 62.80 1.99 

ARIMA (3,1,0)** 3.6459 3.7221 3.6888 66.51 65.24 2.05 

ARIMA (4,1,0) 3.6630 3.7966 3.7170 67.00 65.55 2.03 

ARIMA (5,1,0) 3.6663 3.8276 3.7315 67.95 66.15 1.99 

ARIMA (6,1,0) 3.6954 3.8848 3.7719 68.08 65.88 1.99 

ARIMA (7,1,0) 3.7178 3.9356 3.8057 68.43 65.83 1.82 

ARIMA (8,1,0) 3.6564 3.8827 3.7356 70.96 68.16 1.94 

ARIMA (9,1,0) 3.6567 3.9219 3.7573 71.08 67.87 2.01 

ARIMA (10,1,0) 3.6596 3.9651 3.7828 71.49 67.89 1.96 

ARIMA (11,1,0) 3.6918 4.0274 3.8271 71.32 67.23 1.99 

ARIMA (12,1,0) 3.6993 4.0653 3.8467 71.96 67.47 1.99 

Note: ** denotes ARIMA model with the least information criteria 

From the result of Table 2, ARIMA (3,1,0) appears to provide statistically adequate representation of the given 

data because it has the least information criteria. Having chosen the best model, we now estimate the parameters 

of the model. The result of the parameter estimates of the optimal model is presented in Table 3.  
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Table 3: OLS Parameter Estimates of ARIMA (3,1,0) Model 

Dependent Variable: ∆CPI 

Variable Coefficient Std. Error t-Statistic P-value   

C 2.547561 1.080430 2.357914 0.0205 

AR(1) 0.752070 0.100340 7.495238 0.0000 

AR(2) -0.190040 0.125888 -1.509598 0.0503 

AR(3) 0.298174 0.102271 2.915532 0.0044 

R-squared 0.665071 

Adjusted R-squared 0.654267 

Durbin Watson Statistic 2.045956 

F-statistic 61.55698 Probability [F-statistic] 0.000000 

LLIK= -172.8267 AIC= 3.645912 SC= 3.722086 HQC= 3.688843 

 The result of the parameter estimates of Table 3 shows that our data fits an ARIMA (3,1,0) model which is 

presented below: 

𝐶𝑃𝐼𝑡 = 2.547561 + 0.752070𝐶𝑃𝐼𝑡−1 − 0.190040𝐶𝑃𝐼𝑡−2 + 0.298174𝐶𝑃𝐼𝑡−3 + 휀𝑡   (16) 

where  𝐶𝑃𝐼𝑡 = consumer price index response variable at time 𝑡;  
𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3 = CPI response variables at time 𝑡 − 1, 𝑡 − 2, 𝑡 − 3 respectively; 

휀𝑡 = Error term at time 𝑡; 
The result of Table 3 shows that the intercept (C) is positively related with CPI and statistically significant 

indicating that the predicted value of CPI in Nigeria will be 254.76 if all the explanatory variables are held 

constant. All the coefficients of the model are significant at 5 percent levels. The coefficient of determination 

(R
2
) of the regression model is 0.665071 indicating that about 66.51% of the total variations in CPI have been 

explained by the model while the remaining 33.49% unexplained variations is being accounted for by the error 

term or by factors not included in the model. The F-statistic is a goodness of fit test which measures the overall 

significance of the model parameters. F=61.55698 with a p-value of 0.000000 indicates that the model is a good 

fit. The Durbin Watson statistic value of 2.045956 which is higher than R
2
 and R

2
 adjusted means that the model 

is non-spurious. The estimated model have also satisfied the stationarity condition because 𝛼1 + 𝛼2 + 𝛼3 =
0.752070 +  −0.190040 + 0.298174 = 0.860204 < 1. This shows that the estimated ARIMA (3,1,0) is 

stationary. The following subsection contains residual diagnosis of the estimated ARIMA (3,1,0) model. 

Model Diagnosis 

We check the fitted model for adequacy and examine the goodness of fit by means of plotting the ACF and 

PACF of residuals of the fitted model. If all the sample autocorrelation coefficients of the residuals are within 

the limits ±1.96/ 𝑇  where T is the number of observations upon which the model is based, then the residuals 

are white noise indicating that the model is a good fit (See Figure 5). 
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Figure 5: ACF and PACF Plot of Residuals of the Fitted Model 
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From Figure 5, we observe that all the sample autocorrelation coefficients of the residuals are within the 

confidence limits. This shows that the residuals are white noise and the fitted model is stable and stationary. 

This is also justified by the time plot of residuals against time which is covariance stationary as represented in 

Figure 6. 
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Figure 6: Plot of Residuals of the Fitted ARIMA (3,1,0) Model 

Another evidence to show that the estimated model is dynamically stable is that the inverse roots of AR 

polynomials are within a unit circle. This is represented in Figure 7. 

 

 
Figure 7: Inverse Roots of AR Polynomials 

From the roots of AR polynomials of the fitted model, we estimate that tan𝜃 = 𝑦 𝑥 = 0.57 0.08 = 7.125 and 

𝜃 = 82.01°. Thus, the cycle is 360° 82.01° = 4.4  years and we say that CPI inflation in Nigeria has a long 

cycle of 4.4 years. 

Residual Tests of Arima (3,1,0)  

We also conducted some tests on the residuals of the fitted model. From the result of the test presented in Table 

4, the residuals of the estimated model have satisfied the Bruesch-Godfrey serial correlation Lagrange Multiplier 

(LM) test because the p-values of F-statistic and nR
2
 are 0.1940 and 0.1796. The null Hypothesis of no serial 

correlation in the residuals at all lags is accepted since the p-values are all greater than 0.05. 

Table 4 also shows the result of Ramsey Regression Equation Specification Error Test (RESET). This test tests 

whether an estimated equation is mis-specified. Our fitted model has passed the Ramsey RESET test since the 

p-values of t-statistic, F-statistic and Likelihood ratio are all greater than 0.05. We thus conclude that the 

parameters of our model equation are not mis-specified. 

Table 4: Ramsey RESET Test & Serial Correlation LM Test for the Fitted Model 

Test Test value P-value 

t-statistic 1.147617 0.2541 

F-statistic 1.317026 0.2541 

Likelihood ratio 1.378758 0.2403 

Breusch-Godfrey Serial Correlation LM Test 

F-statistic 1.669718 0.1940 

nR
2
 3.433615 0.1796 
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Since the residuals of our model have passed the diagnostic tests, we validate it as being an adequate and good 

model.  An adequate, valid and good model should be able to forecast future values of the relevant series. In the 

following subsection, we will consider the ability of the series to forecast future values. 

Model Forecast Evaluation  

We want to see the ability of the fitted model to forecast future time series. The ability to do so will further 

testify the validity of this model. We employ four accuracy measures to evaluate this forecast ability. 

Table 5: Result of Forecast Comparison of ARIMA (3,1,0) Model Using Accuracy Measures 

Mode of forecast  RMSE MAE MAPE TIC 

In-sample  2.382958 2.043889 300.1816 0.413742 

Out-of sample  1.437320 0.906917 89.91606 0.224006 

We consider four measures of accuracy, namely: Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), Mean Absolute Percentage Error (MAPE) and Theil Inequality Coefficient (TIC) to compare the 

performance ability of the In-sample and Out –of sample forecasts of the estimated ARIMA (3,1,0) model and 

to decide on which mode of prediction is suitable for the series. The result of Table 5 shows that the RMSE, 

MAE and the MAPE of the out –of sample forecasts are smaller than those of the In-sample forecasts, and the 

decision is that the smaller the forecast errors, the better the forecasting performance of that model, according to 

the criterion, our model is good for post-sample forecast. The Theil Inequality Coefficient always lies between 0 

and 1, the 0 value indicates a perfect fit. Comparing our In-sample and post-sample forecasts using the theil 

inequality coefficient, the post-sample forecast fits more perfectly than that of the In-sample forecast. We 

therefore conclude that the post-sample forecast is the best forecast mode for this model.  

Forecast of CPI Inflation in Nigeria  

Having voted the post sample forecast approach for the series, we use the estimated ARIMA (3,1,0) model to 

forecast future values of CPI in Nigeria for the period of 6 years starting from 2015 to the year 2020. The result 

of the forecast is presented in Table 6. 

Table 6: Forecasts of CPI in Nigeria from Fitted ARIMA (3,1,0) Model 

Year LCL Forecast UCL 

2014 

2015 

2016 

2017 

2018 

2019 

2020 

--- 

220.24 

210.10 

203.31 

198.89 

195.82 

193.65 

231.74 

235.69 

241.81 

248.89 

256.32 

264.09 

272.25 

--- 

252.22 

278.31 

304.68 

330.33 

356.17 

382.76 

Note: Forecast begins in 2015. For 95% confidence intervals, 𝑍0.025 = 1.96 

We forecast CPI in Nigeria from 2015 to 2020. The forecast value for the year 2015 is 235.69 with a 95% 

confidence interval of [220.24, 252.22]. By this we are 95% confident that the outcome for the next period will 

fall within this interval. Comparing with the annual CPI in 2014 (231.74), we predict that in 2015 CPI will 

consistently increase from the current year. This interval implies that the annual CPI increase may lie between 

220.24 and 252.22 (i.e. it may increase at least by 15.45 or at most by 16.53) in 2015. The forecast for the 

following years shows a significant and gradual increase in CPI in Nigeria over the forecasted period with the 

highest CPI been predicted to occur in the year 2020. The confidence intervals of the forecast suggest a 

consistent increase in annual CPI during the forecasted period of 2015 to 2020 implying that inflation will also 

be on the increase within this period. 

 

Concluding Remarks 

In this study, we attempted to search for an optimal ARIMA model that will best forecast annual CPI data in 

Nigeria from 1950 to 2014. We employed time plots, ACF, PACF, Phillips-Perron and well as Dickey-Fuller 

Generalized Least Squares to investigate the graphical, statistical and unit root as well as stationary properties of 

the series. The results show that CPI data in Nigeria is non-stationary in level but stationary in logged first 

difference and thus integrated of order one, I(1). We then applied Box-Jenkins modeling methodology to search 

for an optimal model and found that ARIMA (3, 1, 0) was the best fitted model to describe CPI data series in 

Nigeria. The model was validated and found to be adequate and good. Based on this model, we forecast the 

future annual CPI in Nigeria for the period of 6 years from 2015 to 2020. The forecasts show a steady increase 

in the annual values of CPI in Nigeria. The study predicts that inflation will increase in Nigeria from 2015 since 
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the confidence intervals of the forecast suggest a consistent increase in annual CPI during the forecasted period 

of 2015 to 2020. 

This finding will provide useful information for the Central Bank of Nigeria, other concern authorities, financial 

and economic analysts who are concerned about the economy. Judging from the inferences of this study, we 

recommend that the Federal government of Nigeria should take necessary actions to contract the economy in 

this contending period. 
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