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1. Introduction 

We will denote by  H U  the class of analytic functions in the open unit disk  : 1U z z    of the 

complex plane . Let A  be the class of the functions  f H U  given by series expansions   

  2 3 4

2 3 4

2

,  n n

n n n

n

f z z a z a z a z a z z a z a




             .                 (1.1) 

The subclass of A , which are univalent functions  in U  is denoted by S  in the literature. The class S was 

introduced by Köebe [1] first time and has become the core ingredient of advanced research in this field. After a 

short time, in 1916 Bieberbach [2] published a paper in which the coefficient hypothesis was proposed. This 

hypothesis states that if f S  and has the series form (1.1), then na n  for each 2.n  There are many 

articles in the literature regarding to this  hypothesis (see [3-13, 15]).   

Throughout the is paper, we always make use of the classical definition of quantum concepts as follows. 

The q -numbers and  q -factorial are defined by 
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In the standard approach to the q -calculus q -exponential function (see [14]) is defined as follow: 
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It is known that the function f  is called bi-univalent function, if itself and inverse is univalent in U  and   ,f U

respectively. The class of bi-univalent functions in U  is denoted by   in the literature.  

For the inverse    1g w f w  of the function f  , can written  
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g w w A w A w A w w A z w f U U




         ,              (1.2) 

where  

2 3

2 2 3 2 3 4 2 2 3 4,  2 ,  5A a A a a A a a a a        ,… . 

The  bi-starlike and bi-convex function classes in the open unit disk U  are defined analytically as follows and 

denoted by 
*S  and C , respectively 
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. 

Let’s  ,f g H U , then it is said that f  is subordinate to g  and denoted by f g , if there exists a 

Schwartz function  , such that     .f z g z  

In the past few years, numerous subclasses of the class S  have been introduced as special choices of the class 
*S  and C  (see for example [3, 8-13, 15-22]).  

 

2. Materials and Methods 

Now, let's we define new subclass of bi-univalent functions in the open unit disk U . 
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Definition 2.1. For  0   ,  0,1  ,  0,1q  and 
1

2
   the function f   is said to be in the 

class  , , ; z

qe    , if the following conditions are satisfied 
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. 

In the cases 1  , 0  , 1   and 1   from the Definition 2.1, we have the following classes of bi-

univalent functions. 

Definition 2.2. For  0,1  ,  0,1q  and 
1

2
   the function f   is said to be in the class 

 , ; z

qe   , if the following conditions are satisfied 
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Definition 2.3. For  0   ,  0,1q  and 
1

2
   the function f   is said to be in the class 

 * , ; z

qS e  , if the following conditions are satisfied 
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. 

Definition 2.4. For  0   ,  0,1q  and 
1

2
   the function f   is said to be in the class 

 , ; z

qC e  , if the following conditions are satisfied 
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. 

Definition 2.5. For  0   ,  0,1   and  0,1q the function f   is said to be in the class 

 , ; z

qe   , if the following conditions are satisfied 
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. 

Let   be the class of analytic functions in U  satisfied the conditions  0 1p   and   Re 0,p z  .z U  

It is clear that the functions that satisfy these conditions have the following series expansion  

  2 3

1 2 3

1

1 1 ,  n

n

n

p z p z p z p z p z z U




           .                         (2.1) 

The class   defined above is known as the class Caratheodory functions in the literature [23]. 

Now, let us give some necessary lemmas for the proof of our main results.    

Lemma 2.1 ([24]). Let the function p  belong to the class  . Then,  

2np   for each n , 2n k n kp p p    for  ,  ,   and 0,1n k n k    . 

The equalities hold for the function  

 
1

1

z
p z

z





. 

Lemma 2.2 ([24]) Let the an analytic function p  be of the form (2.1), then 

 2 2

2 1 12 4p p p x   , 

      23 2 2 2 2

3 1 1 1 1 1 14 2 4 4 2 4 1p p p p x p p x p x y         

for some ,x y  with 1 and 1x y  . 
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In this paper, we give some coefficient estimates and solve Fekete-Szegö problem for the class  , , ; .z

qe   

Additionally, the results obtained for specific values of the parameters in our study are compared with the results 

obtained in the literature. 

 

3. Results & Discussion 

In this section, we give some coefficient estimates for the functions belonging to the class  , , ; z

qe     and 

solve Fekete-Szegö problem for this class. 

Theorem 3.1. Let the function f  given by series expansions (1.1) belong to the class    , , ; z

qe    . Then, 

we have the following inequalities  
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               (3.1) 

Proof. Let  , ; zf e   , then exists Schwartz functions 
0 0

: , : r rU U U U   , such that 
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.     (3.2)                                                      

Let’s the functions ,p q P  defined as follows: 
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It follows from that 
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From the (3.2) and (3.4) can written  
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        (3.5) 

If we consider that 2 2A a  and 
2

3 2 32A a a  , we write the equations (3.5) as follows: 
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 (3.6) 

By equate the same coefficients of the parameters  z  and w , we obtain the following equalities 
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.  (3.8)                       

Then, 

     
1 1
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; that is, 1 1p q  .                     (3.9) 

Using Lemma 2.1 to the equality (3.9), we have first result of theorem. 

If we subtract (3.8) from the equality (3.7), we get the following equality for 3a : 

   

 

   

2 2
2 21

3 2 2
4 3 1 1 24 2 1 1

p qp
a



  


 

  
.                                (3.10) 

Since  
2

1
2 2

4

2

p
p q x y


    (see Lemma 2.2), we can write 
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for some ,x y  with 1 and 1x y  . 

Then, applying triangle inequality to the last equality, we have 
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where x  , y   and 1t p . From the inequality (3.11), we can write 
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Then, maximizing the function 
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With this, the proof of second inequality of (3.1) is provided. 

Thus, the proof of theorem is completed. 

In the case 1  , 0  , 1   and 1   from the Theorem 3.1, we obtain the following results, respectively. 

Corollary 3.1. If  , ; z

qf e   , then   
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Corollary 3.4. If  , ; z

qf e   , then   
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Now, we give the following theorem on the Fekete-Szegö problem for the class  , ; ze   . 

Theorem 3.2. Let  , , ; z

qf e     and   , then 
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Then, applying Lemma 2.2 the expression 
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Applying triangle inequality to this equality, we have 
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From the inequality (3.15), we can write 
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Maximizing the function  : 0,2   defined as follows 
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Thus, the proof of theorem is completed. 

In the case 1  , 0  , 1   and 1   from the Theorem 3.2, we obtain the following results, respectively. 

Corollary 3.5. If  , ; z

qf e    and   , then 
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Corollary 3.6. If  * , ; z

qf S e   and   , then 
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Corollary 3.7. If  , ; z
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Corollary 3.8.  , ; z
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Also, taking 0   and 1   in the Theorem 3.2, we obtain the following results, respectively. 

Corollary 3.9. If  , , ; z

qf e    , then 
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Corollary 3.10. If  , , ; z

qf e    , then 
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Remark 3.1. We note that Corollary 3.9 confirms the second result of Theorem 3.1. 
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