Journal of Scientific and Engineering Research, 2025, 12(4):57-65

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

On the Coefficient and Fekete-Szegö Problem of the Pseudo-Starlike and Pseudo-Convex Bi-Univalent Function Class

Nizami MUSTAFA*, Nahida GÖKÇEK

*Kafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Turkey

Abstract: In this paper, we defined a new subclass of starlike and convex bi-univalent functions and examine some geometric properties this function class. For this definition class, we gave some coefficient upper bound estimates and solve Fekete-Sezöge problem.

Keywords: Starlike function, convex function, bi-univalent function, pseudo-starlike function, pseudo-convex function

1. Introduction

We will denote by H(U) the class of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ of the

complex plane \mathbb{C} . Let A be the class of the functions $f \in H(U)$ given by series expansions

$$f(z) = z + a_2 z^2 + a_3 z^3 + a_4 z^4 + \dots + a_n z^n + \dots = z + \sum_{n=2}^{\infty} a_n z^n, \ a_n \in \mathbb{C}.$$
 (1.1)

The subclass of A, which are univalent functions in U is denoted by S in the literature. The class S was introduced by Köebe [1] first time and has become the core ingredient of advanced research in this field. After a short time, in 1916 Bieberbach [2] published a paper in which the coefficient hypothesis was proposed. This hypothesis states that if $f \in S$ and has the series form (1.1), then $|a_n| \leq n$ for each $n \geq 2$. There are many articles in the literature regarding to this hypothesis (see [3-14]).

It is known that the function f is called bi-univalent function, if itself and inverse is univalent in U and f(U), respectively. The class of bi-univalent functions in U is denoted by Σ in the literature.

For the inverse $g(w) = f^{-1}(w)$ of the function $f \in \Sigma$, can written

$$g(w) = w + A_2 w^2 + A_3 w^3 + A_4 w^4 + \dots = w + \sum_{n=2}^{\infty} A_n z^n, w \in f(U) = U_{r_0}, \qquad (1.2)$$

Where,

$$A_2 = -a_2, A_3 = 2a_2^2 - a_3, A_4 = -a_2^3 + 5a_2a_3 - a_4, \dots$$

The bi-starlike and bi-convex function classes in the open unit disk U are defined analytically as follows and denoted by S_{Σ}^* and C_{Σ} , respectively

$$S_{\Sigma}^{*} = \left\{ f \in S : \operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0, \ z \in U \text{ and } \operatorname{Re}\left(\frac{wg'(w)}{g(w)}\right) > 0, \ w \in U_{r_{0}} \right\}$$
$$C_{\Sigma}\left\{ f \in S : \operatorname{Re}\left(\frac{(zf'(z))'}{f'(z)}\right) > 0, \ z \in U \text{ and } \operatorname{Re}\left(\frac{(wg'(w))'}{g'(w)}\right) > 0, \ w \in U_{r_{0}} \right\}.$$

Let's $f, g \in H(U)$, then it is said that f is subordinate to g and denoted by $f \prec g$, if there exists a Schwartz function ω , such that $f(z) = g(\omega(z))$.

In the past few years, numerous subclasses of the class S have been introduced as special choices of the class S_{Σ}^* and C_{Σ} (see for example [3, 8-21]).

2. Materials and Methods

Now, let's we define new subclass of bi-univalent functions in the open unit disk U.

Definition 2.1. For $\beta \in [0,1]$ and $\lambda > \frac{1}{2}$ the function $f \in \Sigma$ is said to be in the class $\chi_{\Sigma}(\beta, \lambda; e^{z})$, if the following conditions are satisfied

$$(1-\beta)\frac{z(f'(z))^{\lambda}}{f(z)} + \beta \frac{\left\lfloor (zf'(z))' \right\rfloor^{\lambda}}{f'(z)} \prec e^{z}, \ z \in U \text{ and}$$
$$(1-\beta)\frac{w(g'(w))^{\lambda}}{g(w)} + \beta \frac{\left\lfloor (wg'(w))' \right\rfloor^{\lambda}}{g'(w)} \prec e^{w}, \ w \in U_{r_{0}}.$$

In the cases $\beta = 0$, $\beta = 1$ and $\lambda = 1$ from the Definition 2.1, we have the following classes of bi-univalent functions.

Definition 2.2. For $\lambda > \frac{1}{2}$ the function $f \in S$ is said to be in the class $S_{\Sigma}^*(\lambda; e^z)$, if the following conditions

are satisfied

$$\frac{z(f'(z))^{\lambda}}{f(z)} \prec e^{z}, \ z \in U \text{ and } \frac{w(g'(w))^{\lambda}}{g(w)} \prec e^{w}, \ w \in U_{r_{0}}.$$

Definition 2.3. For $\lambda > \frac{1}{2}$ the function $f \in S$ is said to be in the class $C_{\Sigma}(\lambda; e^{z})$, if the following conditions are satisfied

$$\frac{\left[\left(zf'(z)\right)'\right]^{\lambda}}{f'(z)} \prec e^{z}, \ z \in U \text{ and } \frac{\left[\left(wg'(w)\right)'\right]^{\lambda}}{g'(w)} \prec e^{w}, \ w \in U_{r_{0}}.$$

Definition 2.4. For $\beta \in [0,1]$ the function $f \in S$ is said to be in the class $\chi_{\Sigma}(\beta; e^z)$, if the following conditions are satisfied

$$(1-\beta)\frac{zf'(z)}{f(z)} + \beta\frac{(zf'(z))'}{f'(z)} \prec e^z, \ z \in U \text{ and } (1-\beta)\frac{wg'(w)}{g(w)} + \beta\frac{(wg'(w))'}{g'(w)} \prec e^w, \ w \in U_{r_0}$$

Let P be the class of analytic functions in U satisfied the conditions p(0) = 1 and Re(p(z)) > 0, $z \in U$. It is clear that the functions that satisfy the above conditions have the following series expansion

$$p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \dots = 1 + \sum_{n=1}^{\infty} p_n z^n, \ z \in U$$
(2.1)

The class P defined above is known as the class Caratheodory functions in the literature [22]. Now, let us give some necessary lemmas for the proof of our main results. **Lemma 2.1** ([23]). Let the function p belong to the class P. Then,

 $|p_n| \le 2$ for each $n \in \mathbb{N}$, $|p_n - vp_k p_{n-k}| \le 2$ for $n, k \in \mathbb{N}$, n > k and $v \in [0,1]$. The equalities hold for the function

$$p(z) = \frac{1+z}{1-z}.$$

Lemma 2.2 ([23]) Let the an analytic function p be of the form (2.1), then

$$2p_{2} = p_{1}^{2} + (4 - p_{1}^{2})x,$$

$$4p_{3} = p_{1}^{3} + 2(4 - p_{1}^{2})p_{1}x - (4 - p_{1}^{2})p_{1}x^{2} + 2(4 - p_{1}^{2})(1 - |x|^{2})y$$

for some $x, y \in \mathbb{C}$ with $|x| \le 1$ and $|y| \le 1$.

In this paper, we give some coefficient estimates and solve Fekete-Szegö problem for the class $\chi_{\Sigma}(\beta, \lambda; e^{z})$. Additionally, the results obtained for specific values of the parameters in our study are compared with the results obtained in the literature.

3. Results and Discussion

In this section, we give some coefficient estimates for the functions belonging to the class $\chi_{\Sigma}(\beta, \lambda; e^z)$ and solve Fekete-Szegö problem for this class.

Theorem 3.1. Let the function f given by series expansions (1.1) belong to the class $\chi_{\Sigma}(\beta, \lambda; e^{z})$. Then, we have the following inequalities

$$|a_{2}| \leq \frac{1}{(2\lambda - 1)(1 + \beta)} \text{ and}$$

$$a_{3}| \leq \begin{cases} \frac{1}{(3\lambda - 1)(1 + 2\beta)} & \text{if } \frac{3\lambda - 1}{(2\lambda - 1)^{2}} \leq \frac{(1 + \beta)^{2}}{1 + 2\beta}, \\ \frac{1}{(2\lambda - 1)^{2}(1 + \beta)^{2}} & \text{if } \frac{3\lambda - 1}{(2\lambda - 1)^{2}} \geq \frac{(1 + \beta)^{2}}{1 + 2\beta}. \end{cases}$$
(3.1)

Proof. Let $f \in \chi_{\Sigma}(\beta, \lambda; e^z)$, then exists Schwartz functions $\omega: U \to U, \varpi: U_{r_0} \to U_{r_0}$, such that

$$(1-\beta)\frac{z(f'(z))^{\lambda}}{f(z)} + \beta \frac{\left[\left(zf'(z)\right)'\right]^{\lambda}}{f'(z)} = e^{\omega(z)}, z \in U \text{ and}$$

Journal of Scientific and Engineering Research

.

$$(1-\beta)\frac{w(g'(w))^{\lambda}}{g(w)} + \beta \frac{\left[\left(wg'(w)\right)'\right]^{\lambda}}{g'(w)} = e^{\varpi(w)}, w \in U_{r_0}.$$
(3.2)

Let's the functions $p, q \in P$ defined as follows:

$$p(z) = \frac{1 + \omega(z)}{1 - \omega(z)} = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \dots = 1 + \sum_{n=1}^{\infty} p_n z^n, \ z \in U,$$

$$q(w) = \frac{1 + \omega(w)}{1 - \omega(w)} = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \dots = 1 + \sum_{n=1}^{\infty} q_n w^n, \ w \in U_{r_0}.$$
 (3.3)

It follows from that

$$\omega(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{p_1}{2} z + \frac{1}{2} \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \frac{1}{2} \left(p_3 - p_1 p_2 - \frac{p_1^3}{4} \right) z^3 \dots, z \in U ,$$

$$\varpi(w) = \frac{q(w) - 1}{q(w) + 1} = \frac{q_1}{2} w + \frac{1}{2} \left(q_2 - \frac{q_1^2}{2} \right) w^2 + \frac{1}{2} \left(q_3 - q_1 q_2 - \frac{q_1^3}{4} \right) w^3 \dots, w \in U_{r_0} .$$
(3.4)

From the (3.2) and (3.4) can written

$$(1-\beta) \left\{ 1 + a_2 (2\lambda - 1) z + ((3\lambda - 1) a_3 + (2\lambda^2 - 4\lambda + 1) a_2^2) z^2 + \cdots \right\} + \beta \left\{ 1 + 2a_2 (2\lambda - 1) z + (3(3\lambda - 1) a_3 + 4(2\lambda^2 - 4\lambda + 1) a_2^2) z^2 + \cdots \right\} = 1 + \frac{p_1}{2} z + \frac{1}{2} \left(p_2 - \frac{p_1^2}{4} \right) z^2 + \cdots, z \in U, (1-\beta) \left\{ 1 + A_2 (2\lambda - 1) w + ((3\lambda - 1) A_3 + (2\lambda^2 - 4\lambda + 1) A_2^2) w^2 + \cdots \right\} + \beta \left\{ 1 + 2A_2 (2\lambda - 1) w + (3(3\lambda - 1) A_3 + 4(2\lambda^2 - 4\lambda + 1) A_2^2) w^2 + \cdots \right\}$$
(3.5)
 = $1 + \frac{q_1}{2} w + \frac{1}{2} \left(q_2 - \frac{q_1^2}{4} \right) w^2 + \cdots, w \in f(U).$

By equating the same coefficients, we obtain the following equalities

$$a_{2} = \frac{p_{1}}{2(2\lambda - 1)(1 + \beta)},$$

$$(3\lambda - 1)(1 + 2\beta)a_{3} + (2\lambda^{2} - 4\lambda + 1)(1 + 3\beta)a_{2}^{2} = \frac{1}{2}\left(p_{2} - \frac{p_{1}^{2}}{4}\right),$$
(3.6)

$$a_{2} = -\frac{q_{1}}{2(2\lambda - 1)(1 + \beta)},$$

$$(3\lambda - 1)(1 + 2\beta)A_{3} + (2\lambda^{2} - 4\lambda + 1)(1 + 3\beta)A_{2}^{2} = \frac{1}{2}\left(q_{2} - \frac{q_{1}^{2}}{4}\right).$$
(3.7)

Then,

$$\frac{p_1}{2(2\lambda - 1)(1 + \beta)} = a_2 = -\frac{q_1}{2(2\lambda - 1)(1 + \beta)}; \text{ that is, } p_1 = -q_1.$$
(3.8)

Journal of Scientific and Engineering Research

Using Lemma 2.1 to the equality (3.8), we have first result of theorem.

Considering $A_2 = -a_2$, $A_3 = 2a_2^2 - a_3$, from the equalities (3.6) and (3.7) we have

$$a_{3} = \frac{1}{4(2\lambda - 1)^{2}(1 + \beta)^{2}} p_{1}^{2} + \frac{p_{2} - q_{2}}{4(3\lambda - 1)(1 + 2\beta)}.$$
(3.9)

Applying Lemma 2.2, we can write

$$a_{3} = \frac{1}{4(2\lambda - 1)^{2}(1 + \beta)^{2}} p_{1}^{2} + \frac{4 - p_{1}^{2}}{8(3\lambda - 1)(1 + 2\beta)} (x - y)$$
(3.10)

for some $x, y \in \mathbb{C}$ with $|x| \le 1$ and $|y| \le 1$.

Then, applying triangle inequality to the last equality, we have

$$|a_{3}| \leq \frac{t^{2}}{4(2\lambda - 1)^{2}(1 + \beta)^{2}} + \frac{4 - t^{2}}{8(3\lambda - 1)(1 + 2\beta)}(\zeta + \varsigma), \ \zeta, \varsigma \in [0, 1],$$
(3.11)

where $\zeta = |x|$, $\zeta = |y|$ and $t = |p_1|$. The inequality (3.11) can written

$$|a_3| \le \frac{a(\lambda,\beta)}{4}t^2 + \frac{1}{(3\lambda-1)(1+2\beta)}, \ t \in [0,2],$$

Where,

$$a(\lambda,\beta) = \frac{1}{(2\lambda - 1)^{2}(1 + \beta)^{2}} - \frac{1}{(3\lambda - 1)(1 + 2\beta)}$$

Then, maximizing the function

$$\varphi(t) = \frac{a(\lambda,\beta)}{4}t^{2} + \frac{1}{(3\lambda - 1)(1 + 2\beta)}, \ t \in [0,2]$$

it can easily be seen that $\varphi(t) \leq \frac{1}{(3\lambda - 1)(1 + 2\beta)}$ if $a(\lambda, \beta) \leq 0$ and $\varphi(t) \leq \frac{1}{(2\lambda - 1)^2(1 + \beta)^2}$ if

$$a(\lambda,\beta)\geq 0.$$

With this, the proof of second inequality of (3.1) is provided. Thus, the proof of theorem is completed.

In the case $\beta = 0$, $\beta = 1$ and $\lambda = 1$ from the Theorem 3.1, we obtain the following results, respectively. **Corollary 3.1.** If $f \in S_{\Sigma}^{*}(\lambda; e^{z})$, then

$$|a_2| \leq \frac{1}{2\lambda - 1} \text{ and } |a_3| \leq \begin{cases} \frac{1}{\left(2\lambda - 1\right)^2} & \text{if } \lambda \in \left[\frac{7 - \sqrt{17}}{8}, \frac{7 + \sqrt{17}}{8}\right],\\ \frac{1}{3\lambda - 1} & \text{if } \lambda \in \left(\frac{1}{2}, \frac{7 - \sqrt{17}}{8}\right] \text{or} \lambda \geq \frac{7 + \sqrt{17}}{8}. \end{cases}$$

Corollary 3.2. If $f \in C_{\Sigma}(\lambda; e^{z})$, then

$$|a_{2}| \leq \frac{1}{2(2\lambda - 1)} \text{ and } |a_{3}| \leq \begin{cases} \frac{1}{4(2\lambda - 1)^{2}} & \text{if } \lambda \in \left[\frac{25 - \sqrt{177}}{32}, \frac{25 + \sqrt{177}}{32}\right],\\ \frac{1}{3(3\lambda - 1)} & \text{if } \lambda \in \left(\frac{1}{2}, \frac{25 - \sqrt{177}}{32}\right] \text{or } \lambda \geq \frac{25 + \sqrt{177}}{32}.\end{cases}$$

Corollary 3.3. If $f \in \chi_{\Sigma}(\beta; e^{z})$, then

$$|a_2| \le \frac{1}{1+\beta}$$
 and $|a_3| \le \frac{1}{(1+\beta)^2}$.

Now, we give the following theorem on the Fekete-Szegö problem for the class $\chi_{\Sigma}(\beta, \lambda; e^{z})$.

Theorem 3.2. Let $f \in \chi_{\Sigma}(\beta, \lambda; e^z)$ and $\mu \in \mathbb{C}$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{1}{(3\lambda - 1)(1 + 2\beta)} & \text{if } |1 - \mu| \leq \frac{(2\lambda - 1)^{2}(1 + \beta)^{2}}{(3\lambda - 1)(1 + 2\beta)}, \\ \frac{|1 - \mu|}{(2\lambda - 1)^{2}(1 + \beta)^{2}} & \text{if } |1 - \mu| \geq \frac{(2\lambda - 1)^{2}(1 + \beta)^{2}}{(3\lambda - 1)(1 + 2\beta)}. \end{cases}$$
(3.12)

Proof. Let $f \in \chi_{\Sigma}(\beta, \lambda; e^{z})$, then from the equalities (3.8) and (3.9), we can write

$$a_{3} - \mu a_{2}^{2} = \frac{(1-\mu)p_{1}^{2}}{4(2\lambda-1)^{2}(1+\beta)^{2}} + \frac{p_{2} - q_{2}}{4(3\lambda-1)(1+2\beta)}.$$
(3.13)

Then, applying Lemma 2.2 the expression $a_3 - \mu a_2^2$ can written as follows

$$a_{3} - \mu a_{2}^{2} = \frac{(1-\mu)p_{1}^{2}}{4(2\lambda-1)^{2}(1+\beta)^{2}} + \frac{4-p_{1}^{2}}{8(3\lambda-1)(1+2\beta)}(x-y)$$
(3.14)

for some $x, y \in \mathbb{C}$ with $|x| \le 1$ and $|y| \le 1$.

Applying triangle inequality to this equality, we have

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\left|1-\mu\right|t^{2}}{4\left(2\lambda-1\right)^{2}\left(1+\beta\right)^{2}} + \frac{\left(4-t^{2}\right)\left(\xi+\eta\right)}{8\left(3\lambda-1\right)\left(1+2\beta\right)}, \ \xi,\eta\in\left[0,1\right],$$
(3.15)
$$n=\left|\nu\right| \leq 1, t=\left|n\right|$$

where $\xi = |x|$, $\eta = |y|$ and $t = |p_1|$.

Maximizing the right-hand side of the inequality (3.15) with respect to the variables ξ and η , we can write:

$$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{b(\lambda,\beta;\mu)}{4}t^{2}+c(\lambda,\beta), t\in[0,2],$$

Where,

$$b(\lambda,\beta;\mu) = \frac{|1-\mu|}{(2\lambda-1)^2(1+\beta)^2} - \frac{1}{(3\lambda-1)(1+2\beta)} \text{ and } c(\lambda,\beta) = \frac{1}{(3\lambda-1)(1+2\beta)}.$$

Maximizing the function $\psi: [0,2] \rightarrow \mathbb{R}$, defined as follows

$$\psi(t) = \frac{b(\lambda,\beta;\mu)}{4}t^2 + c(\lambda,\beta), \ t \in [0,2],$$

Journal of Scientific and Engineering Research

we can easily see that

$$\psi(t) \leq \frac{1}{(3\lambda - 1)(1 + 2\beta)}$$

if $b(\lambda, \beta; \mu) \leq 0$; that is if

$$(3\lambda - 1)(1 + 2\beta)|1 - \mu| \le (2\lambda - 1)^2 (1 + \beta)^2$$

and

$$\psi(t) \leq \frac{\left|1-\mu\right|}{\left(2\lambda-1\right)^{2}\left(1+\beta\right)^{2}}$$

if

$$(3\lambda - 1)(1 + 2\beta)|1 - \mu| \ge (2\lambda - 1)^2 (1 + \beta)^2$$
.

Thus, the proof of theorem is completed.

In the case $\beta = 0$, $\beta = 1$ and $\lambda = 1$ from the Theorem 3.2, we obtain the following results, respectively. **Corollary 3.4.** If $f \in S_{\Sigma}^{*}(\lambda; e^{z})$ and $\mu \in \mathbb{C}$, then

$$|a_{3} - \mu a^{2}| \leq \begin{cases} \frac{1}{3\lambda - 1} & \text{if } |1 - \mu| \leq \frac{(2\lambda - 1)^{2}}{4(3\lambda - 1)}, \\ \frac{4|1 - \mu|}{(2\lambda - 1)^{2}} & \text{if } |1 - \mu| \geq \frac{(2\lambda - 1)^{2}}{4(3\lambda - 1)}, \end{cases}$$

Corollary 3.5. If $f \in C_{\Sigma}(\lambda; e^{z})$ and $\mu \in \mathbb{C}$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{1}{3(3\lambda - 1)} & \text{if } |1 - \mu| \leq \frac{(2\lambda - 1)^{2}}{3(3\lambda - 1)}, \\ \frac{4|1 - \mu|}{4(2\lambda - 1)^{2}} & \text{if } |1 - \mu| \geq \frac{(2\lambda - 1)^{2}}{3(3\lambda - 1)}, \end{cases}$$

Corollary 3.6. If $f \in \chi_{\Sigma}(\beta; e^z)$ and $\mu \in \mathbb{C}$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{1}{2(1+2\beta)} & \text{if } |1-\mu| \leq \frac{(1+\beta)^{2}}{8(1+2\beta)}, \\ \frac{4|1-\mu|}{(1+\beta)^{2}} & \text{if } |1-\mu| \geq \frac{(1+\beta)^{2}}{8(1+2\beta)}. \end{cases}$$

Also, taking $\mu = 0$ and $\mu = 1$ in the Theorem 3.2, we obtain the following results, respectively. **Corollary 3.7.** If $f \in \chi_{\Sigma}(\beta, \lambda; e^{z})$, then

$$|a_{3}| \leq \begin{cases} \frac{1}{(3\lambda - 1)(1 + 2\beta)} & \text{if } \frac{3\lambda - 1}{(2\lambda - 1)^{2}} \leq \frac{(1 + \beta)^{2}}{1 + 2\beta}, \\ \frac{1}{(2\lambda - 1)^{2}(1 + \beta)^{2}} & \text{if } \frac{3\lambda - 1}{(2\lambda - 1)^{2}} \geq \frac{(1 + \beta)^{2}}{1 + 2\beta}, \end{cases}$$

Journal of Scientific and Engineering Research

Corollary 3.8. If $f \in \chi_{\Sigma}(\beta, \lambda; e^{z})$, then

$$|a_3-a_2^2| \leq \frac{1}{(3\lambda-1)(1+2\beta)}$$

Remark 3.1. We note that Corollary 3.7 confirms the second result of Theorem 3.1.

References

- [1]. Köebe, P. (1909). Über die Uniformisierrung der algebraishen Kurven, durch automorpher Funktionen mit imaginarer Substitutions gruppe. Nachr. Akad. Wiss. Göttingen Math. - Phys. 68-76.
- [2]. Bieberbach, L. (1916). Über die Koeffizienten derjenigen Potenzreihen welche eine schlichte Abbidung des Einbeiskreises vermitteln. Sitzungsberichte Preuss. Akad. Der Wiss. 138, 940-955.
- [3]. Sokol, J. (2011). A certain class of starlike functions. Comput. Math. Appl. 62, 611-619.
- Janowski, W. (1970). Extremal problems for a family of functions with positive real part and for some [4]. related families. Ann. Pol. Math. 23, 159-177.
- Arif, M., Ahmad, K., Liu, J.-L., Sokol, J. (2019). A new class of analytic functions associated with [5]. Salagean operator. J. Funct. Spaces https://doi.org/10.1155/2019/6157394, 1-8.
- [6]. Brannan, D. A., Kirwan, W. E. (1969). On some classes of bounded univalent functions. J. Lond. Math. Soc. 2, 431-443.
- [7]. Sharma, K., Jain, N. K., Ravichandran, V. (2016) Starlike function associated with a cardioid. Afr. Math. 27, 923-939.
- [8]. Kumar, S. S., Arora, K. (2020). Starlike functions associated with a petal shaped domain. ArXiv 2020, arXiv: 2010.10072.
- [9]. Mendiratta, R., Nagpal, S., Ravichandran, V. (2015). On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Soc. 38, 365-386.
- [10]. Bano, K., Raza, M. (2020). Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 47, 1513-1532.
- [11]. Alotaibi, A., Arif, M., Alghamdi, M. A., Hussain, S. (2020). Starlikness associated with cosine hyperbolic function. Mathematics 8, 1118.
- [12]. Ullah, K., Zainab, S., Arif, M., Darus, M., Shutayi, M. (2021). Radius Problems for Starlike Functions Associated with the Tan Hyperbolic Function. J. Funct. Spaces, Article ID 9967640.
- [13]. Cho, N. E., Kumar, V., Kumar, S. S., (2019). Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 45, 213-232.
- [14]. Mustafa, N., Nezir, V., Kankılıç. A. (2023). Coefficient estimates for certain subclass of analytic and univalent functions associted with sine hyperbolic function. 13th International Istanbul Scientific Research Congress on Life, Engineering and Applied Sciences on April 29-30, 234-241, Istanbul, Turkey.
- [15]. Mustafa, N., Nezir, V., Kankılıç. A. (2023). The Fekete-Szegö problem for certain subclass of analytic and univalent functions associated with sine hyperbolic function. 13th International Istanbul Scientific Research Congress on Life, Engineering and Applied Sciences on April 29-30, 242-249, Istanbul, Turkey.
- [16]. Mustafa, N., Nezir, V. (2023). Coefficient estimates and Fekete-Szegö problem for certain subclass of analytic and univalent functions associated with sine hyperbolic function. 13th International Istanbul Scientific Research Congress on Life, Engineering and Applied Sciences on May 1-2, 475-481, Istanbul, Turkey.
- [17]. Mustafa, N., Demir, H. A. (2023). Coefficient estimates for certain subclass of analytic and univalent functions with associated with sine and cosine functions. 4th International Black Sea Congress on Modern Scientific Research on June 6-8, 2555-2563, Rize Turkey.
- [18]. Mustafa, N., Demir, H. A. (2023). Fekete-Szegö problem for certain subclass of analytic and univalent functions associated with sine and cosine functions. 4th International Black Sea Congress on Modern Scientific Research on June 6-8, 2564-2572, Rize Turkey.

- [19]. Mustafa, N., Nezir, V., Kankılıç. A. (2023). Coefficient estimates for certain subclass of analytic and univalent functions associated with sine hyperbolic function with complex order. Journal of Scientific and Engineering Research, 10(6), 18-25.
- [20]. Mustafa, N., Nezir, V., Kankılıç. A. (2023). The Fekete-Szegö problem for certain subclass of analytic and univalent functions associated with sine hyperbolic function with complex order. Eastern Anatolian Journal of Science, 9(1), 1-6.
- [21]. Mustafa, N., Demir, H. A. (2023). Coefficient estimates for certain subclass of analytic and univalent functions with associated with sine and cosine functions with complex order. Journal of Scientific and Engineering Research, 10(6), 131-140.
- [22]. Miller, S. S. (1975). Differential inequalities and Caratheodory functions. Bull. Am. Math. Soc. 81, 79-81.
- [23]. Duren, P. L. (1983). Univalent Functions. In Grundlehren der Mathematischen Wissenschaften, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, Volume 259.