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Abstract: The level of air pollution caused by pollutants has reached significant levels in some countries. Most
people in the world breathe polluted air. This causes health damage associated with exposure to air pollution. It
is also the cause of climate change, which has an impact on ecosystems and environments.

Human activities play an important role. They are the source of emissions of gases and particles into the
atmosphere. In order to combat this phenomenon, it is necessary to reduce or control emissions of pollutants into
the atmosphere. This would contribute to an improvement in air quality and a less uncertain future for mankind.
Air pollution can be represented by a mathematical model using a system of partial differential equations. In this
article, we study an optimal pollution control problem governed by a system of partial differential equations
describing the evolution of the concentration of a given pollutant in the atmosphere.
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1. Introduction

The optimal control problem, the objective of our work, is a distributed control problem. Control theory allows
us to study the possibility of acting on a time-dependent dynamic system in such a way that we can bring the
state of this system to a given state (or target state) at a given time. Note here that we are trying to act at source
in order to control pollutant emissions. The structure of our article is as follows:

In the first part, we present the model problem.

Then, in the second part, we proceed to the theoretical study: we prove the existence and the uniqueness of the
problem on the functional spaces which are the natural functional frameworks of the system of partial
differential equations.

In the third part, we determine the adjoint problem. Determining the latter leads to the resolution of two
optimisation problems instead of one, which is more practical especially as the optimality condition obtained
from the first problem cannot be exploited directly.

The fourth part is devoted to the numerical solution. Since we have to solve an optimisation problem, we use the
gradient descent algorithm. However, calculating the direction of descent requires the primal and adjoint
systems to be solved numerically. These two systems will be solved using the Lagrange P1 finite element
method.
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2. Presentation of the problem
Our optimal control problem is a distributed control problem given by:

minj(v)
with:
1 T 2 B (T 2
]u(v) = Efo f(; [Du(v) _Zcib] drdt +Ef0 fc vedrdt
under constraints:

ou , a ou _ .
E+dlv(au)+au—a—)(3(na)—M.Azu—f+v, on [0;T]XC,
U= ug, on S,

u : —
<%—d.u, lf X3—0,
u .

a_o, if x3=H

u = ug, if t=0

where U, space of admissible controls is a sub - closed convex space of L?([0,T] x C), D is a continuous linear
observation operator.Z is the Hilbert space which is the space of observations with :D € L(L2(0,T;V); Z).
Z.ip € Z is a given observation function. g is a given positive real v is the control used to act on the system.

3. Existence and uniqueness of control
Let'sask f; = f + v.v € L*(0,T; C).
The functional framework is therefore the triplet (V, H, V*) such that:
V=H*C)n H&FS(C) etH = L*(C)
Theorem 3.1 Suppose that the function v - J(v) is strictly convex, differentiable and coercive, then
the problem (1) has a unique solution u € U and is characterised by :
Jw,v—uw)=0 VuelU

3.1 Convexity results
(a) Let us call X the set of pairs (u, v) such that v € U and u a solution of the PDE satisfying the edge and
initial conditions. These two pairs are therefore solutions of the optimal problem

Letx = (uy,v1) €EX,y = (uy,v,) €EXett €]0,1],

letz=tx+ (1 -t)y = (tuy + (1 — u,, tv; + (1 — t)v,)
The linearity of the gradient and the second-order differential operators means that if x and y are solutions of
the PDE, then so is z.
Hence z € X, which leads to the conclusion that X is a closed convex.

(b) Let’s show that the functional J is convex:

— 1 ’ 2 B ! 2
J(2) = Ejo jC|D(tu1 + (1 —t)uy) — z.p|°drdt +Ejo Jc(tv1 + (1 —-t)vy)drdt

let say: J(2) = %11 + glz,

with I = [ [ ID(tu; + (1 = Owy) — zgp [Pdrdt et = [ [ (tv, + (1 — t)v,)2drdt
)
T
I, = f f (tv, + (1 — t)v,)2drdt
0 c

we have: || tv; + (1 — ), I7= (tv, + (1 — vy, tvy + (1 — )vy)
=t2 v 1P+ (1 =02l v, 17+ 2t(1 — v v,
=[t+tt—D] vy 12+ [1—t+tt— D]l vy 174 2t(1 - )vyv,
=tlv, P+ @A =) Nv, 1P+ et —1) vy — vy |12
hence

T
I = J J [tv? + (1 — t)vZ + t(t — 1) (v; — v,)?]drdt
0 JC
=
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—t(1—1t) < 0, then we deduce:
L<tf [ vidrdt+(1—¢) ] [ vidrdt (4)

T
L = f J. [D(tu; + (1 — t)uy) — zgp|*drdt
0 JC

we have: D(tu; + (1 —t)uy) — Zgp = t(Duy — zo) + (1 — t)(Duy — 2z4p)
Using the same reasoning as above, we have:
[D(tuy + (1 = Oup) = Zeip1* = t(Duy — zip)* + (1 = )(Dup — Zep)? + t(t — DD (wy — up), D(uy — uy)]
or: t(t — 1) < 0 hence:
h<tf) f, 1D =z Pdrdt + (1= ) [ [, 1D, = zeppPdrdt (5)
from (3) and (4), we deduce:

1
511+ L <t f J-lDu1 Zeip| drdt+ﬁf f 2drdt]

+(1—t)[—f JlDuz—za-blzdrdt+—j fv%drdt]
2Jy Je 2o Je
hence:

Jitx+ (A -t)y) <tJ(x) + (1 -8/ (¥)
We conclude that the functional J is convex.

(c) Let us prove that J is inferiorly semicontinuous:
Consider a sequence (u,, v,,) Which converges strongly to (u, v) in
L*(0,T; V) x L2(0,T; H). There then exists an extracted sub-sequence (u,(t), v, (t) converging strongly to
(u(),v(t))inV x H.
1 B
KaCtn (0,000 = 5 [ 1Dun(0) = zep P + 5 [ wiar
c C
Ky (un (), v ()55 K (w(®), v(1))
we have: lim,,_, , infK, (u, (t), v, (t)) = limn_>+°oinf[% fc |Duy, (V) — Zgp |2dr + gfc v2dr]

= lim inf- j|Dun(v) Zep|2drdt + lim 1nf§]vﬁdrdt
c

n—-+oo n—+oo

> zfc [Du(t) — zgp|*dr +§f6v(t))2dr
hence
K(t) < lim infK, (u,(t), v, (1)) (6)
Tn_>+00 T
= J(u,v) :J K(t)dt SJ lim infK, (u, (t), v,(t))dt
0 0 n—+oo

According to Fatou’s lemma we have:

1 T T
Ju,v) < nl_i>r+nooinf[zj J | DUy, (t) — zep | 2drdt + gJ j v, ())2drdt]
o Je o Je

We deduce:
](ul U) S lll}:l inf](un! Un) (7)
n—-+4oo

3.2 Différentiabilité du critére:
the application: v — u(v) is affine and therefore [(v) = u(v) + u(0) is linear. Let’s ask J(u, v) = J,(v). Let’s
calculate:

o u@+h0) = Ju ()

h—-0 h

We have:

=
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Ju(v + ho) = J- f [Du(v + hO) — zgp |drdt + = f f (v + hO)?drdt

Du(v + h8) — z.; = u(v) + hi(0)
hence:
| Du(v + h@) — zyy, I1°= (Du(v) + DhL(0) — z., Du(v) + DRI(O) — z.p)
=|l Du(v) — zgp 1?4+ 2h(D(u(v) — ze, DL(O)) + h? || DI(6 1I?

hence:
2

J(v+ho) = % Il Du(v) — zgp, 1%+ h? Il DI(6 11?4+ h(D(u(v) — z, DI(0)) + = £ [II v 1°+ 2h(v,0) + h?
6 11%]
h? h?
©J(v+h8) —Jv) = — I DL(O 124+ h(D (u(v) — Zesp, DL(B)) + B(v,0) + — e 12

Passing to the limit, we have:

+ ho
tim /DT ) — 2, DO + B, 0)
with [(6) = u(8) — u(0)) We conclude that:
Gu(@),0) = Jj [, [(Du(v) = 7)1 [u(8) — u(O)]drde + f [} [, vodrdt ©®)

and therefore, J is_Gateau - differentiable.
let’sask: 0 =v—u=1(0) =l(v—u) = u(v) —u(u). We can then deduce:
Jw@),v—u) = fOT Jo [(Du) = z¢p) 1D [w(v) — u(w)]drdt + foT Jo v(v —wdrdt 9)

and so J is Gateau - differentiable.

3.3 Coercivity
1 T T
Ju(v) = Efo L[Du(v) — Zgp2drdt +§fo fcvzdrdt

B (" 2 B
e L, = 5 drdt & J,(v) == || v "Lz ([0.T1%C)
0
Hence J is coercive.
4. Adjoint problem and optimality condition

Theorem 4.1 We assume that H = L?(0,T,V) and H' = L?(0,T, V") with V = H%(C) n H1(C), then the
solution v of our optimal control problem is characterised by the following optimality system:

i) . 3 3
a—?—dlv((xu)+cru—a—x3(ni)—u.A2u=f+redv, on ]0;T[xC,
u = ug, on I,
J % = du, on 10;T[x Ty, (10)
ou
= 0, on 10;T[x Iy,
U(O ) =1Ug
———div(ap) + op — —(77 E) w.Ayp =D*A(Du — z,,), on ]0;T[XC,
p= 0, on ]0;T[x acC,
p(T,.)=0, (11)
1 T T
J@W) =3[ [, 1Du(v) — zep Pdrdt + £ [ [ |v?drdt,

\V/(v) =p +Bv

Theorem 4.2 The optimal control u is given by:

u=-pp*
If D is an injective operator of L2(0,T,V) — L2(0,T, H), A is the identity operator. The adjoint problem is then
deflned by:

{;‘ ‘T
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d . d d
—a—z;—dlv(ap)+0p—a(n% —pAp=u—2zy, on |0;T[XC,

p=0, on 10;T[x dC, (12)
p(T,.)=0
If D is an injective operator of L?(0,T,V) — L?(0,T, V), we have:
A= (—A+1)

The adjoint problem is then defined by:
—Z—p —div(ap) + op — i(n 6_p) —phop =(-A+ DU —zy), on ]0;T[xC,
t 0x3 0x3
p=0, on 10;T[x dC, (13)
p(T,.)=0

Proof Reformulation of the optimality condition:

If u is the solution to the control problem, then according to the theorem :
Vv €Uy, (V/(W),v—u) =0

From (8), we can deduce:

o (@), v—u) = f f [(Du(w) — z.,)]D[u(v) — u(w)]drdt + ﬁf f u(v —u)drdt
0 JC 0 JC
And using the theorem, we can deduce the optimality condition:
Iy [ [(Du@) = zep)ID[u(v) — u@]drdt + B [ [ @(v —wdrdt > 0 (14)
Using (14), posing u(v) = y(v) and w = v — u, we find :
V/(m),w) = Dy(u) — z.|D drd u(w)drd
@@w)= | | (DY@ - zapl0yrdrde +6 | [ wyara
where y(w) check:
ay(W)) _

) 4 div(ay(w)) + ay(w) — 2 =) —ulyw)=w, on [0;T]xC,
at dx3 Ox3

y(w) =0, on acC, (15)

and y(w, 0) = 0 By multiplying (15) by p and integrating by parts we get:

fo 4 + 0 P A ddt—JTj drdt
| C[ T w(ap) +op ax3(”ax3) p-Axply(w)drdt = CWPT

hence:

T

J J D*A(Du — z.p)y(w)drdt = JTJ wpdrdt
0o Jc c
< D*A(Du — zgp)y(w) = wp
or:
((D*ADu = zyp)), y(W)) = ((ADu — Z¢p), Dy(w)) = ((Du — Z¢i), Dy (W)

hence:

T T
f f D*A(Du — z.)y(w)drdt = fo wpdrdt = f f (Du — z;)Dy(w)drdt
0o Jc c 0o Jc

& (Du —z)Dy(w) = wp
and therefore::

Vj(w),w) = fOTJprdrdt + BJ;TJ-Cﬁwdrdt = J;ch(p + fu)wdrdt

we deduce the optimality condition in accordance with the theorem:
p+pu)y(v—u)=0 (16)
In addition:
Vio)=0ep+pu=0su=—pp? @an
Determining the adjoint problem:
The optimality condition (14) is not currently exploitable. To get around this problem we need to use the
adjoint state, which will allow us to obtain an explicit expression for this condition.

P
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To do this, we will introduce the Lagrangian defined as the sum of J,,(v) and the equation of state multiplied by
p:
_ 1T 2 B (T 2
L(v,u,p) = Efo Jo [Du(V) = z)*drdt + ;fo J vidrdt +

T ou o , ou (18)
Jy L. p [-5; — V(aw) —ou + a(n a_x3) + ph,u + f + v]drdt
either:
1T T ) 2 . @
Lwwp,) =5f) [ [Du) - zgp)2drat + £ [ [ v?drdt+< -2 - v(ew) - ou + ) +
uhou+f+v,p>
Considering the equation of state and p the adjoint state, we have:
Ju a ou
5. v ) 7] - A a.. 5. ) =< )] ] >
<atp>+a< up>+to<up>-—-<pu 2u+ax3(nax3)p> fir>+<vp
Let’s say :
L=< >—ffTau drdt
TSS9 P77, e P
T
L =a<Vup>= af f Vupdrdt
cJ0
Iy =< ubgu + (12, p >= ffTA ddt+ffTa O s part
3 =< ubyu ax3("ax3)'p =) ), Aaupdr s a363(116)53)10 r
=L+
1. For the 15¢ term: using Green’s formula:
T d T @
L=, [, Sopdrdt = — [ [ u=bdrdt + [, [w(T)p(T) — u(0)p(0)]drdt (19)

2. For the convection term:

T T
I, = af f Vupdrdt = —af f Vpudrdt + af updo
cJ0 cJ0 I'pUl's

we pose p = 0 on I, hence:
L=-al, fOT Vpudrdt + a frg updo (20)
3. For diffusion terms:

T T
= uf f A,pdrdt = uf Voupny, x,d0y, x, — uf f V,uV,pdrdt
cJo0 Iguls cJ0

on Iy the normal vectors have a zero projection in a plane parallel to the plane (%, j) because they are orthogonal
to the plane

= Vzupnxledele =0

Gammapg
5= Hf
r

orp=0surls=

SO:

T
Voupny x,doy, «, —uff V,uV,pdrdt
cto

N

T
rpurs V2UPM x, 0y, = 0€)y = —pt Jo Jy V2uVypdrdt

by reusing Green’s formula:

T
Ji = —ul f Vou¥pny, r, oy, — f f ub,pdrdt]
Fgurls c/o

hence:
Ji=ul, Jy ubpdrdt (21)

o fortheterm/, = [, fOT 6%3 (n :%)pdrdt
=

ﬁa{;&:
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Ou nd ff 0w P it
]z— 63pn0 " ox, o,
T ou
or: [ [, a;a: t—f nu—nda—ff —3(na—x3)drdt
d’ou

2 —f n(6x3 —u—)nda+ff ua—S(n )drdt
and therefore:
0
J2 = Jro n(dup —uiPmdo + [, f; ws (5 5)drdt (22)

e  Putting together (21) and (22), we deduce:
T a a a
Is=Ji+)2=Jc fy Whop +5-(goNudrde + [ mu(dp — 3 5ndo (23)

4. using (19), (20) and (23), we obtain:
—h—L+l=—[ [ [—— —aVp + (udzp + —(n ))]udrdt = J; (Mp(T) — u(0)p(0)]dr

+f [ap —n(dp — —)]undo
IoUly Ox3

The Lagrangian can then be given in the form:
Lwup) =y [, G0Ou—1z5)% +5 v2 + [ +aVp —op + ph,p + —(n ;)]u + (f + v)pldrdt

Iy Joy Taup =1 p = uzD)ndtdo - f, [w(Mp(T) - u(@)p(0)]dr
(24)

withp = 0on T
Z—i gives the adjoint state; We have:
L(v,u+ew,p) — L(v,u,p) = %[fOT Jo [(Du—2zcp)? + 2e(Du — z4, Dw) + €*(Dw, Dw)]drdt —
T
Iy I (Du—ze)2drdt + [ [ 22+ aVp — op + pdp + g(n g)]ew +

€y Jo, lawp =1Gp —w D) ndtdo — € [ [w(T)p(T) = w(O)p(O)]dr
(25)

hence:
Jim XA WD OUD) SO - (T f D*A(Du — zeg)wdrdt — [ [w(T)p(T) — w(0)p(0)]dr

€0 € ou

f f +“VP—0p+uA2p+—(n—)]w+
fo fr [awp — U(EP W )]ndtdO'
(26)

Since the Lagrangian is stationary, this derivative must be zero in any direction w. This gives us the 3
conditions:

T X T b 9 3
o J, D*ADu=zg)drde + [} [, [Z+aVp - op + uhop + 2= (7 22)] = 0
, —nCep —wok = 27
Iy Jry lap =nGrp — w3 D)ndtdo =0 @7)
p(T;.) =0

we deduce the adjoint problem:
2
GN
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a , 3 a .
—a—’z —div(ap) + op — a(n i) —u.Ayp = D*A(Du — z,,), on [0;T] XC,
p=0, on T,
{(a—nd)p + :TZ =0, on T, (28)
ap + ;7’; =0, on Iy,

we can then put p = 0 on I, U I, the problem (29) becomes:
—Z—IZ —div(ap) + op — 6%3 n ;TZ) —u.Ayp =D*A(Du—z), on [0;T] X C,
p = 0’ on aC’ (29)

avecp(T,.) =0

5. Solving and numerically simulating the optimal control problem
In this section, D is an injective operator from L?(0, T, V) into L2(0, T, H) and A is the identity operator.
5.1 Optimal system approximation
The domain will be subdivided essentially into tetrahedrons (T} );»1. The mesh thus obtained will be defined as
in Chapter (2). The chosen method is the Lagrangian finite element method P1.
In this section, we will give a discretisation in space, then complete it with a discretisation in time of the direct
problem first and then of the adjoint problem.
5.1.1 Approximation of the direct problem
We give here the results of discretisations in time and space. We solve the system:

(M + AtS)U™ = MU™ + At(B™*! + V) (30)
S=N+oM+ A+ D ,where N, M, A, B are the matrices given by:

M;; = ka Aidjdr, N;; = ka VA Ajdr, Aj; ka (AVA)VA;dr,

D;j = dnoj Aidjde
ToNT

where

n+l _ n+1 n+1 _ n+1y\t
Vrej —f vt dr et Vit = (VTk,j )j=1,.4
Tk

with:

nt
n+1 — n+1
%4 = E Vers
k=1

Ve’};kl being the extended vectors of the vectors V%’k“ on the mesh and nt the total number of tetrahedra.
Where [ is the set of indices of the nodes of the mesh, J the set of indices of the nodes belonging to I and K the
set of indices of the nodes belonging to T, .

In the same way
B?;} :J [ dr
Tk

5.1.2 Approximation of the adjoint problem
Using the same procedure, we will determine an approximation to the adjoint problem.
Semi — discretizationinspaceoftheadjointproblem

4
b= Z pili
i=1
We then obtain the following approximation to the adjoint problem:

— Yier () [ AiApdr + Yier — (a [ VA dr — o [ Adydr + [ AVAVA;dr)p;(t)
=Yier (f A A;dr)u (t) — Xier J ZepAydr

Q = URL, T,. On atetrahedron T}, we pose:

(31)

P
3 ‘_\\'\*
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Recall here that I is the set of indices of the nodes in the mesh. This approximation leads us to the following
system:

—Mp'(t) + S,p(t) = By(t
p(T) =0
where: 52 =—-N+0oM — A, with Ml] = fC liljdr, NU = fC V/li/ljdr, Al] fC (AVA,')VA]dT,
Bzi = MUu] - fC Zcib/‘ljdr.
Completetimeandspacediscretizationoftheadjointproblem
An implicit time scheme is also used. The time derivatives are then approached using an implicit finite
difference scheme. The result is:
(=M + AtS,)P™! = —MP™ + At(MU™+! — Z141 (33)
Z(."'li;,]'i'k,j = f Z?izlljdr» Z?lJl;,lTk = (ZZ-E,]%'k,j);E:l,..A
Tk
d’ou:
nt
Z5t =) 25t
k=1
Z;ﬁ-’,;}k,e being the extended vectors of the z;;g}Tk vectors on the mesh.
the algebraic systems resulting from the resolution of the two problems, i.e. the direct problem and the adjoint
problem, gives us:
—M +AtS, —AtM Pty _ (=M 0 (P" ~Z&p )
(0 M + AtS) ' (U"+1) N (o M) ' (un) + A <3n+1 Ly (34)
Evaluationofsecondlimbvectors
These vectors are defined by:
2 = b 2 Adr (35)
VT",:,-l = ka v dr (36)
Brei = I S 4dr (37)
En décomposant z2%;t,v™*1 et f**1 comme suit:
Zipt = Z?iz,ﬁ-zcib,z () (38)
v = ptly, (1) (39)
frt = () (40)

and assuming that the values of z.;;,, v and f are known at all points in our mesh, a quadrature gives us the
values of the vectors as follows:

n+1
Zeiba| Tkl

Z8th, = 2T 22 (11,11 (41)
n+1
vt =1 ) (1,1,10) (42)
LT
et =T f 110 (43)

=
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5.2 Optimisation algorithm
Let’s say Y, = (ug, i, V). We are therefore looking for the vector Y = (&, p, )" solution of the optimal
system consisting of the primal problem (B,) and the adjoint problem (7).
To solve our optimisation problem, we will construct an algorithm that calculates the optimal control. This will
be a descent algorithm using the non-linear conjugate gradient method.
Step 1: set vy, then calculate J, = J(v,) and V], = V] (v,); then we have d, = V],
Step 2: Solve the optimal system P1 using the finite element method:

- find w, solutiuon of (B,).

- find p,, solutiuon of (B,)

- putdy = pi + Bu.
NB: VJj, = di
As long as a convergence criterion is not met:
Step 3: Determination of the a; step by a one-dimensional optimisation or a linear search of our choice.
Compute a new iterate:

Vgy1 = Vg — Qrdy;

Step 4: Evaluation of the new gradient V/.,1;
Step 5: Incrementation: k = k + 1

6. Numerical simulations
For the optimal control problem, the synthetic solution we use is the one obtained from the one used to solve the
direct problem by changing the variable so that it is zero on the Gammas edge. It is given by:

ny? . m(z—H+3) _3(utnotoymie
u(t; % :2) = =0z z)sin(=———)e 4 (44)
with:
a_u — E t(TT(Z—H+3)) _ d f _ 0
5, — ;ot—— ) u=du if z=
du .
PPl if z=H (45)
ulx,y,z,t) =0 on I
u(0;x;y;2) = u,
The target function or observation function is given by:
_3(u+n0+0)n2t
Zqip = cos(mx).cos(m.y).cos(m. (z — H + 3)).e 4H? (46)

6.1 Numerical results

< 10-15

Figure 1: Target function with 64 nodes and N = 50.
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Figure 2: Controlled solution with 64 nodes and N = 50.
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Figure 3: Optimal control with 64 nodes and N = 50.
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Figure 4: Uncontrolled solution-64 nodes and N = 50.
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Figure 5: Evolution of the cost function as a function of the number of iterations for N = 50 and 64 nodes
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Figure 7: Controlled solution with 189 nodes and N = 100.
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Figure 8: Optimal control with 189 nodes and N = 100.
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Figure 9: Uncontrolled solution-189 nodes and N = 100.
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Figure 10: Evolution of the cost function as a function of the number of iterations for N = 100 and 189 nodes
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Figure 11: Target function with 315 nodes and N = 150.

x107%®

Figure 13: Optimal control with 315 nodes and N = 150.
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Figure 14: Uncontrolled solution-315 nodes and N = 150.
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Figure 15: Evolution of the cost function as a function of the number of iterations for N = 150 and 315 nodes
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Figure 16: Target function with 625 nodes and N = 200.
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Figure 18: Optimal control with 625 nodes and N = 200.
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Figure 19: Uncontrolled solution-625 nodes and N = 200.
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Figure 20: Evolution of the cost function as a function of the number of iterations for N = 200 and 625 nodes
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Figure 22: Controlled solution with 936 nodes and N = 250.
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Figure 23: Optimal control with 936 nodes and N = 250.

Figure 24: Uncontrolled solution-936 nodes and N = 250.

25

Fonction cot J

0

o 10 20 % 2 s e 7 s o 10
Nbre d itérations
Figure 25: Evolution of the cost function as a function of the number of iterations for N = 250 and 936 nodes
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Synthesis:
After implementation in Matlab, we obtained the results shown in the figures above. They show:

1. By observing and analysing these figures: for figures refFigure01 and refFigure02, we can see that the
optimal solution tends to approach the target function. This tendency increases remarkably when we
increase the number of nodes in the mesh. Indeed, the various figures 6, 11, 17, 22 representing the target
function are practically identical to the respective figures 7, 12, 18, 23, representing the optimal solution
obtained by progressively varying the number of nodes and the time step.

2. Figures 5, 10, 15, 19 represent the evolution of the functional ] as the iterations increase in the cases with
64 nodes and N = 50, 189 nodes and N = 100, 376 nodes and N = 150, 625 nodes and N = 200, 936
nodes and N = 250 . The first thing to notice when looking at these figures is that the curves they
represent all have the same behaviour and are decreasing. This suggests that the cost function is decreasing
and tending towards low values. We can therefore say that the optimal solution is very close to the target
function when the control is optimal. The representations of optimal controls are given in figures 3, 8, 13,
18.

7. Conclusion

We assume that to control a pollution problem, it is easier to act on the pollution source than on the domain
boundary. In this chapter, based on our model problem, we have proposed a distributed pollution control model.
This optimal control problem is a constrained optimisation problem in which we act on the source. In the
theoretical part, we studied the existence and uniqueness of the solution to this problem, deduced its adjoint
problem and an explicit expression for the optimality condition.

From the initial problem, the adjoint problem and the optimality condition, which gives an expression for the
gradient of the function J, we have constructed an algorithm in which, for each iteration, we simultaneously
calculate the state solution, the adjoint solution and the gradient of j. Since two systems of partial differential
equations have to be solved, the solutions calculated are approximate solutions found using the Lagrange finite
element method P1. The optimisation method chosen is the Wolfe step gradient descent method.

The numerical results have enabled us to give representations of the optimal controls by varying the number of
mesh nodes and the time step. As a conclusion, we can therefore find a control for which the concentration of
the pollutant can be brought as close as possible to a given target function.
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